Immune Response to Chlamydophila abortus POMP91B Protein in the Context of Different Pathogen Associated Molecular Patterns (PAMP); Role of Antigen in the Orientation of Immune Response
Abstract
:1. Introduction
2. Results
2.1. Expression and purification of the N-terminal part of the POMP91B antigen in different systems
2.2. Cellular immune response - Cell proliferation
2.3. Cellular immune response - Recombinant protein immunization induces a Th2-like type of immune response
2.4. Antibody responses
3. Discussion
4. Experimental Section
4.1. Bacterial strains, plasmid and antigens preparation
4.2. Swarming assays
4.3. SDS-PAGE and western blot analysis
4.4. Animals and immunization
Method of immunization | ||||||||
---|---|---|---|---|---|---|---|---|
Classical Immunization. | DNA Immunization | Flagellin Immunization | ||||||
First immunization | Soluble protein | Protein + CFA | Eukaryotic plasmid | Modified bacteria | ||||
Following Immunizations | Soluble protein | Protein + IFA | Bacteria | Protein + IFA | Bacteria | Plasmid | Protein + IFA | Bacteria |
Group’s name | sP | P/P | P/B | D/P | D/B | D/D | B/P | B/B |
4.5. Enzyme-linked immunosorbent assay (ELISA)
4.6. Proliferation assay
4.7. Cytokine production and quantification by ELISA
5. Conclusions
Acknowledgements
References and Notes
- Grayston, J.T.; Wang, S. New knowledge of chlamydiae and the diseases they cause. J. Infect. Dis. 1975, 132, 87–105. [Google Scholar] [PubMed]
- Everett, K.D.; Bush, R.M.; Andersen, A.A. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 1999, 49(Pt 2), 415–440. [Google Scholar] [PubMed]
- Schachter, J. Infection and disease epidemiology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity; Stephens, R.S., Ed.; American Society for Microbiology: Washington, DC, USA, 1999; pp. 139–170. [Google Scholar]
- Herring, A.J.; Anderson, I.E.; McClenaghan, M.; Inglis, N.F.; Williams, H.; Matheson, B.A.; West, C.P.; Rodger, M.; Brettle, P.P. Restriction endonuclease analysis of DNA from two isolates of Chlamydia psittaci obtained from human abortions. Br. Med. J. (Clin. Res. Ed.) 1987, 295, 1239. [Google Scholar] [PubMed]
- Pospischil, A.; Thoma, R.; Hilbe, M.; Grest, P.; Gebbers, J.O. Abortion in woman caused by caprine Chlamydophila abortus (Chlamydia psittaci serovar 1). Swiss Med. Wkly. 2002, 132, 64–66. [Google Scholar] [PubMed]
- Longbottom, D.; Russell, M.; Dunbar, S.M.; Jones, G.E.; Herring, A.J. Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect. Immun. 1998, 66, 1317–1324. [Google Scholar] [PubMed]
- Longbottom, D.; Findkay, J.; Vretou, E.; Dunbar, S.M. Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol. Lett. 1998, 164, 111–117. [Google Scholar] [PubMed]
- Vretou, E.; Loutrari, H.; Mariani, L.; Costelidou, K.; Eliades, P.; Conidou, G.; Karamanou, S.; Mangana, O.; Siarkou, V.; Papadopoulos, O. Diversity among abortion strains of Chlamydia psittaci demonstrated by inclusion morphology, polypeptide profiles and monoclonal antibodies. Vet. Microbiol. 1996, 51, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Longbottom, D.; Psarrou, E.; Livingstone, M.; Vretou, E. Diagnosis of ovine enzootic abortion using an indirect ELISA (rOMP91B iELISA) based on a recombinant protein fragment of the polymorphic outer membrane protein POMP91B of Chlamydophila abortus. FEMS Microbiol. Lett. 2001, 195, 157–161. [Google Scholar] [PubMed]
- Buendía, A.J.; Cuello, F.; Del Rio, L.; Gallego, M.C.; Caro, M.R.; Salinas, J. Field evaluation of a new commercially available ELISA based on a recombinant antigen for diagnosing Chlamydophila abortus (Chlamydia psittaci serotype 1) infection. Vet. Microbiol. 2001, 78, 229–239. [Google Scholar] [PubMed]
- Vretou, E.; Giannikopoulou, P.; Longbottom, D.; Psarrou, E. Antigenic organization of the N-terminal part of the polymorphic outer membrane proteins 90, 91A, and 91B of Chlamydophila abortus. Infect. Immun. 2003, 71, 3240–3250. [Google Scholar] [PubMed]
- Medzhitov, R.; Janeway, C.A., Jr. Innate immune recognition: mechanisms and pathway. Immunol. Rev. 2000, 173, 89–97. [Google Scholar] [PubMed]
- Billiau, A.; Matthys, P. Modes of action of Freund's adjuvants in experimental models of autoimmune diseases. J. Leukoc. Biol. 2001, 70, 849–860. [Google Scholar] [PubMed]
- Tighe, H.; Corr, M.; Roman, E. Gene vaccination: plasmid DNA is more than just a blueprint. Immunol. Today 1998, 19, 89–97. [Google Scholar] [PubMed]
- McEwen, J.; Levi, R.; Horwitz, R.J.; Arnon, R. Synthetic recombinant vaccine expressing influenza haemagglutinin epitope in Salmonella flagellin leads to partial protection in mice. Vaccine 1992, 10, 405–411. [Google Scholar] [PubMed]
- Newton, S.M.; Jacob, C.O.; Stocker, B.A. Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science 1989, 244, 70–72. [Google Scholar] [PubMed]
- Sbrogio-Almeida, M.E.; Ferreira, L.C. Flagellin expressed by live Salmonella vaccine strains induces distinct antibody responses following delivery via systemic or mucosal immunization routes. FEMS Immunol. Med. Microbiol. 2001, 30, 203–208. [Google Scholar] [PubMed]
- Cuadros, C.; Lopez-Hernandez, F.J.; Dominguez, A.L.; McClelland, M.; Lustgarten, J. Flagellin fusion proteins as adjuvant or vaccines induce specific immune responses. Infect. Immun. 2004, 72, 2810–2816. [Google Scholar] [PubMed]
- Le Moigne, V.; Robreau, G.; Mahana, W. Homologous recombination with linear DNA to insert antigenic protein in the flagellin: improvement of the Th1 immune response. Microbiol. Immunol. 2006, 50, 33–43. [Google Scholar] [PubMed]
- Le Moigne, V.; Robreau, G.; Mahana, W. Flagellin as a good carrier and potent adjuvant for Th1 response: Study of mice immune response to the p27 (Rv2108) Mycobacterium tuberculosis antigen. Mol. Immunol. 2008, 45, 2499–2507. [Google Scholar] [PubMed]
- Lu, Z.; Murray, K.S.; van Cleave, V.; LaVallie, E.R.; Slahl, M.L.; McCoy, J.M. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: A system designed for exploring protein-protein interactions. Nat. Biotechnol. 1995, 13, 366–372. [Google Scholar]
- Trinchieri, G. Immunobiology of interleukin-12. Immunol. Res. 1998, 17, 269–278. [Google Scholar] [PubMed]
- Krieg, A.M.; Yi, A.K.; Matson, S.; Waldschmidt, T.J.; Bishop, G.A.; Teasdale, R.; Koretzky, G.A.; Klinman, D.M. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995, 374, 546–549. [Google Scholar] [PubMed]
- Roman, M.; Martin-Orozco, E.; Goodman, J.S.; Nguyen, M.D.; Sato, Y.; Ronaghy, A.; Kornbluth, R.S.; Richman, D.D.; Carson, D.A.; Raz, E. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat. Med. 1997, 3, 849–854. [Google Scholar] [PubMed]
- Applequist, S.E.; Rollman, E.; Wareing, M.D.; Lidén, M.; Rozell, B.; Hinkula, J.; Ljunggren, H.G. Activation of innate immunity, inflammation, and potentiation of DNA vaccination through mammalian expression of the TLR5 agonist flagellin. J. Immunol. 2005, 175, 3882–3891. [Google Scholar] [PubMed]
- Shaw, J.; Grund, V.; Durling, L.; Crane, D.; Caldwell, H.D. Dendritic cells pulsed with a recombinant chlamydial major outer membrane protein antigen elicit a CD4(+) type 2 rather than type 1 immune response that is not protective. Infect. Immun. 2002, 70, 1097–1105. [Google Scholar] [PubMed]
- Johansson, M.; Schön, K.; Ward, M.; Lycke, N. Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect. Immun. 1997, 65, 1032–1044. [Google Scholar] [PubMed]
- Johansson, M.; Schön, K.; Ward, M.; Lycke, N. Studies in knockout mice reveal that anti-chlamydial protection requires TH1 cells producing IFN-gamma: Is this true for humans? Scand J. Immunol. 1997, 46, 546–552. [Google Scholar] [PubMed]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Le Moigne, V.; Robreau, G.; Mahana, W. Immune Response to Chlamydophila abortus POMP91B Protein in the Context of Different Pathogen Associated Molecular Patterns (PAMP); Role of Antigen in the Orientation of Immune Response. Toxins 2009, 1, 59-73. https://doi.org/10.3390/toxins1020059
Le Moigne V, Robreau G, Mahana W. Immune Response to Chlamydophila abortus POMP91B Protein in the Context of Different Pathogen Associated Molecular Patterns (PAMP); Role of Antigen in the Orientation of Immune Response. Toxins. 2009; 1(2):59-73. https://doi.org/10.3390/toxins1020059
Chicago/Turabian StyleLe Moigne, Vincent, Georges Robreau, and Wahib Mahana. 2009. "Immune Response to Chlamydophila abortus POMP91B Protein in the Context of Different Pathogen Associated Molecular Patterns (PAMP); Role of Antigen in the Orientation of Immune Response" Toxins 1, no. 2: 59-73. https://doi.org/10.3390/toxins1020059
APA StyleLe Moigne, V., Robreau, G., & Mahana, W. (2009). Immune Response to Chlamydophila abortus POMP91B Protein in the Context of Different Pathogen Associated Molecular Patterns (PAMP); Role of Antigen in the Orientation of Immune Response. Toxins, 1(2), 59-73. https://doi.org/10.3390/toxins1020059