Integrating Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional Scale: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Survery and Data Collection
2.1.1. Field Survey Area
2.1.2. Disease Survey Data Collection
2.1.3. Remote Sensing Data Collection and Wheat Planting Area Extraction
2.1.4. Meteorological Data
2.2. Vegetation Indices for Plant Diseases Discrimination
2.3. Two-Stage Vegetation Index for Wheat Yellow Rust Monitoring
2.4. Spectral VIs and Meteorological Features Importance Ranking
2.5. Monitoring Methods
2.6. Classification Accuracy Assessment
3. Results
3.1. Vegetation Index Response for Yellow Rust Disease
3.2. Meteorological Data Processing and Selection
3.3. VIs and Meteorological Features Sensitivity of Yellow Rust Monitoring
3.4. Wheat Yellow Rust Monitoring Based on Spectral Vegetation Indices
3.5. Wheat Yellow Rust Monitoring Based on Meteorological Data and Spectral Information
3.6. Mapping Wheat Yellow Rust Using the Optimal Monitoring Model
4. Discussion
4.1. Performance of Spectral Vegetation Indices in Wheat Yellow Rust Discrimination
4.2. Performance of Meteorological Data in Wheat Yellow Rust Discrimination
4.3. Performance of Wheat Yellow Rust Monitoring Classification Algorithms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Contents | 1 | 2 | … | |
---|---|---|---|---|
Survey date | ||||
Location (longitude, latitude) | ||||
Crop growth information | Cultivated varieties | |||
Growth stage | ||||
Plant height | ||||
Planting density | ||||
Disease information | Number of leaves investigated | |||
Number of diseased leaves | ||||
Disease severity (%) | ||||
Damage percentage (%) | ||||
Remarks (Altitude, irrigation information, etc.) |
References
- Wan, A.M.; Chen, X.M.; He, Z.H. Wheat stripe rust in China. Aust. J. Agric. Res. 2007, 58, 605–619. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.B.; Ma, Z. Long-Distance Spore Transport of Wheat Stripe Rust Pathogen from Sichuan, Yunnan, and Guizhou in Southwestern China. Plant Dis. 2010, 94, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Q.; Kang, Z.S.; Ma, Z.H.; Xu, S.C.; Jiang, Y.Y. Integrated Management of Wheat Stripe Rust Caused by Puccinia striiformis f.sp.tritici in China. Sci. Agric. Sin. 2013, 46, 4254–4262. [Google Scholar]
- Zhang, J.C.; Huang, Y.B.; Pu, R.L.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.H.; Huang, W.J. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Huang, W.; Guan, Q.; Luo, J.; Zhang, J.; Zhao, J.; Liang, D.; Huang, L.; Zhang, D. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Coluzzi, R.; D’Emilio, M.; Imbrenda, V.; Giorgio, G.A.; Lanfredi, M.; Macchiato, M.; Ragosta, M.; Simoniello, T.; Telesca, V. Investigating climate variability and long-term vegetation activity across heterogeneous Basilicata agroecosystems. Geomat. Nat. Hazards Risk 2019, 10, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Corbari, C.; Salerno, R.; Ceppi, A.; Telesca, V.; Mancini, M. Smart irrigation forecast using satellite LANDSAT data and meteo-hydrological modeling. Agric. Water Manag. 2019, 212, 283–294. [Google Scholar] [CrossRef]
- Yuan, L.; Bao, Z.; Zhang, H.; Zhang, Y.; Liang, X. Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery. Opt. Int. J. Light Electron. Opt. 2017, 145, 66–73. [Google Scholar] [CrossRef]
- Zhang, J.; Pu, R.; Yuan, L.; Huang, W.; Nie, C.; Yang, G. Integrating Remotely Sensed and Meteorological Observations to Forecast Wheat Powdery Mildew at a Regional Scale. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 4328–4339. [Google Scholar] [CrossRef]
- Papastamati, K.; Bosch, F.v.d.; Welham, S.J.; Fitt, B.D.L.; Evans, N.; Steed, J.M. Modelling the daily progress of light leaf spot epidemics on winter oilseed rape (Brassica napus), in relation to Pyrenopeziza brassicae inoculum concentrations and weather factors. Ecol. Model. 2002, 148, 169–189. [Google Scholar] [CrossRef]
- Cunniffe, N.J.; Koskella, B.E.; Metcalf, C.J.; Parnell, S.; Gottwald, T.R.; Gilligan, C.A. Thirteen challenges in modelling plant diseases. Epidemics 2015, 10, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Q.; Huang, W.; Cui, X.; Dong, Y.; Shi, Y.; Ma, H.; Liu, L. Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages. Sensors 2018, 19, 35. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Pu, R.; Yuan, L.; Wang, J.; Huang, W.; Yang, G. Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery. PLoS ONE 2014, 9, e93107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Jing, Y.; Huang, W.; Shi, Y.; Dong, Y.; Zhang, J.; Liu, L. Integrating Early Growth Information to Monitor Winter Wheat Powdery Mildew Using Multi-Temporal Landsat-8 Imagery. Sensors 2018, 18, 3290. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Hu, Y.; Hou, L.; Guo, K.; Satake, T. Classification of ripening stages of bananas based on support vector machine. Int. J. Agric. Biol. Eng. 2015, 8, 99–103. [Google Scholar]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.M.; Harding, C.; Liebman, M.; Leandro, L.F. Exploring the Potential of High-Resolution Satellite Imagery for the Detection of Soybean Sudden Death Syndrome. Remote Sens. 2020, 12, 1213. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Wenjiang, H.; Huichun, Y.; Chao, R.; Naichen, X.; Yun, G.; Yingying, D.; Dailiang, P. Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors 2018, 18, 1901. [Google Scholar] [CrossRef] [Green Version]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Dube, T. Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions. Precis. Agric. 2017, 18, 859–881. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New spectral index for detecting wheat yellow rust using Sentinel-2 multispectral imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. Sentinel-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Hornero, A.; Beck, P.S.A.; Kattenborn, T.; Kempeneers, P.; Hernández-Clemente, R. Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote Sens. Environ. 2019, 223, 320–335. [Google Scholar] [CrossRef]
- Dengke, L.; Zhao, W.; Feizhou, X. Occurrence regularity and meteorological influencing factors of wheat stripe rust in Shaanxi province. J. Catastrophol. 2019, 34, 59–65. [Google Scholar]
- Xu, Q.; Yang, G.; Long, H.; Wang, C.; Li, X.; Huang, D. Crop information identification based on MODIS NDVI time-series data. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2014, 30, 134–144. [Google Scholar]
- Grinn-Gofroń, A.; Nowosad, J.; Bosiacka, B.; Camacho, I.; Pashley, C.; Belmonte, J.; De Linares, C.; Ianovici, N.; Manzano, J.M.M.; Sadyś, M. Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Sci. Total Environ. 2019, 653, 938–946. [Google Scholar] [CrossRef]
- Newlands, N.K. Model-Based Forecasting of Agricultural Crop Disease Risk at the Regional Scale, Integrating Airborne Inoculum, Environmental, and Satellit-Based Monitoring Data. Front. Environ. Sci. 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with Erts. NASA Spec. Publ. 1973, 351, 309. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Lloret, P.; Munoz, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Huang, W.; González-Moreno, P.; Luke, B.; Dong, Y.; Zheng, Q.; Ma, H.; Liu, L. Wavelet-Based Rust Spectral Feature Set (WRSFs): A Novel Spectral Feature Set Based on Continuous Wavelet Transformation for Tracking Progressive Host–Pathogen Interaction of Yellow Rust on Wheat. Remote Sens. 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Huang, W.; Ye, H.; Dong, Y.; Shi, Y.; Chen, S. Using continous wavelet analysis for monitoring wheat yellow rust in different infestation stages based on unmanned aerial vehicle hyperspectral images. Appl. Opt. 2020, 59, 8003–8013. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1995. [Google Scholar]
- Ye, H.; Huang, W.; Huang, S.; Cui, B.; Jin, Y. Identification of banana fusarium wilt using supervised classification algorithms with UAV-based multi-spectral imagery. Int. J. Agric. Biol. Eng. 2020, 13, 136–142. [Google Scholar]
- Martí, P.; Shiri, J.; Duran-Ros, M.; Arbat, G.; de Cartagena, F.R.; Puig-Bargués, J. Artificial neural networks vs. Gene Expression Programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents. Comput. Electron. Agric. 2013, 99, 176–185. [Google Scholar] [CrossRef]
- Azarmdel, H.; Jahanbakhshi, A.; Mohtasebi, S.S.; Munoz, A.R. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM). Postharvest Biol. Technol. 2020, 166, 12. [Google Scholar] [CrossRef]
- Congalton, R.G.; Mead, R.A. A quantitative method to test for consistency and correctness in photointerpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74. [Google Scholar]
- Das, P.K.; Laxman, B.; Rao, S.V.C.K.; Seshasai, M.V.R.; Dadhwal, V.K. Monitoring of bacterial leaf blight in rice using ground-based hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India. PANS Pest Artic. News Summ. 2015, 61, 359–368. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Sibanda, M.; Chidoko, P. Machine learning prediction of coffee rust severity on leaves using spectroradiometer data. Trop. Plant Pathol. 2017, 43, 117–127. [Google Scholar] [CrossRef]
- Devadas, R.; Lamb, D.W.; Backhouse, D.; Simpfendorfer, S. Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precis. Agric. 2015, 16, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Ma, Z.; Wang, H.; Zhao, Z.; Jiang, Y. Climate-based regional classification for overwintering of Puccinia striiformis in China with GIS and geostatistics. J. Northwest Sci-Tech Univ. Agric. For. 2005, 32, 29–32. [Google Scholar]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of Hyperspectral Images with Regularized Linear Discriminant Analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.X.; Dong, Y.Y.; Shi, Y.; Huang, W.J.; Han, L.H.; Gonzalez-Moreno, P.; Ma, H.Q.; Ye, H.C.; Sobeih, T. A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sens. 2019, 11, 1554. [Google Scholar] [CrossRef] [Green Version]
Vegetation Indices | Name | Formula | Reference |
---|---|---|---|
NDVI | Normalized differece vegetation index | [30] | |
GNDVI | Green normalized difference vegetation index | [31] | |
SAVI | Soil adjusted vegtation index | [32] | |
SIPI | Structural independent pigment index | [33] | |
EVI | Enhanced vegetation index | [34] | |
RDVI | Re—noramalied difference vegetation index | [35] | |
RGR | Ration of red and green | [36] | |
VARIgreen | Visible atmospherically resistant index | [37] | |
NDVIre1 | Normalied difference vegetation index red—edge1 | [30] | |
NREDI1 | Normalied red—edge1 index | [38] | |
NREDI2 | Normalied red—edge2 index | [38] | |
NREDI3 | Normalied red—edge3 index | [38] | |
PSRI1 | Plant senescence reflectance index | [24] | |
REDSI | Red—edge disease stress index | [23] |
Classifier | Parameter Name | Description | Optimized Parameter |
---|---|---|---|
SVM | s | Type of SVM | 0 (SVC) |
t | Type of kernel function | 2 (RBF) | |
c | Regularization parameter | 1 | |
γ | Kernel coefficient for “RBF” | 0.5 | |
ANN | Number of hidden neurons | - | [10,2] |
net.trainParam.lr | Learning rate | 0.01 | |
net.trainParam.epochs | Learning number | 13 | |
net.trainParam.goal | Target error | 0.01 |
VIs | RDVI | NDVIre1 | NREDI3 | VARIg | EVI | REDSI | RGR | SAVI | PSRI1 |
RDVI | - | ||||||||
NDVIre1 | 0.0180 a | - | |||||||
NREDI3 | 0.0047 b | 0.31 | - | ||||||
VARIg | 0.0087 b | 0.066 | 0.043 a | - | |||||
EVI | 0.1250 | 0.058 | 0.032 a | 0.04 a | - | ||||
REDSI | 0.0016 b | 0.132 | 0.0007 c | 0.002 b | 0.15 | - | |||
RGR | 0.0003 c | 0.027 a | 0.0035 b | 0.012 a | 0.03 a | 0.015 a | - | ||
SAVI | 0.0910 | 0.132 | 0.001 b | 0.019 a | 0.16 | 0.001b | 0.05 | - | |
PSRI1 | 0.0370 a | 0.224 | 0.0009 c | 0.32 | 0.06 | 0.129 | 0.009 b | 0.078 | - |
nVIs | nREDSI1 | nNREDI3 | nVARIg | nNDVIre1 | nNREDI1 | nPSRI1 | nNREDI2 | nSAVI | |
nREDSI1 | - | ||||||||
nNREDI3 | 0.14 | - | |||||||
nVARIgr | 0.0001 c | 0.14 | - | ||||||
nNDVIre1 | 0.072 | 0.06 | 0.019 a | - | |||||
nNREDI1 | 0.002 b | 0.27 | 0.0004 c | 0.0002 c | - | ||||
nPSRI1 | 0.0005 c | 0.38 | 0.0027 b | 0.0004 c | 0.0002 c | - | |||
nNREDI2 | 0.35 | 0.06 | 0.0003 | 0.026 a | 0.0004 c | 0.003 b | - | ||
nSAVI | 0.0004 c | 0.074 | 0.15 | 0.0001 c | 0.11 | 0.0009 c | 0.26 | - |
Classifier | VIs | nVIs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
LDA | Healthy | YR | P.a (%) | OA (%) | Kappa | Healthy | YR | P.a (%) | OA (%) | Kappa |
Healthy | 3 | 3 | 42.9 | 63.2 | 0.18 | 4 | 3 | 57.1 | 68.4 | 0.32 |
YR | 4 | 9 | 75.0 | 3 | 9 | 75.0 | ||||
U.a (%) | 50.0 | 69.2 | 57.1 | 75 | ||||||
SVM | ||||||||||
Healthy | 4 | 2 | 57.1 | 73.7 | 0.42 | 5 | 2 | 71.4 | 78.9 | 0.55 |
YR | 3 | 10 | 83.3 | 2 | 10 | 83.3 | ||||
U.a (%) | 66.7 | 76.9 | 71.4 | 83.3 | ||||||
ANN | ||||||||||
Healthy | 4 | 4 | 57.1 | 63.2 | 0.23 | 4 | 3 | 57.1 | 68.4 | 0.32 |
YR | 3 | 8 | 66.7 | 3 | 9 | 75.0 | ||||
U.a (%) | 50.0 | 72.7 | 57.1 | 75 |
Classifier | VIs_Meteorological Data | nVIs_Meteorological Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
LDA | Healthy | YR | P.a (%) | OA (%) | Kappa | Healthy | YR | P.a (%) | OA (%) | Kappa |
Healthy | 4 | 3 | 57.1 | 68.4 | 0.32 | 4 | 2 | 57.1 | 73.7 | 0.42 |
YR | 3 | 9 | 75.0 | 3 | 10 | 83.3 | ||||
U.a (%) | 57.1 | 75.0 | 66.7 | 76.9 | ||||||
SVM | ||||||||||
Healthy | 5 | 2 | 71.4 | 78.9 | 0.55 | 5 | 1 | 71.4 | 84.2 | 0.65 |
YR | 2 | 10 | 83.3 | 2 | 11 | 91.7 | ||||
U.a (%) | 71.4 | 83.3 | 83.3 | 84.6 | ||||||
ANN | ||||||||||
Healthy | 5 | 3 | 71.4 | 73.7 | 0.45 | 5 | 2 | 71.4 | 78.9 | 0.55 |
YR | 2 | 9 | 75.0 | 2 | 10 | 83.3 | ||||
U.a (%) | 62.5 | 81.8 | 71.4 | 83.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Ye, H.; Huang, W.; Dong, Y.; Jiang, H.; Wang, C.; Li, D.; Wang, L.; Chen, S. Integrating Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional Scale: A Case Study. Remote Sens. 2021, 13, 278. https://doi.org/10.3390/rs13020278
Zheng Q, Ye H, Huang W, Dong Y, Jiang H, Wang C, Li D, Wang L, Chen S. Integrating Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional Scale: A Case Study. Remote Sensing. 2021; 13(2):278. https://doi.org/10.3390/rs13020278
Chicago/Turabian StyleZheng, Qiong, Huichun Ye, Wenjiang Huang, Yingying Dong, Hao Jiang, Chongyang Wang, Dan Li, Li Wang, and Shuisen Chen. 2021. "Integrating Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional Scale: A Case Study" Remote Sensing 13, no. 2: 278. https://doi.org/10.3390/rs13020278
APA StyleZheng, Q., Ye, H., Huang, W., Dong, Y., Jiang, H., Wang, C., Li, D., Wang, L., & Chen, S. (2021). Integrating Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional Scale: A Case Study. Remote Sensing, 13(2), 278. https://doi.org/10.3390/rs13020278