Snakebite: When the Human Touch Becomes a Bad Touch
Abstract
:1. Epidemiology
2. Human Influences on Snake Movements and Behavior
2.1. Increase in Snake Numbers, Activity Periods and Distributions due to Human Activities
2.2. Snake Repellants
2.3. Translocations
3. Inappropriate First-Aid and Treatment
3.1. Traditional Healers
3.2. Mechanical First-Aid
3.2.1. Cutting
3.2.2. Tourniquet
3.2.3. Extraction
3.3. Freezing, Burning and Shocking
3.4. Chemical for First-Aid and Treatment
4. Issues and Controversies in Modern Medical Care
4.1. Pressure Bandage First-Aid
4.2. Fasciotomy
4.3. Antivenom
4.3.1. Antivenom Development, Supply and Distribution
4.3.2. Antivenom Adverse Reactions and Premedication
4.3.3. Antivenom Dosage
4.3.4. Antivenom Cross-Reactivity
4.3.5. In Vitro Methods for Ascertaining Antivenom Effectiveness
5. Conclusions
Funding
Conflicts of Interest
References
- Gutierrez, J.M.; Theakston, R.D.; Warrell, D.A. Confronting the neglected problem of snake bite envenoming: The need for a global partnership. PLoS Med. 2006, 3, e150. [Google Scholar] [CrossRef] [PubMed]
- Kipanyula, M.J.; Kimaro, W.H. Snakes and snakebite envenoming in Northern Tanzania: A neglected tropical health problem. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.G. Public health aspects of snakebite care in West Africa: Perspectives from Nigeria. J. Venom. Anim. Toxins Incl. Trop. Dis. 2013, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.J.; Gutierrez, J.M.; Calvete, J.J.; Wuster, W.; Ratanabanangkoon, K.; Paiva, O.; Brown, N.I.; Casewell, N.R.; Harrison, R.A.; Rowley, P.D.; et al. Ending the drought: New strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J. Proteom. 2011, 74, 1735–1767. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.; Gutierrez, J.M.; Harrison, R.; Warrell, D.A.; White, J.; Winkel, K.D.; Gopalakrishnakone, P.; Global Snake Bite Initiative Working Group; International Society on Toxinology. The Global Snake Bite Initiative: An antidote for snake bite. Lancet 2010, 375, 89–91. [Google Scholar] [CrossRef]
- Gutierrez, J.M. Understanding and confronting snakebite envenoming: The harvest of cooperation. Toxicon 2016, 109, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.M.; Williams, D.; Fan, H.W.; Warrell, D.A. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon 2010, 56, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Michael, G.; Grema, B.; Aliyu, I.; Alhaji, M.; Lawal, T.; Ibrahim, H.; Fikin, A.; Gyaran, F.; Kane, K.; Thacher, T.; et al. Knowledge of venomous snakes, snakebite first aid, treatment, and prevention among clinicians in northern Nigeria. Trans. R. Soc. Trop. Med. Hyg. 2018, 112, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J. Snakebite envenomation turns again into a neglected tropical disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Hargreaves, A.; Wagstaff, S.C.; Faragher, B.; Lalloo, D.G. Snake envenoming: A disease of poverty. PLoS Negl. Trop. Dis. 2009, 3, e569. [Google Scholar] [CrossRef] [PubMed]
- Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Bovier, P.; Jha, N.; Alirol, E.; Loutan, L.; Chappuis, F. Effectiveness of rapid transport of victims and community health education on snake bite fatalities in rural Nepal. Am. J. Trop. Med. Hyg. 2013, 89, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Vaiyapuri, S.; Vaiyapuri, R.; Ashokan, R.; Ramasamy, K.; Nattamaisundar, K.; Jeyaraj, A.; Chandran, V.; Gajjeraman, P.; Baksh, M.F.; Gibbins, J.M.; et al. Snakebite and its socio-economic impact on the rural population of Tamil Nadu, India. PLoS ONE 2013, 8, e80090. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Rathuwithana, A.C.; Kasturiratne, A.; Lalloo, D.G.; de Silva, H.J. Underestimation of snakebite mortality by hospital statistics in the Monaragala District of Sri Lanka. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Katewa, S.S.; Sharma, S.K.; Galav, P.; Jain, V. Snakelore and indigenous snakebite remedies practiced, by some tribals of Rajasthan. Indian J. Tradit. Knowl. 2010, 10, 258–268. [Google Scholar]
- Mohapatra, B.; Warrell, D.A.; Suraweera, W.; Bhatia, P.; Dhingra, N.; Jotkar, R.M.; Rodriguez, P.S.; Mishra, K.; Whitaker, R.; Jha, P.; et al. Snakebite mortality in India: A nationally representative mortality survey. PLoS Negl. Trop. Dis. 2011, 5, e1018. [Google Scholar] [CrossRef] [PubMed]
- Schioldann, E.; Mahmood, M.A.; Kyaw, M.M.; Halliday, D.; Thwin, K.T.; Chit, N.N.; Cumming, R.; Bacon, D.; Alfred, S.; White, J.; et al. Why snakebite patients in Myanmar seek traditional healers despite availability of biomedical care at hospitals? Community perspectives on reasons. PLoS Negl. Trop. Dis. 2018, 12, e0006299. [Google Scholar] [CrossRef] [PubMed]
- Ediriweera, D.S.; Kasturiratne, A.; Pathmeswaran, A.; Gunawardena, N.K.; Wijayawickrama, B.A.; Jayamanne, S.F.; Isbister, G.K.; Dawson, A.; Giorgi, E.; Diggle, P.J.; et al. Mapping the Risk of Snakebite in Sri Lanka—A National Survey with Geospatial Analysis. PLoS Negl. Trop. Dis. 2016, 10, e0004813. [Google Scholar] [CrossRef] [PubMed]
- Kasturiratne, A.; Pathmeswaran, A.; Wickremasinghe, A.R.; Jayamanne, S.F.; Dawson, A.; Isbister, G.K.; de Silva, H.J.; Lalloo, D.G. The socio-economic burden of snakebite in Sri Lanka. PLoS Negl. Trop. Dis. 2017, 11, e0005647. [Google Scholar] [CrossRef] [PubMed]
- Needleman, R.K.; Neylan, I.P.; Erickson, T. Potential Environmental and Ecological Effects of Global Climate Change on Venomous Terrestrial Species in the Wilderness. Wilderness Environ. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-P.; Chiou, C.-R.; Lin, T.-E.; Tu, M.-C.; Lin, C.-C.; Porter, W.P. Future advantages in energetics, activity time, and habitats predicted in a high-altitude pit viper with climate warming. Funct. Ecol. 2013, 27, 446–458. [Google Scholar] [CrossRef]
- Lawing, A.M.; Polly, P.D. Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species’ Response to Climate Change. PLoS ONE 2011, 6, e28554. [Google Scholar] [CrossRef] [PubMed]
- Nori, J.; Carrasco, P.A.; Leynaud, G.C. Venomous snakes and climate change: Ophidism as a dynamic problem. Clim. Chang. 2014, 122, 67–80. [Google Scholar] [CrossRef]
- Wu, J. Detecting and attributing the effects of climate change on the distributions of snake species over the past 50 years. Environ. Manag. 2016, 57, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Yanez-Arenas, C.; Peterson, A.T.; Rodriguez-Medina, K.; Barve, N. Mapping current and future potential snakebite risk in the new world. Clim. Chang. 2016, 134, 697–711. [Google Scholar] [CrossRef]
- Alirol, E.; Sharma, S.K.; Bawaskar, H.S.; Kuch, U.; Chappuis, F. Snake bite in South Asia: A review. PLoS Negl. Trop. Dis. 2010, 4, e603. [Google Scholar] [CrossRef] [PubMed]
- Marsh, R.E. Test Results of a New Snake Repellent. In Proceedings of the 11th Great Plains Wildlife Damage Control Workshop Proceedings, Kansas City, MO, USA, 26–29 April 1993; Volume 344. [Google Scholar]
- Savarie, P.J.; Bruggers, R.L. Candidate Repellents, Oral and Dermal Toxicants, and Fumigants for Brown Treesnake Control; USDA National Wildlife Research Center: Riverdale, MD, USA, 1999; p. 647.
- San Julian, G.J. What you wanted to know about all you ever heard concerning snake repellents. In Proceedings of the Second Eastern Wildlife Damage Control Conference, Raleigh, NC, USA, 22–25 September 1985; Volume 41. [Google Scholar]
- Chemical-Solutions. Available online: http://www.chemicalsolutions-sa.co.za/product_data/snake_repel_buyers_guide.pdf (accessed on 26 March 2018).
- Chiszar, D.; Rodda, G.H.; Smith, H.M. Experiments on chemical control of behavior in Brown Tree Snakes. In Repellents in Wildlife Management; Mason, J.R., Ed.; U.S. Department of Agriculture National Wildlife Research Center: Fort Collins, CO, USA, 1997; pp. 121–127. [Google Scholar]
- Brown, J.R.; Bishop, C.A.; Brooks, R.J. Effectiveness of Short-Distance Translocation and its Effects on Western Rattlesnakes. J. Wildl. Manag. 2009, 73, 419–425. [Google Scholar] [CrossRef]
- Sealy, J. Short-distance translocations of timber rattlesnakes in a North Carolina state park. A successful conservation and management program. Son. Herpetol. 1997, 10, 94–99. [Google Scholar]
- Hardy, D.; Greene, H.; Tomberlin, B.; Webster, M. Relocation of nuisance rattlesnakes: Problems using short-distance translocation in a small rural community. Son. Herpetol. 2001, 14, 1–3. [Google Scholar]
- Sullivan, B.K.; Kwiatkowski, M.A.; Schuett, G.W. Translocation of urban Gila Monsters: A problematic conservation tool. Biol. Conserv. 2004, 117, 235–242. [Google Scholar] [CrossRef]
- Glaudas, X.; Rodriguez-Robles, J.A. Vagabond males and sedentary females: Spatial ecology and mating system of the speckled rattlesnake (Crotalus mitchellii). Biol. J. Linn. Soc. 2011, 103, 681–695. [Google Scholar] [CrossRef]
- Maritz, B.; Alexander, G.J. Movement Patterns in the Smallest Viper, Bitis schneideri. Copeia 2012, 4, 732–737. [Google Scholar] [CrossRef]
- Butler, H.; Malone, B.; Clemann, N. Activity patterns and habitat preferences of translocated and resident tiger snakes (Notechis scutatus) in a suburban landscape. Wildl. Res. 2005, 32, 157–163. [Google Scholar] [CrossRef]
- Butler, H.; Malone, B.; Clemann, N. The effects of translocation on the spatial ecology of tiger snakes (Notechis scutatus) in a suburban landscape. Wildl. Res. 2005, 32, 165–171. [Google Scholar] [CrossRef]
- Nowak, E.M.; Hare, T.; McNally, J. Management of ‘nuisance’vipers: Effects of translocation on western diamond-backed rattlesnakes (Crotalus atrox). In Biology of the Vipers; Schuett, G.W., Hoggren, M., Douglas, M.E., Greene, H.W., Eds.; Eagle Mountain Publishing: Eagle Mountain, UT, USA, 2002; Volume 2002, pp. 535–560. [Google Scholar]
- Plummer, M.V.; Mills, N.E. Spatial ecology and survivorship of resident and translocated hognose snakes (Heterodon platirhinos). J. Herpetol. 2000, 34, 565–575. [Google Scholar] [CrossRef]
- Reinert, H.K.; Rupert, R.R., Jr. Impacts of translocation on behavior and survival of timber rattlesnakes, Crotalus horridus. J. Herpetol. 1999, 33, 45–61. [Google Scholar] [CrossRef]
- Chippaux, J.P. Snake-bites: Appraisal of the global situation. Bull. World Health Organ. 1998, 76, 515–524. [Google Scholar] [PubMed]
- Naik, B.S. “Dry bite” in venomous snakes: A review. Toxicon 2017, 133, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Welton, R.E.; Liew, D.; Braitberg, G. Incidence of fatal snake bite in Australia: A coronial based retrospective study (2000–2016). Toxicon 2017, 131, 11–15. [Google Scholar] [CrossRef] [PubMed]
- White, J. Envenomation prevention and treatment in Australia. In Handbook of Venoms and Toxins of Reptiles; Mackessy, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 2010; p. 439. [Google Scholar]
- Sutherland, S.K.; Coulter, A.R.; Harris, R.D. Rationalisation of first-aid measures for elapid snakebite. Lancet 1979, 1, 183–185. [Google Scholar] [CrossRef]
- Laustsen, A.H.; Maria Gutierrez, J.; Knudsen, C.; Johansen, K.H.; Mendez, E.B.; Cerni, F.A.; Jurgensen, J.A.; Ledsgaard, L.; Martos-Esteban, A.; Ohlenschlaeger, M.; et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon 2018, 146, 151–175. [Google Scholar] [CrossRef] [PubMed]
- Bénard-Valle, M.; Neri-Castro, E.E.; Fry, B.G.; Boyer, L.; Cochran, C.; Alam, M.; Jackson, T.N.W.; Paniagua, D.; Olvera-Rodríguez, F.; Koludarov, I.; et al. Antivenom Research and Development. In Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery; Fry, B.G., Ed.; Oxford University Press: New York, NY, USA, 2015; pp. 61–72. [Google Scholar]
- Adukauskiene, D.; Varanauskiene, E.; Adukauskaite, A. Venomous snakebites. Medicina (Kaunas) 2011, 47, 461–467. [Google Scholar] [PubMed]
- Bénard-Valle, M.; Neri-Castro, E.E.; Boyer, L.; Jackson, T.N.W.; Sunagar, K.; Clarkson, M.; Fry, B.G. Ineffective Traditional and Modern Techniques for the Treatment of Snakebite. In Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery; Fry, B.G., Ed.; Oxford University Press: New York, NY, USA, 2015; pp. 73–88. [Google Scholar]
- Michael, G.C.; Thacher, T.D.; Shehu, M.I. The effect of pre-hospital care for venomous snake bite on outcome in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.M.; Burnouf, T.; Harrison, R.A.; Calvete, J.J.; Brown, N.; Jensen, S.D.; Warrell, D.A.; Williams, D.J.; Global Snakebite, I. A Call for Incorporating Social Research in the Global Struggle against Snakebite. PLoS Negl. Trop. Dis. 2015, 9, e0003960. [Google Scholar] [CrossRef] [PubMed]
- Newman, W.J.; Moran, N.F.; Theakston, R.D.G.; Warrell, D.A.; Wilkinson, D. Traditional treatments for snake bite in a rural African community. Ann. Trop. Med. Parasitol. 1997, 91, 967–969. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J.P. Snakebite in Africa: Current situation and urgent needs. In Handbook of Venoms and Toxins of Reptiles; CRC Press Inc.: London, UK, 2009; pp. 453–473. [Google Scholar]
- White, P. The concept of diseases and health care in African traditional religion in Ghana. HTS Theol. Stud. 2015, 71, 3. [Google Scholar] [CrossRef]
- Hati, A.K.; Mandal, M.; De, M.K.; Mukherjee, H.; Hati, R.N. Epidemiology of snake bite in the district of Burdwan, West Bengal. J. Indian Med. Assoc. 1992, 90, 145–147. [Google Scholar] [PubMed]
- Ediriweera, D.S.; Kasturiratne, A.; Pathmeswaran, A.; Gunawardena, N.K.; Jayamanne, S.F.; Lalloo, D.G.; de Silva, H.J. Health seeking behavior following snakebites in Sri Lanka: Results of an island wide community based survey. PLoS Negl. Trop. Dis. 2017, 11, e0006073. [Google Scholar] [CrossRef] [PubMed]
- Sloan, D.J.; Dedicoat, M.J.; Lalloo, D.G. Healthcare-seeking behaviour and use of traditional healers after snakebite in Hlabisa sub-district, KwaZulu Natal. Trop. Med. Int. Health 2007, 12, 1386–1390. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J.-P.; Ramos-Cerrillo, B.; Stock, R.P. Study of the efficacy of the black stone on envenomation by snake bite in the murine model. Toxicon 2007, 49, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Dada, A.; Giwa, S.O.; Yinusa, W.; Ugbeye, M.; Gbadegesin, S. Complications of treatment of musculoskeletal injuries by bone setters. West Afr. J. Med. 2009, 28, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Unuigbe, E.I.; Ikhidero, J.; Ogbemudia, A.O.; Bafor, A.; Isah, A.O. Multiple digital gangrene arising from traditional therapy: A case report. West Afr. J. Med. 2009, 28, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Wingert, W.A.; Chan, L. Rattlesnake bites in southern California and rationale for recommended treatment. West. J. Med. 1988, 148, 37–44. [Google Scholar] [PubMed]
- Goldstein, E.J.C.; Citron, D.M.; Wield, B.; Blachman, U.; Sutter, V.L.; Miller, T.A.; Finegold, S.M. Bacteriology of human and animal bite wounds. J. Clin. Microbiol. 1978, 8, 667–672. [Google Scholar] [PubMed]
- Leyton-Ovando, R. Los Culebreros: Medicina Traditional Viva; CONACULTA: Colonia Juárez, Mexico, 2001.
- Jorge, M.T.; de Mendoça, J.S.; Ribeiro, L.A.; da Silva, M.L.R.; Ura Kusano, E.J.; dos Santos Cordero, C.L. Flora bacteriana da cavidade oral, presas e veneno de Bothrops jararaca: Possível fonte de infecçao no local da picada. Rev. Inst. Trop. Sao Paulo 1990, 32, 6–10. [Google Scholar] [CrossRef]
- López, N.; Lopera, C.; Ramírez, A. Characteristics of patients with ophidic accidents (snakebites) and infectious complications at the Pablo Tobon Uribe Hospital between the years 2000 and 2006. Acta Méd. Colomb. 2008, 33, 127–130. [Google Scholar]
- Huang, T.T.; Lynch, J.B.; Larson, D.L.; Lewis, S.R. Use of excisional therapy in management of snakebite. Ann. Surg. 1974, 179, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Currie, B.J. Treatment of snakebite in Australia: The current evidence base and questions requiring collaborative multicentre prospective studies. Toxicon 2006, 48, 941–956. [Google Scholar] [CrossRef] [PubMed]
- Hultgren, H.N. Rattlesnake bite—Editorial comment. J. Wilderness Med. 1994, 5, 220–221. [Google Scholar]
- Hall, E.L. Role of surgical intervention in the management of crotaline snake envenomation. Ann. Emerg. Med. 2001, 37, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Tun-Pe; Tin-Nu-Swe; Myint-Lwin; Warrell, D.A.; Than-Win. The efficacy of tourniquets as a 1st-aid measure for Russells viper bites in Burma. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 403–405. [Google Scholar] [CrossRef]
- Harris, J.B.; Faiz, M.A.; Rahman, M.R.; Jalil, M.M.; Ahsan, M.F.; Theakston, R.D.; Warrell, D.A.; Kuch, U. Snake bite in Chittagong Division, Bangladesh: A study of bitten patients who developed no signs of systemic envenoming. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Amaral, C.F.S.; Campolina, D.; Dias, M.B.; Bueno, C.M.; Rezende, N.A. Tourniquet ineffectiveness to reduce the severity of envenoming after Crotalus durissus snake bite in Belo Horizonte, Minas Gerais, Brazil. Toxicon 1998, 36, 805–808. [Google Scholar] [CrossRef]
- Bhat, R.N. Viperine snake bite poisoning in Jammu. J. Indian Med. Assoc. 1974, 63, 383–392. [Google Scholar] [PubMed]
- Watt, G.; Padre, L.; Tuazon, M.L.; Theakston, R.D.; Laughlin, L.W. Tourniquet application after cobra bite: Delay in the onset of neurotoxicity and the dangers of sudden release. Am. J. Trop. Med. Hyg. 1988, 38, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, M. The snakestone experiments—An early-modern medical debate. Isis 1995, 86, 394–418. [Google Scholar] [CrossRef] [PubMed]
- Rasquinha, D. Snake stone for snake envenomization. Am. J. Emerg. Med. 1996, 14, 112–113. [Google Scholar] [CrossRef]
- Redi, F. Experiences relating to various natural things, in particular those that are brought to us from the Indies. In Written in a Letter to the Highly Revered Father; Anastasion Chircher of the Society of Jesus: Florence, Italy, 1671. [Google Scholar]
- Audebert, F.; Urtizberea, M.; Sabouraud, A.; Scherrmann, J.M.; Bon, C. Pharmacokinetics of Vipera aspis venom after experimental envenomation in rabbits. J. Pharmacol. Exp. Ther. 1994, 268, 1512–1517. [Google Scholar] [PubMed]
- Paniagua, D.; Jimenez, L.; Romero, C.; Vergara, I.; Calderon, A.; Benard, M.; Bernas, M.J.; Rilo, H.; de Roodt, A.; D’Suze, G.; et al. Lymphatic route of transport and pharmacokinetics of Micrurus fulvius (coral snake) venom in sheep. Lymphology 2012, 45, 144–153. [Google Scholar] [PubMed]
- Extractor Sawyer Products. Available online: https://sawyer.com/products/extractor-pump-kit/ (accessed on 15 April 2018).
- Bronstein, A.C.; Russell, F.E.; Sullivan, J.B. Negative-pressure suction in the field treatment of rattlesnake bite victims. Vet. Hum. Toxicol. 1986, 28, 485. [Google Scholar]
- Gellert, G.A. Snake-venom and insect-venom extractors—An unproved therapy. N. Engl. J. Med. 1992, 327, 1322. [Google Scholar] [PubMed]
- Boyd, J.J.; Agazzi, G.; Svajda, D.; Morgan, A.J.; Ferrandis, S.; Norris, R.L. Venomous snakebite in mountainous terrain: Prevention and management. Wilderness Environ. Med. 2007, 18, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Gil-Alarcón, G.; Sánchez-Villegas, M.C.; Reynoso, V.H. Tratamiento prehospitalario del accidente ofídico: Revisión, actualización y problemática actual. Gaceta Médica de México 2011, 147, 195–208. [Google Scholar] [PubMed]
- Alberts, M.B.; Shalit, M.; LoGalbo, F. Suction for venomous snakebite: A study of “mock venom” extraction in a human model. Ann. Emerg. Med. 2004, 43, 181–186. [Google Scholar] [CrossRef]
- Bush, S.P.; Hardy, D.L. Immediate removal of extractor is recommended. Ann. Emerg. Med. 2001, 38, 607–608. [Google Scholar] [CrossRef] [PubMed]
- Holstege, C.P.; Singletary, E.M. Images in emergency medicine. Skin damage following application of suction device for snakebite. Ann. Emerg. Med. 2006, 48, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Klauber, L.M. Rattlesnakes: Their Habits, Life History and Influence on Mankind; University of California Press: Berkeley, CA, USA, 1956; Volume II. [Google Scholar]
- Frank, H.A. Snakebite or frostbite: What are we doing? An evaluation of cryotherapy for envenomation. West. J. Med. 1971, 114, 25–27. [Google Scholar]
- Cohen, W.R.; Wetzel, W.; Kadish, A. Local heat and cold application after Eastern cottonmouth moccasin (Agkistrodon piscivorus) envenomation in the rat—Effect on tissue-injury. Toxicon 1992, 30, 1383–1386. [Google Scholar] [CrossRef]
- Mohr, W.J.; Jenabzadeh, K.; Ahrenholz, D.H. Cold Injury. Hand Clin. 2009, 25, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Kiss, T.L. Critical Care for Frostbite. Crit. Care Nurs. Clin. N. Am. 2012, 24, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Powell, R.H. Two fatal cases of snake-bite: With remarks. Assoc. Med. J. 1853, 1, 773–774. [Google Scholar] [CrossRef]
- Fry, B.G. From genome to “venome”: Molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005, 15, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Guderian, R.H.; Mackenzie, C.D.; Williams, I.F. High voltage shock treatment for snakebite. Lancet 1986, 2, 229. [Google Scholar] [CrossRef]
- Altman, L.K. New shock therapy for snakebites. New York Times, 5 August 1986. [Google Scholar]
- Bucknall, N.C. Electrical treatment of venomous bites and stings. Toxicon 1991, 29, 397–400. [Google Scholar] [CrossRef]
- Johnson, M.E. Shock cures dog. Outdoor Life 1988, 182, 8. [Google Scholar]
- Mackey, C. Shocks for first aid. Outdoor Life 1988, 182, 3. [Google Scholar]
- Mueller, L. A Shocking Cure for Snakebites. Part I. Outdoor Life 1988, 181, 64–65, 110–112. [Google Scholar]
- Mueller, L. A Shocking Cure for Snakebites. Outdoor Life 1988, 182, 45–47, 76–78. [Google Scholar]
- Davis, D.; Branch, K.; Egen, N.B.; Russell, F.E.; Gerrish, K.; Auerbach, P.S. The effect of an electrical-current on snake-venom toxicity. J. Wilderness Med. 1992, 3, 48–53. [Google Scholar] [CrossRef]
- Johnson, E.K.; Kardong, K.V.; Mackessy, S.P. Electric shocks are ineffective in treatment of lethal effects of rattlesnake envenomation in mice. Toxicon 1987, 25, 1347–1349. [Google Scholar] [CrossRef]
- Howe, N.R.; Meisenheimer, J.L. Electric-shock does not save snakebitten rats. Ann. Emerg. Med. 1988, 17, 254–256. [Google Scholar] [CrossRef]
- Stoud, C.; Amon, H.; Wagner, T.; Falk, J.L. Effect of electric shock therapy on local tissue reaction to poisonous snake venom injection in rabbits. Ann. Emerg. Med. 1989, 18, 447. [Google Scholar] [CrossRef]
- Welch, E.B.; Gales, B.J. Use of stun guns for venomous bites and stings: A review. Wilderness Environ. Med. 2001, 12, 111–117. [Google Scholar] [CrossRef]
- Dart, R.C.; Gustafson, R.A. Failure of electric-shock treatment for rattlesnake envenomation. Ann. Emerg. Med. 1991, 20, 659–661. [Google Scholar] [CrossRef]
- Guderian, R.H. Electric shock on venomous bites and stings. Available online: http://venomshock.wikidot.com (accessed on 3 April 2018).
- Burdett-Smith, P. Stun gun injury. J. Accid. Emerg. Med. 1997, 14, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Nanthakumar, K.; Peng, S.M.; Umapathy, K.; Dorian, P.; Sevaptsidis, E.; Waxman, M. Cardiac stimulation with high voltage discharge from stun guns. Can. Med. Assoc. J. 2008, 178, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Authors’ names. Notes. Nature 1870, 1. pagination. [Google Scholar]
- Kunkler, G.A. On the bite of a copper snake. Wkly. Med. Gaz. 1855, 31, 481–483. [Google Scholar]
- Dimmitt, S.B.; Rakic, V.; Puddey, I.B.; Baker, R.; Oostryck, R.; Adams, M.J.; Chesterman, C.N.; Burke, V.; Beilin, L.J. The effects of alcohol on coagulation and fibrinolytic factors: A controlled trial. Blood Coagul. Fibrinolysis 1998, 9, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Mukamal, K.J.; Massaro, J.M.; Ault, K.A.; Mittleman, M.A.; Sutherland, P.A.; Lipinska, I.; Levy, D.; D’Agostino, R.B.; Tofler, G.H. Alcohol consumption and platelet activation and aggregation among women and men: The Framingham Offspring Study. Alcohol Clin. Exp. Res. 2005, 29, 1906–1912. [Google Scholar] [CrossRef] [PubMed]
- Kudo, R.; Yuui, K.; Kasuda, S.; Hatake, K. Effect of alcohol on vascular function. Nihon Arukoru Yakubutsu Igakkai Zasshi 2015, 50, 123–134. [Google Scholar] [PubMed]
- Duke, J.A. Handbook of Medicinal Herbs; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Morton, J.F. Atlas of Medicinal Plants of Middle America: Bahamas to Yucatan; Thomas, A., Ed.; Charles C Thomas Publisher Ltd.: Springfield, IL, USA, 1981. [Google Scholar]
- Martz, W. Plants with a reputation against snakebite. Toxicon 1992, 30, 1131–1142. [Google Scholar] [CrossRef]
- Otero, R.; Fonnegra, R.; Jimenez, S.L.; Nunez, V.; Evans, N.; Alzate, S.P.; Garcia, M.E.; Saldarriaga, M.; Del Valle, G.; Osorio, R.G.; et al. Snakebites and ethnobotany in the northwest region of Colombia Part I: Traditional use of plants. J. Ethnopharmacol. 2000, 71, 493–504. [Google Scholar] [CrossRef]
- Piojan, M. Antídotos tribales herencia milenaria. Etnofarmacia 2008, 27, 105–109. [Google Scholar]
- Houghton, P.J.; Howes, M.J.; Lee, C.C.; Steventon, G. Uses and abuses of in vitro tests in ethnopharmacology: Visualizing an elephant. J. Ethnopharmacol. 2007, 110, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Castro, O.; Gutiérrez, J.M.; Barrios, M.; Castro, I.; Romero, M.; Umaña, E. Neutralización del efecto hemorrágico inducido por veneno de Bothrops asper (Serpentes: Viperidae) por extractos de plantas tropicales. Rev. Biol. Trop. 1999, 47, 605–616. [Google Scholar] [PubMed]
- Otero, R.; Nuñez, V.; Jiménez, S.L.; Fonnegra, R.; Osorio, R.G.; García, M.E.; Díaz, A. Snakebites and ethnobotany in the northwest region of Colombia Part II: Neutralization of lethal and enzimatic effects of Bothrops atrox venom. J. Ethnopharmacol. 2000, 71, 505–511. [Google Scholar] [CrossRef]
- Yuliang, X.; Rujin, Z.; Datong, Y.; Fukiren, K.; Ermi, Z.; Liang, F.; Yueming, J.; Yunxiang, M.; Hengchu, Y. Experimental studies on therapy for venomous snakebite with Yunnan snakebite drug. Acta Pharm. Sin. 1979, 14, 557–560. [Google Scholar]
- Philippe, G.; Angenot, L.; Tits, M.; Frederich, M. About the toxicity of some Strychnos species and their alkaloids. Toxicon 2004, 44, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Klenner, F.R. Observations on the Dose and Administration of Ascorbic Acid When Employed Beyond the Range of a Vitamin in Human Pathology. J. Appl. Nutr. 1971, 23, 61–87. [Google Scholar]
- Kumar, S.; Miranda-Massari, J.R.; Gonzalez, M.J.; Riordan, H.D. Intravenous ascorbic acid as a treatment for severe jellyfish stings. Puerto Rico Health Sci. J. 2004, 23, 125–126. [Google Scholar]
- Stone, I. The Healing Factor: Vitamin C Against Disease; Grosset & Dunlap: New York, NY, USA, 1972. [Google Scholar]
- Suat, Z.; Behcet, A.; Pinar, Y.; Seyithan, T.; Hasan, B.; Cuma, Y.; Nurten, A. Oxidant/antioxidant status in cases of snake bite. J. Emerg. Med. 2013, 45, 39–45. [Google Scholar]
- Sutherland, S.K.; Tibbals, J. Australian Animal Toxins: The Creatures, Their Toxins and Care of the Poisoned Patient, 2nd ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Canale, E.; Isbister, G.K.; Currie, B.J. Investigating pressure bandaging for snakebite in a simulated setting: Bandage type, training and the effect of transport. Emerg. Med. Australas. 2009, 21, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Currie, B.J.; Canale, E.; Isbister, G.K. Effectiveness of pressure-immobilization first aid for snakebite requires further study. Emerg. Med. Australas. 2008, 20, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Norris, R.L.; Ngo, J.; Nolan, K.; Hooker, G. Physicians and lay people are unable to apply pressure immobilization properly in a simulated snakebite scenario. Wilderness Environ. Med. 2005, 16, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Seifert, S.; White, J.; Currie, B.J. Pressure bandaging for North American snake bite? No! Clin. Toxicol. 2011, 49, 883–885. [Google Scholar] [CrossRef] [PubMed]
- Seifert, S.A.; White, J.; Currie, B.J. Commentary: Pressure bandaging for North American snake bite? No! J. Med. Toxicol. 2011, 7, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Bush, S.P.; Green, S.M.; Laack, T.A.; Hayes, W.K.; Cardwell, M.D.; Tanen, D.A. Pressure immobilization delays mortality and increases intracompartmental pressure after artificial intramuscular rattlesnake envenomation in a porcine model. Ann. Emerg. Med. 2004, 44, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, S.K.; Coulter, A.R. Early management of bites by the eastern diamondback rattlesnake (Crotalus adamanteus): Studies in monkeys (Macaca fascicularis). Am. J. Trop. Med. Hyg. 1981, 30, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Hack, J.B.; Orogbemi, B.; Deguzman, J.M.; Brewer, K.L.; Meggs, W.J.; O’Rourke, D. A localizing circumferential compression device delayed death after artificial eastern diamondback rattlesnake envenomation to the torso of an animal model in a pilot study. J. Med. Toxicol. 2010, 6, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.L.; Dart, R.C.; Egen, N.B.; Mayersohn, M. Effects of constriction bands on rattlesnake venom absorption: A pharmacokinetic study. Ann. Emerg. Med. 1992, 21, 1086–1093. [Google Scholar] [CrossRef]
- Meggs, W.J.; Courtney, C.; O’Rourke, D.; Brewer, K.L. Pilot studies of pressure-immobilization bandages for rattlesnake envenomations. Clin. Toxicol. 2010, 48, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Tun-Pe; Aye-Aye-Myint; Khin-Ei-Han; Thi-Ha; Tin-Nu-Swe. Local compression pads as a first-aid measure for victims of bites by Russell’s viper (Daboia russelii siamensis) in Myanmar. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 293–295. [Google Scholar] [CrossRef]
- Tun, P.; Muang Muang, T.; Myint Myint, T.; Aye Aye, M.; Kyaw, M.; Thein, T. The efficacy of compression immobilization technique in retarding spread of radio-labeled Russell’s viper venom in rhesus monkeys and ‘mock venom’ NaI131 in human volunteers. Southeast Asian J. Trop. Med. Public Health 1994, 25, 349–353. [Google Scholar]
- Boyer, L.; Alagón, A.; Fry, B.G.; Jackson, T.N.W.; Sunagar, K.; Chippaux, J.P. Signs, symptoms and treatment of envenomation. In Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery; Fry, B.G., Ed.; Oxford University Press: New York, NY, USA, 2015; pp. 32–60. [Google Scholar]
- Hack, J.B.; Deguzman, J.M.; Brewer, K.L.; Meggs, W.J.; O’Rourke, D. A localizing circumferential compression device increases survival after coral snake envenomation to the torso of an animal model. J. Emerg. Med. 2011, 41, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Garfin, S.R.; Castilonia, R.R.; Mubarak, S.J.; Hargens, A.R.; Russell, F.E.; Akeson, W.H. Rattlesnake bites and surgical decompression: Results using a laboratory model. Toxicon 1984, 22, 177–182. [Google Scholar] [CrossRef]
- Garfin, S.R.; Castilonia, R.R.; Mubarak, S.J.; Hargens, A.R.; Akeson, W.H.; Russell, F.E. Role of surgical decompression in treatment of rattlesnake bites. Surg. Forum 1979, 30, 502–504. [Google Scholar] [PubMed]
- Leclerc, B.; Boyer, E.; Menu, G.; Leclerc, G.; Sergent, P.; Ducroux, E.; Mont, L.S.D.; Garbuio, P.; Rinckenbach, S.; Obert, L. Two-Team Management of Vascular Injuries Concomitant with Osteo-Articular Injuries in 36 Patients over Six Years. Orthop. Traumatol. Surg. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cumpston, K.L. Is there a role for fasciotomy in Crotalinae envenomations in North America? Clin. Toxicol. 2011, 49, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Holstege, C.P.; Miller, M.B.; Wermuth, M.; Furbee, B.; Curry, S.C. Crotalid snake envenomation. Crit. Care Clin. 1997, 13, 889–921. [Google Scholar] [CrossRef]
- Roberts, R.S.; Csencsitz, T.A.; Heard, C.W. Upper extremity compartment syndromes following pit viper envenomation. Clin. Orthop. Relat. Res. 1985, 78, 184–188. [Google Scholar]
- Gold, B.S.; Barish, R.A.; Dart, R.C.; Silverman, R.P.; Bochicchio, G.V. Resolution of compartment syndrome after rattlesnake envenomation utilizing non-invasive measures. J. Emerg. Med. 2003, 24, 285–288. [Google Scholar] [CrossRef]
- Rosen, P.B.; Leiva, J.I.; Ross, C.P. Delayed antivenom treatment for a patient after envenomation by Crotalus atrox. Ann. Emerg. Med. 2000, 35, 86–88. [Google Scholar] [CrossRef]
- Türkmen, A.; Temel, M. Algorithmic approach to the prevention of unnecessary fasciotomy in extremity snake bite. Injury 2016, 47, 2822–2827. [Google Scholar]
- World Health Organization. Guidelines for the Management of Snakebite. Available online: http://www.afro.who.int/en/essential-medicines/edm-publications/2731-guidelines-for-the-prevention-and-clinical-management-of-snakebite-in-africa.html (accessed on 9 April 2018).
- Shaik, A.M. Poor rural health system in India. South. Med. J. 2007, 100, 1066. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.M. Improving antivenom availability and accessibility: Science, technology, and beyond. Toxicon 2012, 60, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.I. Consequences of neglect: Analysis of the sub-Saharan African snake antivenom market and the global context. PLoS Negl. Trop. Dis. 2012, 6, e1670. [Google Scholar] [CrossRef] [PubMed]
- Scheske, L.; Ruitenberg, J.; Bissumbhar, B. Needs and availability of snake antivenoms: Relevance and application of international guidelines. Int. J. Health Policy Manag. 2015, 4, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Meyer, W.P.; Habib, A.G.; Onayade, A.A.; Yakubu, A.; Smith, D.C.; Nasidi, A.; Daudu, I.J.; Warrell, D.A.; Theakston, R.D. First clinical experiences with a new ovine Fab Echis ocellatus snake bite antivenom in Nigeria: Randomized comparative trial with Institute Pasteur Serum (Ipser) Africa antivenom. Am. J. Trop. Med. Hyg. 1997, 56, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Laing, G.D.; Lee, L.; Smith, D.C.; Landon, J.; Theakston, R.D. Experimental assessment of a new, low-cost antivenom for treatment of carpet viper (Echis ocellatus) envenoming. Toxicon 1995, 33, 307–313. [Google Scholar] [CrossRef]
- Herrera, M.; Paiva, O.K.; Pagotto, A.H.; Segura, A.; Serrano, S.M.; Vargas, M.; Villalta, M.; Jensen, S.D.; Leon, G.; Williams, D.J.; et al. Antivenomic characterization of two antivenoms against the venom of the taipan, Oxyuranus scutellatus, from Papua New Guinea and Australia. Am. J. Trop. Med. Hyg. 2014, 91, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Vargas, M.; Segura, A.; Herrera, M.; Villalta, M.; Estrada, R.; Cerdas, M.; Paiva, O.; Matainaho, T.; Jensen, S.D.; Winkel, K.D.; et al. Preclinical evaluation of caprylic acid-fractionated IgG antivenom for the treatment of Taipan (Oxyuranus scutellatus) envenoming in Papua New Guinea. PLoS Negl. Trop. Dis. 2011, 5, e1144. [Google Scholar] [CrossRef] [PubMed]
- Dart, R.C.; Duncan, C.; McNally, J. Effect of inadequate antivenin stores on the medical treatment of crotalid envenomation. Vet. Hum. Toxicol. 1991, 33, 267–269. [Google Scholar] [PubMed]
- Dart, R.C.; Stark, Y.; Fulton, B.; Koziol-McLain, J.; Lowenstein, S.R. Insufficient stocking of poisoning antidotes in hospital pharmacies. JAMA J. Am. Med. Assoc. 1996, 276, 1508–1510. [Google Scholar] [CrossRef]
- Cheng, A.C.; Winkel, K.D. Antivenom efficacy, safety and availability: Measuring smoke. Med. J. Aust. 2004, 180, 5–6. [Google Scholar] [PubMed]
- Dijkman, M.A.; van der Zwan, C.W.; de Vries, I. Establishment and first experiences of the National Serum Depot in the Netherlands. Toxicon 2012, 60, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Chew, M.S.; Guttormsen, A.B.; Metzsch, C.; Jahr, J. Exotic snake bite: A challenge for the Scandinavian anesthesiologist? Acta Anaesthesiol. Scand. 2003, 47, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Warrell, D.A. Treatment of bites by adders and exotic venomous snakes. BMJ 2005, 331, 1244–1247. [Google Scholar] [CrossRef] [PubMed]
- de Haro, L.; Pommier, P. Envenomation: A real risk of keeping exotic house pets. Vet. Hum. Toxicol. 2003, 45, 214–216. [Google Scholar] [PubMed]
- Othong, R.; Sheikh, S.; Alruwaili, N.; Gorodetsky, R.; Morgan, B.W.; Lock, B.; Kazzi, Z.N. Exotic venomous snakebite drill. Clin. Toxicol. 2012, 50, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Warrick, B.J.; Boyer, L.V.; Seifert, S.A. Non-native (exotic) snake envenomations in the U.S.; 2005–2011. Toxins 2014, 6, 2899–2911. [Google Scholar] [CrossRef] [PubMed]
- Winnik, L.; Lis, L. Dangerous, illegal captivities. Prz. Lek. 2005, 62, 612–616. [Google Scholar] [PubMed]
- Mendonca-da-Silva, I.; Magela Tavares, A.; Sachett, J.; Sardinha, J.F.; Zaparolli, L.; Gomes Santos, M.F.; Lacerda, M.; Monteiro, W.M. Safety and efficacy of a freeze-dried trivalent antivenom for snakebites in the Brazilian Amazon: An open randomized controlled phase IIb clinical trial. PLoS Negl. Trop. Dis. 2017, 11, e0006068. [Google Scholar] [CrossRef] [PubMed]
- Theakston, R.D.; Smith, D.C. Antivenoms. BioDrugs 1997, 7, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Segura, A.; Sanchez, A.; Sanchez, A.; Vargas, M.; Villalta, M.; Harrison, R.A.; Gutierrez, J.M.; Leon, G. Freeze-dried EchiTAb+ICP antivenom formulated with sucrose is more resistant to thermal stress than the liquid formulation stabilized with sorbitol. Toxicon 2017, 133, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Tattini, V., Jr.; Pitombo, R.N.; Gutierrez, J.M.; Borgognoni, C.; Vega-Baudrit, J.; Solera, F.; Cerdas, M.; Segura, A.; Villalta, M.; et al. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: Comparison of their stability in an accelerated test. Toxicon 2014, 90, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Segura, A.; Herrera, M.; Gonzalez, E.; Vargas, M.; Solano, G.; Gutierrez, J.M.; Leon, G. Stability of equine IgG antivenoms obtained by caprylic acid precipitation: Towards a liquid formulation stable at tropical room temperature. Toxicon 2009, 53, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Cook, D.A.; Renjifo, C.; Casewell, N.R.; Currier, R.B.; Wagstaff, S.C. Research strategies to improve snakebite treatment: Challenges and progress. J. Proteom. 2011, 74, 1768–1780. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.M.; Leon, G.; Burnouf, T. Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011, 39, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Diaz, P.; Malave, C.; Zerpa, N.; Vazquez, H.; D’Suze, G.; Montero, Y.; Castillo, C.; Alagon, A.; Sevcik, C. IgY pharmacokinetics in rabbits: Implications for IgY use as antivenoms. Toxicon 2014, 90, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Nudel, B.C.; Perdomenico, C.; Iacono, R.; Cascone, O. Optimization by factorial analysis of caprylic acid precipitation of non-immunoglobulins from hyperimmune equine plasma for antivenom preparation. Toxicon 2012, 59, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.A.; Owen, T.; Wagstaff, S.C.; Kinne, J.; Wernery, U.; Harrison, R.A. Analysis of camelid antibodies for antivenom development: Neutralisation of venom-induced pathology. Toxicon 2010, 56, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.A.; Owen, T.; Wagstaff, S.C.; Kinne, J.; Wernery, U.; Harrison, R.A. Analysis of camelid IgG for antivenom development: Serological responses of venom-immunised camels to prepare either monospecific or polyspecific antivenoms for West Africa. Toxicon 2010, 56, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Schaper, A.; Desel, H.; Ebbecke, M.; De Haro, L.; Deters, M.; Hentschel, H.; Hermanns-Clausen, M.; Langer, C. Bites and stings by exotic pets in Europe: An 11 year analysis of 404 cases from Northeastern Germany and Southeastern France. Clin. Toxicol. 2009, 47, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.; Charlton, N.P.; Holstege, C.P. Accuracy of Internet Recommendations for Prehospital Care of Venomous Snake Bites. Wilderness Environ. Med. 2010, 21, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Hendrikx, I.; Rowley, P.; Jackson, T.N.W.; van der Ploeg, H.; Johnson, R.; Sasa, M.; Dunstan, N.; Barve, S.; Lock, B.; et al. Maintaining venomous reptile collections: Protocols and occupational safety. In Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery; Fry, B.G., Ed.; Oxford University Press: New York, NY, USA, 2015; pp. 89–132. [Google Scholar]
- Sutherland, S.K.; Lovering, K.E. Antivenoms: Use and adverse reactions over a 12-month period in Australia and Papua New Guinea. Med. J. Aust. 1979, 2, 671–674. [Google Scholar] [PubMed]
- Sutherland, S.K. Acute untoward reactions to antivenoms. Med. J. Aust. 1977, 2, 841–842. [Google Scholar] [PubMed]
- Sutherland, S.K. Serum reactions. An analysis of commercial antivenoms and the possible role of anticomplementary activity in de-novo reactions to antivenoms and antitoxins. Med. J. Aust. 1977, 1, 613–615. [Google Scholar] [PubMed]
- Malasit, P.; Warrell, D.A.; Chanthavanich, P.; Viravan, C.; Mongkolsapaya, J.; Singhthong, B.; Supich, C. Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites. Br. Med. J. (Clin. Res. Ed.) 1986, 292, 17–20. [Google Scholar] [CrossRef]
- de Silva, H.A.; Pathmeswaran, A.; Ranasinha, C.D.; Jayamanne, S.; Samarakoon, S.B.; Hittharage, A.; Kalupahana, R.; Ratnatilaka, G.A.; Uluwatthage, W.; Aronson, J.K.; et al. Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: A randomised, double-blind, placebo-controlled trial. PLoS Med. 2011, 8, e1000435. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.F.; Newman, W.J.; Theakston, R.D.; Warrell, D.A.; Wilkinson, D. High incidence of early anaphylactoid reaction to SAIMR polyvalent snake antivenom. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 69–70. [Google Scholar] [CrossRef]
- Vongphoumy, I.; Chanthilat, P.; Vilayvong, P.; Blessmann, J. Prospective, consecutive case series of 158 snakebite patients treated at Savannakhet provincial hospital, Lao People’s Democratic Republic with high incidence of anaphylactic shock to horse derived F(ab’)2 antivenom. Toxicon 2016, 117, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Leon, G.; Herrera, M.; Segura, A.; Villalta, M.; Vargas, M.; Gutierrez, J.M. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 2013, 76, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Ryan, N.M.; Downes, M.A.; Isbister, G.K. Clinical features of serum sickness after Australian snake antivenom. Toxicon 2015, 108, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Tritt, A.; Gabrielli, S.; Zahabi, S.; Clarke, A.; Moisan, J.; Eisman, H.; Morris, J.; Restivo, L.; Shand, G.; Ben-Shoshan, M. Short and long-term management of cases of venom induced anaphylaxis (via) is suboptimal. Ann. Allergy Asthma Immunol. 2018, S1081–S1206, 30292–30298. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.J.; Jensen, S.D.; Nimorakiotakis, B.; Muller, R.; Winkel, K.D. Antivenom use, premedication and early adverse reactions in the management of snake bites in rural Papua New Guinea. Toxicon 2007, 49, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Sanchez, M.; Machado, A.; Ramirez, N.; Vargas, M.; Villalta, M.; Sanchez, A.; Segura, A.; Gomez, A.; Solano, G.; et al. Effect of premedication with subcutaneous adrenaline on the pharmacokinetics and immunogenicity of equine whole IgG antivenom in a rabbit model. Biomed. Pharmacother. 2017, 90, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Morais, V. Antivenom therapy: Efficacy of premedication for the prevention of adverse reactions. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 7. [Google Scholar] [CrossRef] [PubMed]
- Soh, S.Y.; Rutherford, G. Evidence behind the WHO guidelines: Hospital care for children: Should s/c adrenaline, hydrocortisone or antihistamines be used as premedication for snake antivenom? J. Trop. Pediatr. 2006, 52, 155–157. [Google Scholar] [PubMed]
- Tibballs, J. Premedication for snake antivenom. Med. J. Aust. 1994, 160, 4–7. [Google Scholar] [PubMed]
- Isbister, G.K.; Brown, S.G.; MacDonald, E.; White, J.; Currie, B.J. Current use of Australian snake antivenoms and frequency of immediate-type hypersensitivity reactions and anaphylaxis. Med. J. Aust. 2008, 188, 473–476. [Google Scholar] [PubMed]
- Sutherland, S.K. Antivenom use in Australia. Premedication, adverse reactions and the use of venom detection kits. Med. J. Aust. 1992, 157, 734–739. [Google Scholar] [PubMed]
- Johnston, C.I.; Ryan, N.M.; O’Leary, M.A.; Brown, S.G.; Isbister, G.K. Australian taipan (Oxyuranus spp.) envenoming: Clinical effects and potential benefits of early antivenom therapy—Australian Snakebite Project (ASP-25). Clin. Toxicol. 2017, 55, 115–122. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins; World Health Organization: Geneva, Switzerland, 2010; pp. 1–34. [Google Scholar]
- Abubakar, I.S.; Abubakar, S.B.; Habib, A.G.; Nasidi, A.; Durfa, N.; Yusuf, P.O.; Larnyang, S.; Garnvwa, J.; Sokomba, E.; Salako, L.; et al. Randomised controlled double-blind non-inferiority trial of two antivenoms for saw-scaled or carpet viper (Echis ocellatus) envenoming in Nigeria. PLoS Negl. Trop. Dis. 2010, 4, e767. [Google Scholar] [CrossRef] [PubMed]
- Isbister, G.K.; Page, C.B. Brown snake envenoming: Why are we left in the dark? Clin. Toxicol. 2015, 53, 925. [Google Scholar] [CrossRef] [PubMed]
- Isbister, G.K.; O’Leary, M.A.; Schneider, J.J.; Brown, S.G.; Currie, B.J.; Investigators, A.S.P. Efficacy of antivenom against the procoagulant effect of Australian brown snake (Pseudonaja sp.) venom: In vivo and in vitro studies. Toxicon 2007, 49, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.A.; White, J.; Ou, J.; Haiart, S.; Galluccio, S. Reply to Isbister and Page: Further discussion of an illuminated case of presumed brown snake (Pseudonaja spp.) envenoming. Clin. Toxicol. 2015, 53, 926–927. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Haiart, S.; Galluccio, S.; White, J.; Weinstein, S.A. An instructive case of presumed brown snake (Pseudonaja spp.) envenoming. Clin. Toxicol. 2015, 53, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.M.; Leon, G.; Lomonte, B. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin. Pharmacokinet. 2003, 42, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.; Vargas, M.; Ramirez, N.; Estrada, R.; Segura, A.; Herrera, M.; Villalta, M.; Gomez, A.; Gutierrez, J.M.; Leon, G. Role of the animal model on the pharmacokinetics of equine-derived antivenoms. Toxicon 2013, 70, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Bazin-Redureau, M.; Pepin, S.; Hong, G.; Debray, M.; Scherrmann, J.M. Interspecies scaling of clearance and volume of distribution for horse antivenom F(ab’)2. Toxicol. Appl. Pharmacol. 1998, 150, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Sevcik, C.; Salazar, V.; Diaz, P.; D’Suze, G. Initial volume of a drug before it reaches the volume of distribution: Pharmacokinetics of F(ab’)2 antivenoms and other drugs. Toxicon 2007, 50, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Ruha, A.M.; Curry, S.C.; Albrecht, C.; Riley, B.; Pizon, A. Late hematologic toxicity following treatment of rattlesnake envenomation with crotalidae polyvalent immune Fab antivenom. Toxicon 2011, 57, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Bush, S.P.; Seifert, S.A.; Oakes, J.; Smith, S.D.; Phan, T.H.; Pearl, S.R.; Reibling, E.T. Continuous IV Crotalidae Polyvalent Immune Fab (Ovine) (FabAV) for selected North American rattlesnake bite patients. Toxicon 2013, 69, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Boyer, L.V.; Seifert, S.A.; Cain, J.S. Recurrence phenomena after immunoglobulin therapy for snake envenomations: Part 2. Guidelines for clinical management with crotaline Fab antivenom. Ann. Emerg. Med. 2001, 37, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Seifert, S.A.; Boyer, L.V. Recurrence phenomena after immunoglobulin therapy for snake envenomations: Part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann. Emerg. Med. 2001, 37, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Lavonas, E.J.; Khatri, V.; Daugherty, C.; Bucher-Bartelson, B.; King, T.; Dart, R.C. Medically significant late bleeding after treated crotaline envenomation: A systematic review. Ann. Emerg. Med. 2014, 63. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.M.; Justice, S.; Davis, G.A.; Weant, K. Delayed hematologic toxicity following rattlesnake envenomation unresponsive to crotalidae polyvalent antivenom. Am. J. Emerg. Med. 2017, 35. [Google Scholar] [CrossRef] [PubMed]
- Witham, W.R.; McNeill, C.; Patel, S. Rebound coagulopathy in patients with snakebite presenting with marked initial coagulopathy. Wilderness Environ. Med. 2015, 26, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Lepak, M.R.; Bochenek, S.H.; Bush, S.P. Severe adverse drug reaction following Crotalidae Polyvalent Immune Fab (Ovine) administration for copperhead snakebite. Ann. Pharmacother. 2015, 49, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Buerk, C.A. The treatment of crotalid envenomation without antivenin. Trauma 1986, 26, 669. [Google Scholar] [CrossRef]
- Lindsey, D. Controversy in snake bite—Time for a controlled appraisal. Trauma 1985, 25, 462–463. [Google Scholar] [CrossRef]
- Gerardo, C.J.; Quackenbush, E.; Lewis, B.; Rose, S.R.; Greene, S.; Toschlog, E.A.; Charlton, N.P.; Mullins, M.E.; Schwartz, R.; Denning, D.; et al. The efficacy of Crotalidae Polyvalent Immune Fab (ovine) antivenom versus placebo plus optional rescue therapy on recovery from copperhead snake envenomation: A randomized, double-blind, placebo-controlled, clinical Trial. Ann. Emerg. Med. 2017, 70. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.; Ruha, A.M.; Kashani, J. Acute hypersensitivity reactions associated with administration of crotalidae polyvalent immune Fab antivenom. Ann. Emerg. Med. 2008, 51, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Lavonas, E.J.; Kokko, J.; Schaeffer, T.H.; Mlynarchek, S.L.; Bogdan, G.M.; Dart, R.C. Short-term outcomes after Fab antivenom therapy for severe crotaline snakebite. Ann. Emerg. Med. 2011, 57. [Google Scholar] [CrossRef] [PubMed]
- Engmark, M.; Jespersen, M.C.; Lomonte, B.; Lund, O.; Laustsen, A.H. High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction. Toxicon 2017, 138, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Engmark, M.; Lomonte, B.; Gutierrez, J.M.; Laustsen, A.H.; De Masi, F.; Andersen, M.R.; Lund, O. Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping. PLoS Negl. Trop. Dis. 2017, 11, e0005768. [Google Scholar] [CrossRef] [PubMed]
- Chetty, N.; Du, A.; Hodgson, W.C.; Winkel, K.; Fry, B.G. The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: Efficacy of two commercially available antivenoms. Toxicon 2004, 44, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Wuster, W.; Ramjan, S.F.R.; Jackson, T.; Martelli, P.; Kini, R.M. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: Evolutionary and toxinological implications. Rapid Commun. Mass Spectrom. 2003, 17, 2047–2062. [Google Scholar] [CrossRef] [PubMed]
- Ukuwela, K.D.; de Silva, A.; Mumpuni; Fry, B.G.; Lee, M.S.; Sanders, K.L. Molecular evidence that the deadliest sea snake Enhydrina schistosa (Elapidae: Hydrophiinae) consists of two convergent species. Mol. Phylogenet. Evol. 2013, 66, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Sanders, K.L.; King, B.; Palci, A. Diversification rates and phenotypic evolution in venomous snakes (Elapidae). R. Soc. Open Sci. 2016, 3, 150277. [Google Scholar] [CrossRef] [PubMed]
- Lister, C.; Arbuckle, K.; Jackson, T.N.W.; Debono, J.; Zdenek, C.N.; Dashevsky, D.; Dunstan, N.; Allen, L.; Hay, C.; Bush, B.; et al. Catch a tiger snake by its tail: Differential toxicity, co-factor dependence and antivenom efficacy in a procoagulant clade of Australian venomous snakes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 202, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Wuster, W.; Kini, R.M.; Brusic, V.; Khan, A.; Venkataraman, D.; Rooney, A.P. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J. Mol. Evol. 2003, 57, 110–129. [Google Scholar] [CrossRef] [PubMed]
- Sunagar, K.; Jackson, T.N.; Undheim, E.A.; Ali, S.A.; Antunes, A.; Fry, B.G. Three-fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of snake venom toxins. Toxins 2013, 5, 2172–2208. [Google Scholar] [CrossRef] [PubMed]
- Utkin, Y.; Sunagar, K.; Jackson, T.N.W.; Reeks, T.; Fry, B.G. Three-Finger Toxins (3FTxs). In Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery; Fry, B.G., Ed.; Oxford University Press: New York, NY, USA, 2015; pp. 215–227. [Google Scholar]
- Warrell, D.A. Unscrupulous marketing of snake bite antivenoms in Africa and Papua New Guinea: Choosing the right product—‘What’s in a name?’. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Oluoch, G.O.; Ainsworth, S.; Alsolaiss, J.; Bolton, F.; Arias, A.S.; Gutierrez, J.M.; Rowley, P.; Kalya, S.; Ozwara, H.; et al. Preclinical antivenom-efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa. PLoS Negl. Trop. Dis. 2017, 11, e0005969. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, A.; Soerensen, C.; Op den Brouw, B.; Lister, C.; Dashevsky, D.; Arbuckle, K.; Gloria, A.; Zdenek, C.N.; Casewell, N.R.; Gutierrez, J.M.; et al. Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies. Toxicol. Lett. 2017, 280, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Visser, L.E.; Kyei-Faried, S.; Belcher, D.W.; Geelhoed, D.W.; van Leeuwen, J.S.; van Roosmalen, J. Failure of a new antivenom to treat Echis ocellatus snake bite in rural Ghana: The importance of quality surveillance. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Yang, D.C.; Jackson, T.N.; Undheim, E.A.; Koludarov, I.; Wood, K.; Jones, A.; Hodgson, W.C.; McCarthy, S.; Ruder, T.; et al. Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). J. Proteom. 2013, 89, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Dobson, J.; Yang, D.C.; Op den Brouw, B.; Cochran, C.; Huynh, T.; Kurrupu, S.; Sanchez, E.E.; Massey, D.J.; Baumann, K.; Jackson, T.N.W.; et al. Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Ciscotto, P.H.; Rates, B.; Silva, D.A.; Richardson, M.; Silva, L.P.; Andrade, H.; Donato, M.F.; Cotta, G.A.; Maria, W.S.; Rodrigues, R.J.; et al. Venomic analysis and evaluation of antivenom cross-reactivity of South American Micrurus species. J. Proteom. 2011, 74, 1810–1825. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.C.; Dobson, J.; Cochran, C.; Dashevsky, D.; Arbuckle, K.; Benard, M.; Boyer, L.; Alagon, A.; Hendrikx, I.; Hodgson, W.C.; et al. The bold and the beautiful: A neurotoxicity comparison of new world coral snakes in the Micruroides and Micrurus genera and relative neutralization by antivenom. Neurotox. Res. 2017, 32, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Calvete, J.J.; Sanz, L.; Perez, A.; Borges, A.; Vargas, A.M.; Lomonte, B.; Angulo, Y.; Gutierrez, J.M.; Chalkidis, H.M.; Mourao, R.H.; et al. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J. Proteom. 2011, 74, 510–527. [Google Scholar] [CrossRef] [PubMed]
- de Roodt, A.R.; Lanari, L.C.; de Oliveira, V.C.; Laskowicz, R.D.; Stock, R.P. Neutralization of Bothrops alternatus regional venom pools and individual venoms by antivenom: A systematic comparison. Toxicon 2011, 57, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- de Roodt, A.R.; Vidal, J.C.; Litwin, S.; Dokmetjian, J.C.; Dolab, J.A.; Hajos, S.E.; Segre, L. Cross neutralization of Bothrops jararacussu venom by heterologous antivenoms. Medicina (B Aires) 1999, 59, 238–242. [Google Scholar] [PubMed]
- Estevao-Costa, M.I.; Gontijo, S.S.; Correia, B.L.; Yarleque, A.; Vivas-Ruiz, D.; Rodrigues, E.; Chavez-Olortegui, C.; Oliveira, L.S.; Sanchez, E.F. Neutralization of toxicological activities of medically-relevant Bothrops snake venoms and relevant toxins by two polyvalent bothropic antivenoms produced in Peru and Brazil. Toxicon 2016, 122, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Jorge, R.J.; Monteiro, H.S.; Goncalves-Machado, L.; Guarnieri, M.C.; Ximenes, R.M.; Borges-Nojosa, D.M.; Luna, K.P.; Zingali, R.B.; Correa-Netto, C.; Gutierrez, J.M.; et al. Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. J. Proteom. 2015, 114, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Nunez, V.; Cid, P.; Sanz, L.; De La Torre, P.; Angulo, Y.; Lomonte, B.; Gutierrez, J.M.; Calvete, J.J. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Peru and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J. Proteom. 2009, 73, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Debono, J.; Dobson, J.; Casewell, N.R.; Romilio, A.; Li, B.; Kurniawan, N.; Mardon, K.; Weisbecker, V.; Nouwens, A.; Kwok, H.F.; et al. Coagulating colubrids: Evolutionary, pathophysiological and biodiscovery implications of venom variations between boomslang (Dispholidus typus) and twig snake (Thelotornis mossambicanus). Toxins 2017, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Oulion, B.; Dobson, J.S.; Zdenek, C.N.; Arbuckle, K.; Lister, C.; Coimbra, F.C.P.; Op den Brouw, B.; Debono, J.; Rogalski, A.; Violette, A.; et al. Factor X activating Atractaspis snake venoms and the relative coagulotoxicity neutralising efficacy of African antivenoms. Toxicol. Lett. 2018, 288, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Pla, D.; Gutierrez, J.M.; Calvete, J.J. Second generation snake antivenomics: Comparing immunoaffinity and immunodepletion protocols. Toxicon 2012, 60, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Engmark, M.; Andersen, M.R.; Laustsen, A.H.; Patel, J.; Sullivan, E.; de Masi, F.; Hansen, C.S.; Kringelum, J.V.; Lomonte, B.; Gutierrez, J.M.; et al. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays. Sci Rep. 2016, 6, 36629. [Google Scholar] [CrossRef] [PubMed]
- Coral killer control. J. Fla. Med. Assoc. 1968, 55, 364–366.
- Christensen, P.A. South African Snake Venoms and Antivenoms; South African Institute for Medical Research: Johannesburg, South Africa, 1955. [Google Scholar]
- Bolaños, R. Antivenenos. In Manual de Procedimientos. Producción y Pruebas de Control en la Preparación de Antisueros Diftérico, Tetánico, Botulínico, Antivenenos y de la Gangrena Gaseosa; Organización Panamericana de la Salud: Washington, DC, USA, 1977; pp. 104–141. [Google Scholar]
- World Health Organization. Progress in the Characterization of Venoms and Standardization of Antivenoms; World Health Organization: Geneva, Switzerland, 1981; Available online: http://apps.who.int/iris/bitstream/10665/37282/1/WHO_OFFSET_58.pdf (accessed on 15 April 2018).
- Segura, A.; Villalta, M.; Herrera, M.; Leon, G.; Harrison, R.; Durfa, N.; Nasidi, A.; Calvete, J.J.; Theakston, R.D.; Warrell, D.A.; et al. Preclinical assessment of the efficacy of a new antivenom (EchiTAb-Plus-ICP) for the treatment of viper envenoming in sub-Saharan Africa. Toxicon 2010, 55, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.H.A.; van’t Veer, C.; Reitsma, P.H. Molecular Biology and Biochemistry of the Coagulation Factors and Pathways of Hemostasis. In Williams Hematology, 9th ed.; Kaushansky, K., Lichtman, M.A., Prchal, J.T., Levi, M.M., Press, O.W., Burns, L.J., Caligiuri, M., Eds.; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Chester, A.; Crawford, G.P. In vitro coagulant properties of venoms from Australian snakes. Toxicon 1982, 20, 501–504. [Google Scholar] [CrossRef]
- Pirkle, H.; McIntosh, M.; Theodor, I.; Vernon, S. Activation of prothrombin with taipan snake venom. Thromb. Res. 1972, 1, 559–568. [Google Scholar] [CrossRef]
- Isbister, G.K.; Woods, D.; Alley, S.; O’Leary, M.A.; Seldon, M.; Lincz, L.F. Endogenous thrombin potential as a novel method for the characterization of procoagulant snake venoms and the efficacy of antivenom. Toxicon 2010, 56, 75–85. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, M.A.; Isbister, G.K. A turbidimetric assay for the measurement of clotting times of procoagulant venoms in plasma. J. Pharmacol. Toxicol. Methods 2010, 61, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Still, K.; Nandlal, R.; Slagboom, J.; Somsen, G.; Casewell, N.; Kool, J. Multipurpose HTS Coagulation Analysis: Assay Development and Assessment of Coagulopathic Snake Venoms. Toxins 2017, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, V.G.; Frank, N.; Matika, R.W. Carbon monoxide inhibits hemotoxic activity of Elapidae venoms: Potential role of heme. Biometals 2018, 31, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Williams, V.; White, J.; Mirtschin, P.J. Comparative study on the procoagulant from the venom of Australian brown snakes (Elapidae; Pseudonaja spp.). Toxicon 1994, 32, 453–459. [Google Scholar] [CrossRef]
- Resiere, D.; Arias, A.S.; Villalta, M.; Rucavado, A.; Brouste, Y.; Cabie, A.; Neviere, R.; Cesaire, R.; Kallel, H.; Megarbane, B.; et al. Preclinical evaluation of the neutralizing ability of a monospecific antivenom for the treatment of envenomings by Bothrops lanceolatus in Martinique. Toxicon 2018. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, S.; Slagboom, J.; Alomran, N.; Pla, D.; Alhamdi, Y.; King, S.I.; Bolton, F.M.S.; Gutiérrez, J.M.; Vonk, F.J.; Toh, C.-H.; Calvete, J.J.; Kool, J.; Harrison, R.A.; Casewell, N.R. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms. Commun. Biol. 2018, 1. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fry, B.G. Snakebite: When the Human Touch Becomes a Bad Touch. Toxins 2018, 10, 170. https://doi.org/10.3390/toxins10040170
Fry BG. Snakebite: When the Human Touch Becomes a Bad Touch. Toxins. 2018; 10(4):170. https://doi.org/10.3390/toxins10040170
Chicago/Turabian StyleFry, Bryan G. 2018. "Snakebite: When the Human Touch Becomes a Bad Touch" Toxins 10, no. 4: 170. https://doi.org/10.3390/toxins10040170
APA StyleFry, B. G. (2018). Snakebite: When the Human Touch Becomes a Bad Touch. Toxins, 10(4), 170. https://doi.org/10.3390/toxins10040170