Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review
Abstract
:1. Introduction
2. Common Toxins in Fermented Foods
2.1. Mycotoxins
2.2. Bacterial Toxins
2.3. Other Toxic Materials in FF
3. Detection Methods
4. Prevention Measures
4.1. Use of Lactic Acid Bacteria
4.2. Processing Conditions
4.3. Fermentation Process
5. Outbreaks
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BCC Research. Available online: https://www.bccresearch.com/market-research/food-and-beverage/world-markets-for-fermentation-ingredients-fod020e.html (accessed on 3 October 2018).
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Thai fermented foods as a versatile source of bioactive microorganisms-A comprehensive review. Sci. Pharm. 2018, 86, 37. [Google Scholar] [CrossRef]
- Smit, G.; Smit, B.A.; Engels, W.J.M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabak, B.; Dobson, A.D.W. An Introduction to the Traditional Fermented Foods and Beverages of Turkey. Crit. Rev. Food Sci. Nutr. 2011, 51, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Borresen, E.C.; Henderson, A.J.; Kumar, A.; Weir, T.L.; Ryan, E.P. Fermented foods: Patented approaches and formulations for nutritional supplementation and health promotion. Recent Pat. Food Nutr. Agric. 2012, 4, 134–140. [Google Scholar] [CrossRef]
- Chaves-Lopez, C.; Serio, A.; Grande-Tovar, C.D.; Cuervo-Mulet, R.; Delgado-Ospina, J.; Paparella, A. Traditional fermented foods and beverages from a microbiological and nutritional perspective: The Colombian heritage. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1031–1048. [Google Scholar] [CrossRef]
- Simatende, P.; Gadaga, T.H.; Nkambule, S.J.; Siwela, M. Methods of preparation of Swazi traditional fermented foods. J. Ethn. Foods 2015, 2, 119–125. [Google Scholar] [CrossRef]
- Beermann, C.; Hartung, J. Physiological properties of milk ingredients released by fermentation. Food Funct. 2013, 4, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Hudson, J.A.; Korpela, R.; de los Reyes-Gavilan, C.G. Impact on human health of microorganisms present in fermented dairy products: An overview. BioMed Res. Int. 2015, 412714. [Google Scholar] [CrossRef] [PubMed]
- Odhav, B.; Naicker, V. Mycotoxins in South African traditionally brewed beers. Food Addit. Contam. 2002, 19, 55–61. [Google Scholar] [CrossRef]
- Kastner, S.; Kandler, H.; Hotz, K.; Bleisch, M.; Lacroix, C.; Meile, L. Screening for mycotoxins in the inoculum used for production of attieke, a traditional Ivorian cassava product. LWT-Food Sci. Technol. 2010, 43, 1160–1163. [Google Scholar] [CrossRef]
- Makun, H.A.; Adeniran, A.L.; Mailafiya, S.C.; Ayanda, I.S.; Mudashiru, A.T.; Ojukwu, U.J.; Jagaba, A.S.; Usman, Z.; Salihu, D.A. Natural occurrence of ochratoxin A in some marketed Nigerian foods. Food Control 2013, 31, 566–571. [Google Scholar] [CrossRef]
- IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man; 1972-Present (Multivolume Work); World Health Organization, International Agency for Research on Cancer: Geneva, Switzerland, 1976; pp. V10–V60. [Google Scholar]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Scussel, V.M.; Scholten, J.M.; Rensen, P.M.; Spanjer, M.C.; Giordano, B.N.E.; Savi, G.D. Multitoxin evaluation in fermented beverages and cork stoppers by liquid chromatography-tandem mass spectrometry. Int. J. Food Sci. Technol. 2013, 48, 96–102. [Google Scholar] [CrossRef]
- Brugger, E.M.; Wagner, J.; Schumacher, D.M.; Koch, K.; Podlech, J.; Metzler, M.; Lehmann, L. Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicol. Lett. 2006, 164, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Fehr, M.; Pahlke, G.; Fritz, J.; Christensen, M.O.; Boege, F.; Altemöller, M.; Podlech, J.; Marko, D. Alternariol acts as a topoisomerase poison, preferentially affecting the IIalpha isoform. Mol. Nutr. Food Res. 2009, 53, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Weidenbörner, M. Encyclopedia of Food Mycotoxins, 1st ed.; Springer: Berlin, Germany, 2001; pp. 1–269. [Google Scholar]
- Dolatabadi, S.; Scherlach, K.; Figge, M.; Hertweck, C.; Dijksterhuis, J.; Menken, S.B.J.; De Hoog, G.S. Food preparation with mucoralean fungi: A potential biosafety issue? Fungal Biol. 2016, 120, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Tsuruo, T.; Ohhara, T.; Iida, H.; Tsukagoshi, S.; Sato, Z.; Matsuda, I.; Iwasaki, S.; Okuda, S.; Shimizu, F.; Sasagawa, K.; et al. Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against human and murine tumor cells and their vincristine-resistant sublines. Cancer Res. 1986, 46, 381–385. [Google Scholar]
- Jennessen, J.; Nielsen, K.F.; Houbraken, J.; Lyhne, E.K.; Schnürer, J.; Frisvad, J.C.; Samson, R.A. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J. Agric. Food Chem. 2005, 53, 1833–1840. [Google Scholar] [CrossRef]
- Adedeji, B.S.; Ezeokoli, O.T.; Ezekiel, C.N.; Obadina, A.O.; Somorin, Y.M.; Sulyok, M.; Adeleke, R.A.; Warth, B.; Nwangburuka, C.C.; Omemu, A.M.; et al. Bacterial species and mycotoxin contamination associated with locust bean, melon and their fermented products in south-western Nigeria. Int. J. Food Microbiol. 2017, 258, 73–80. [Google Scholar] [CrossRef]
- Adekoya, I.; Njobeh, P.; Obadina, A.; Chilaka, C.; Okoth, S.; De Boevre, M.; De Saeger, S. Awareness and prevalence of mycotoxin contamination in selected Nigerian fermented foods. Toxins 2017, 9, 363. [Google Scholar] [CrossRef]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 2011, 120 (Suppl. 1), S28–S48. [Google Scholar] [CrossRef]
- Roze, L.V.; Hong, S.Y.; Linz, J.E. Aflatoxin biosynthesis: Current frontiers. Annu. Rev. Food Sci. Technol. 2013, 4, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Park, J.; Park, J.H.; Kim, M.K.; Park, S.; Dubey, A.; Jeon, J.; Khang, Y.; Kim, M. Evaluation of fungal microflora for aflatoxin producing possibility in novel quality Meju fermented with single and/or multiple additions of Nelumbo nucifera, Ginkgo biloba, and Allium sativum extracts. J. Food Saf. 2017, 37, e12368. [Google Scholar] [CrossRef]
- Arab, M.; Sohrabvandi, S.; Mortazavian, A.M.; Mohammadi, R.; Rezaei Tavirani, M. Reduction of aflatoxin in fermented milks during production and storage. Toxin Rev. 2012, 31, 44–53. [Google Scholar] [CrossRef]
- Ouoba, L.I.I.; Thorsen, L.; Varnam, A.H. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. Int. J. Food Microbiol. 2008, 124, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Agbobatinkpo, P.B.; Thorsen, L.; Nielsen, D.S.; Azokpota, P.; Akissoe, N.; Hounhouigan, J.D.; Jakobsen, M. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin. Int. J. Food Microbiol. 2013, 163, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Cai, T.; Song, F.; Yuan, C.; Li, Z.; Zhang, Q.; Xing, Y.; Xiang, W. Incidence, intraspecific diversity and toxigenic profile of Bacillus cereus in the Yellow-Water, a fermented food flavor enhancer. Food Sci. Technol. Res. 2015, 21, 275–279. [Google Scholar] [CrossRef]
- Thorsen, L.; Abdelgadir, W.S.; Ronsbo, M.H.; Abban, S.; Hamad, S.H.; Nielsen, D.S.; Jakobsen, M. Identification and safety evaluation of Bacillus species occurring in high numbers during spontaneous fermentations to produce Gergoush, a traditional Sudanese bread snack. Int. J. Food Microbiol. 2011, 146, 244–252. [Google Scholar] [CrossRef]
- Yim, J.; Kim, K.Y.; Chon, J.W.; Kim, D.H.; Kim, H.S.; Choi, D.S.; Choi, I.S.; Seo, K.H. Incidence, antibiotic susceptibility, and toxin profiles of Bacillus cereus sensu lato isolated from Korean fermented soybean products. J. Food Sci. 2015, 80, M1266–M1270. [Google Scholar] [CrossRef]
- Lee, N.; Kim, M.D.; Chang, H.J.; Choi, S.W.; Chun, H.S. Genetic diversity, antimicrobial resistance, toxin gene profiles, and toxin production ability of Bacillus cereus isolates from doenjang, a Korean fermented soybean paste. J. Food Saf. 2017, 37, e12363. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, H.J.; Jeong, M.C.; Koo, M. Occurrence of toxigenic Bacillus cereus and Bacillus thuringiensis in Doenjang, a Korean fermented soybean paste. J. Food Prot. 2016, 79, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, F.S.; Yazdani, F.; Mozafari, J.; Valizadeh, Y. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products. BMC Res. Notes 2014, 7, 217. [Google Scholar] [CrossRef] [PubMed]
- Ivbade, A.; Ojo, O.E.; Dipeolu, M.A. Shiga toxin-producing Escherichia coli O157:H7 in milk and milk products in Ogun State, Nigeria. Vet. Ital. 2014, 5, 185–191. [Google Scholar] [CrossRef]
- Jans, C.; Merz, A.; Johler, S.; Younan, M.; Tanner, S.A.; Kaindi, D.W.M.; Wangoh, J.; Bonfoh, B.; Meile, L.; Tasara, T. East and West African milk products are reservoirs for human and livestock-associated Staphylococcus aureus. Food Microbiol. 2017, 65, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Fowoyo, P.T.; Ogunbanwo, S.T. Virulence and toxigenicity of coagulase-negative staphylococci in Nigerian traditional fermented foods. Can. J. Microbiol. 2016, 62, 572–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oguntoyinbo, F.A.; Oni, O.M. Incidence and characterization of Bacillus cereus isolated from traditional fermented meals in Nigeria. J. Food Prot. 2004, 67, 2805–2808. [Google Scholar] [CrossRef]
- Horowitz, B.Z. Type E botulism. Clin. Toxicol. 2010, 48, 880–895. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Fricker, M.; Scherer, S. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiol. Lett. 2004, 232, 189–195. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Svensson, B.; Guinebretiere, M.H.; Lindbäck, T.; Andersson, M.; Schulz, A.; Fricker, M.; Christiansson, A.; Granum, P.E.; Märtlbauer, E.; et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 2005, 151 Pt 1, 183–197. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, Y.; Liu, X.; Xia, X.; Ding, S.; Zhu, K. Evaluation of the toxicity and toxicokinetics of cereulide from an emetic Bacillus cereus strain of milk origin. Toxins 2016, 8, 156. [Google Scholar] [CrossRef]
- Fu, S.W.; Wang, C.W. An overview of type E botulism in China. Biomed. Environ. Sci. 2008, 21, 353–356. [Google Scholar] [CrossRef]
- Rebagliati, V.; Philippi, R.; Tornese, M.; Paiva, A.; Rossi, L.; Troncoso, A. Food-borne botulism in Argentina. J. Infect. Dev. Ctries 2009, 3, 250–254. [Google Scholar]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B.; et al. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 2010, 64 (Suppl. 3), S95–S100. [Google Scholar] [CrossRef] [Green Version]
- Prester, L. Biogenic amines in fish, fish products and shellfish: A review. Food Addit. Contam. Part A 2011, 28, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Madejska, A.; Michalski, M.; Pawul-Gruba, M.; Osek, J. Histamine content in rennet ripening cheeses during storage at different temperatures and times. J. Vet. Res. 2018, 62, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Devi, Y.R.; Chakma, A.; Yenkokpam, S. Traditional wisdom of Meitei community regarding elimination of cyanogenic glycosides in bamboo shoot food products. Indian J. Tradit. Knowl. 2017, 16, 470–475. [Google Scholar]
- Alahi, M.E.E.; Mukhopadhyay, S.C. Detection methodologies for pathogen and toxins: A review. Sensors 2017, 17, 1885. [Google Scholar] [CrossRef] [PubMed]
- Rohm, B.; Scherlach, K.; Möbius, N.; Partida-Martinez, L.P.; Christian Hertweck, C. Toxin production by bacterial endosymbionts of a Rhizopus microsporus strain used for tempe/sufu processing. Int. J. Food Microbiol. 2010, 136, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Møller, S.M.; Gunvig, A.; Bertram, H.G. Effect of starter culture and fermentation temperature on water mobility and distribution in fermented sausages and correlation to microbial safety studied by nuclear magnetic resonance relaxometry. Meat Sci. 2010, 86, 462–467. [Google Scholar]
- Rantsiou, K.; Alessandria, V.; Cocolin, L. Prevalence of shiga toxin-producing Escherichia coli in food products of animal origin as determined by molecular methods. Int. J. Food Microbiol. 2012, 154, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, V.; Dambrosio, A.; Quaglia, N.C.; Parisi, A.; Lasalandra, G.; Mula, G.; Virgilio, S.; Lucifora, G.; Dario, M.; Normanno, G. Development of a multiplex PCR for rapid detection of verocytotoxin-producing Escherichia coli O26 in raw milk and ground beef. J. Food Prot. 2011, 74, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Quinto, E.J.; Arinder, P.; Axelsson, L.; Heir, E.; Holck, A.; Lindqvist, R.; Lindblad, M.; Andreou, P.; Lauzon, H.L.; Marteinsson, V.; et al. Predicting the Concentration of Verotoxin-Producing Escherichia coli Bacteria during Processing and Storage of Fermented Raw-Meat Sausages. Appl. Environ. Microbiol. 2014, 80, 2715–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, F.; Lai, W.; Saini, J.; Shan, S.; Cui, X.; Liu, D.F. Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce. Food Chem. 2014, 150, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Ahlberg, S.H.; Joutsjoki, V.; Hannu, J. Korhonen. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol. 2015, 207, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Onilude, A.A.; Fagade, O.E.; Bello, M.M.; Fadahunsi, I.F. Inhibition of aflatoxin-producing aspergilli by lactic acid bacteria isolates from indigenously fermented cereal gruels. Afr. J. Biotechnol. 2005, 4, 1404–1408. [Google Scholar]
- Mokoena, M.P.; Chelule, P.K.; Gqaleni, N. Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J. Food Prot. 2005, 68, 2095–2099. [Google Scholar]
- Mokoena, M.P.; Chelule, P.K.; Gqaleni, N. The toxicity and decreased concentration of aflatoxin B1 in natural lactic acid fermented maize meal. J. Appl. Microbiol. 2006, 100, 773–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, P.H.; Hald, B.; Jespersen, L. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int. J. Food Microbiol. 2007, 113, 41–46. [Google Scholar] [CrossRef]
- Sani, A.M.; Marhamati, Z.; Marhamatizade, M.H. Bio-detoxification of aflatoxin M1 in kefir using Lactobacillus casei. Biotechnol. Indian J. 2014, 9, 219–224. [Google Scholar]
- Eom, J.S.; Lee, S.Y.; Choi, H.S. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes. J. Food Sci. 2014, 79, M2279–M2287. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.S.; Choi, H.S. Inhibition of Bacillus cereus growth and toxin production by Bacillus amyloliquefaciens RD7-7 in fermented soybean products. J. Microbiol. Biotechnol. 2016, 26, 44–55. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, H.; Lan, J.; Zhang, R.; Ren, H.; Zhang, X.; Yu, G. Detoxification of zearalenone by three strains of lactobacillus plantarum from fermented food in vitro. Food Control 2015, 54, 158–164. [Google Scholar] [CrossRef]
- Kongkiattikajorn, J. Potential of starter culture to reduce biogenic amines accumulation in som-fug, a Thai traditional fermented fish sausage. J. Ethn. Foods 2015, 2, 186–194. [Google Scholar] [CrossRef]
- Kang, H.R.; Lee, Y.L.; Hwang, H.J. Potential for application as a starter culture of tyramine-reducing strain. J. Korean Soc. Food Sci. Nutr. 2017, 46, 1561–1567. [Google Scholar] [CrossRef]
- Huang, L.; Duan, C.; Zhao, Y.; Gao, L.; Niu, C.; Xu, J.; Li, S. Reduction of Aflatoxin B1 toxicity by Lactobacillus plantarum C88: A potential probiotic strain isolated from Chinese traditional fermented food “Tofu”. PLoS ONE 2017, 12, e0170109. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.R.; Yang, S.M.; Cho, S.M.; Kim, M.; Hong, S.; Chung, S.H. Aflatoxin B1 Detoxification by Aspergillus oryzae from Meju, a Traditional Korean Fermented Soybean Starter. J. Microbiol. Biotechnol. 2017, 27, 57–66. [Google Scholar] [CrossRef]
- Tang, K.X.; Shi, T.; Ganzle, M. Effect of starter cultures on taste-active amino acids and survival of pathogenic Escherichia coli in dry fermented beef sausages. Eur. Food Res. Technol. 2018, 244, 2203–2212. [Google Scholar] [CrossRef]
- Bartkiene, E.; Zavistanaviciute, P.; Lele, V.; Ruzauskas, M.; Bartkevics, V.; Bernatoniene, J.; Gallo, P.; Tenore, G.C. Antonello Santini. Lactobacillus plantarum LUHS135 and paracasei LUHS244 as functional starter cultures for the food fermentation industry: Characterization, mycotoxin-reducing properties, optimization of biomass growth and sustainable encapsulation by using dairy by-products. LWT-Food Sci. Technol. 2018, 93, 649–658. [Google Scholar]
- Heir, E.; Holck, A.L.; Omer, M.K.; Alvseike, O.; Hoy, M.; Mage, I.; Axelsson, L. Reduction of verotoxigenic Escherichia coli by process and recipe optimization in dry-fermented sausages. Int. J. Food Microbiol. 2010, 141, 195–202. [Google Scholar] [CrossRef]
- Holck, A.L.; Axelsson, L.; Rode, T.M.; Hoy, M.; Mage, I.; Alvseike, O.; Labée-Lund, T.M.; Omer, M.K.; Granum, P.E.; Heir, E. Reduction of verotoxigenic Escherichia coli in production of fermented sausages. Meat Sci. 2011, 89, 286–295. [Google Scholar] [CrossRef]
- Rode, T.M.; Holck, A.; Axelsson, L.; Hoy, M.; Heir, E. Shiga toxigenic Escherichia coli show strain dependent reductions under dry-fermented sausage production and post-processing conditions. Int. J. Food Microbiol. 2012, 155, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Heir, E.; Holck, A.L.; Omer, M.K.; Alvseike, O.; Mage, I.; Høy, M.; Rode, T.M.; Sidhu, M.S.; Axelsson, L. Effects of post-processing treatments on sensory quality and Shiga toxigenic Escherichia coli reductions in dry-fermented sausages. Meat Sci. 2013, 94, 47–54. [Google Scholar] [CrossRef]
- Adibpour, N.; Soleimanian-Zad, S.; Sarabi-Jamab, M.; Tajalli, F. Effect of storage time and concentration of aflatoxin m1 on toxin binding capacity of L. acidophilus in fermented milk product. J. Agric. Sci. Technol. 2016, 18, 1209–1220. [Google Scholar]
- Shane, L.E.; Porto-Fett, A.; Shoyer, B.A.; Phebus, R.K.; Thippareddi, H.; Hallowell, A.; Miller, K.; Foster-Bey, L.; Campano, S.G.; Taormina, P.J.; et al. Evaluation of post-fermentation heating times and temperatures for controlling Shiga toxin-producing Escherichia coli cells in a non-dried, pepperoni-type sausage. Ital. J. Food Sci. 2018, 7, 7250. [Google Scholar] [CrossRef] [PubMed]
- Okeke, C.A.; Ezekiel, C.N.; Sulyok, M.; Ogunremi, O.R.; Ezeamagu, C.O.; Sarkanj, B.; Warth, B.; Krska, R. Traditional processing impacts mycotoxin levels and nutritional value of ogi—A maize-based complementary food. Food Control 2018, 86, 224–233. [Google Scholar] [CrossRef]
- Beshkova, D.; Frengova, G. Bacteriocins from lactic acid bacteria: Microorganisms of potential biotechnological importance for the dairy industry. Eng. Life Sci. 2012, 12, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.Z.; Zhang, H.; Wu, Q.H.; Hu, L.B. Inhibitory effects of tea extract on aflatoxin production by Aspergillus flavus. Lett. Appl. Microbiol. 2013, 56, 462–466. [Google Scholar]
- Kushnir, E.D.; Breen, T.M.; Paikina, S.S. Sources of infection of sturgeons (red fish) with Bacillus botulinus. Zh. Mikrobiol. Epidemiol. Immunobiol. 1937, 19, 80–85. [Google Scholar]
- Tseng, C.K.; Tsai, C.H.; Tseng, C.H.; Tseng, Y.C.; Lee, F.Y.; Huang, W.S. An outbreak of foodborne botulism in Taiwan. Int. J. Hyg. Environ. Health 2009, 212, 82–86. [Google Scholar] [CrossRef]
- Wangroongsarb, P.; Jittaprasartsin, C.; Suthivarakom, K.; Kamthalang, T.; Yeesoonsang, S.; Sangkitporn, S. An outbreak of foodborne botulism in Surat Thani Province, Thailand, 2012. Jpn. J. Infect. Dis. 2013, 66, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Ethelberg, S.; Smith, B.; Torpdahl, M.; Lisby, M.; Boel, J.; Jensen, T.; Nielsen, E.M.; Mølbak, K. Outbreak of non-O157 shiga toxin-producing Escherichia coli infection from consumption of beef sausage. Clin. Infect. Dis. 2009, 48, e78–e81. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Bester, K.; Liao, B.; Yang, Z.; Jiang, R.; Hendriksen, N.B. Characterization of three Bacillus cereus strains involved in a major outbreak of food poisoning after consumption of fermented black beans (Douchi) in Yunan, China. Foodborne Pathog. Dis. 2014, 11, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Genigeorgis, C.A. Present state of knowledge on staphylococcal intoxication. Int. J. Food Microbiol. 1989, 9, 327–360. [Google Scholar] [CrossRef]
- Johler, S.; Weder, D.; Bridy, C.; Huguenin, M.C.; Robert, L.; Hummerjohann, J.; Stephan, R. Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk. J. Dairy Sci. 2015, 98, 2944–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. No. | Fermented Products/Raw Materials | Toxic Compounds | Microbes | Ref. |
---|---|---|---|---|
Mycotoxins | ||||
1 | South African alcoholic beverages; Grains | Aflatoxins (200–400 µg/L), Zearalenone, Ochratoxin A | Aspergillus spp., Penicillium spp., Mucor spp., Rhizopus spp. | [10] |
2 | Attieke (an Ivorian fermented cassava product) | Ochratoxin (0.2 µg/kg), deoxynivalenol | - | [11] |
3 | Nigerian foods | Ochratoxin A (>5 µg/kg) | - | [12] |
4 | Wine, cider samples | Alternariol, Alternariol methyl, Ochratoxin A, penicillic acid | - | [15] |
5 | Nigerian foods (iru and ogiri) and raw materials | Aflatoxin | Bacillus anthracis, Staphylococcus sciuri subsp. sciuri, Alcaligenes faecalis, Proteus mirabilis | [22] |
6 | Southwest Nigerian foods | Fumonisin B1, Aflatoxin B1, Sterigmatocystin | - | [23] |
7 | Meju (Fermented soybean) | Aflatoxin B1, Ochratoxin A | Agaricaceae, Mucor, Penicillium, Aspergillus, Paecilomyces. Aspergillus ruber | [26] |
Bacterial toxins | ||||
8 | Soumbala (fermented seeds of Parkiabiglobosa)Bikalga (fermented seeds of Hibiscus sabdariffa) | Enterotoxins | Bacillus subtilis, B. cereus., B. licheniformis, B. pumilus | [28] |
9 | Yanyanku and Ikpiru (fermented seeds of Hibiscus sabdariffa) | Enterotoxigenic microbes | B. subtilis, B. cereus, B. amyloliquefaciens, B. licheniformis, B. safensis, B. altitudinis, B. aryabhattai, B. flexus, B. circulans | [29] |
10 | Yellow-Water | Emetic toxin | B. cereus | [30] |
11 | Gergoush | Enterotoxigenic microbes | Bacillus spp. | [31] |
12 | Doenjang, ssamjang, kochujang, and cho-kochujang | Enterotoxins | B. cereus sensulato | [32] |
13 | Doenjang | Emetic toxin | Bacillus cereus | [33,34] |
14 | Fresh and fermented dairy products of Iran | Shiga toxin | Shiga toxin producing Escherichia coli | [35] |
15 | Fresh and fermented dairy products of Nigeria | Shiga toxin | Shiga toxin producing Escherichia coli | [36] |
16 | Dairy products of East and West Africa | Toxic shock syndrome toxin and enterotoxins | Staphylococcus aureus | [37] |
17 | Ogi, nono, wara, kunu, iru, and kindirmo | Enterotoxins | Coagulase-negative staphylococci strains | [38] |
18 | Iru and ogiri | Enterotoxigenic microbes | B. cereus, Alcaligenes faecalis, Proteus mirabilis, Staphylococcus sciuri subsp. sciuri, B. anthracis | [22,39] |
19 | Rakfisk, faseikh, kapchunka, and tofu, ashbal | Botulinum | Clostridium botulinum | [40] |
S. No. | Fermented Foods | Toxins/Contaminants | Prevention Methods | Results | Ref. |
---|---|---|---|---|---|
Use of Lactic acid bacteria | |||||
1 | Fermented cerealgruels | Aflatoxin producing Aspergillus spp. (APA) | Lactobacillus spp. | Lactobacillus spp. inhibited the growth of APA effectively | [59] |
2 | Fermented maize meal (FMM) | Fumonisin B1, Zearalenone (ZEA), Aflatoxin B1 (AB1) | Streptococcus lactis, Lactobacillus delbrueckii | Reduced the B1 and ZEA content in FMM | [60,61] |
3 | Indigenous fermented foods of Ghana | AB1 | Saccharomyces cerevisiae | Surface binding of AB1 | [62] |
4 | Kefir | Aflatoxin M1 (AM1) | Lactobacillus casei | Surface binding of AM1 | [63] |
5 | Fermented soybean | Bacillus cereus and its toxins | Bacillus subtilis HJ18-4 | Suppressed the growth and expression of toxin-coding genes of B. cereus | [64] |
6 | Fermented soybean | Bacillus cereus and its toxins | Bacillus amyloliquefaciens RD7-7 | Suppressed the growth and expression of toxin-coding genes of B. cereus | [65] |
7 | Fermented foods | ZEA | Lactobacillus Plantarum strains | Degraded the ZEA that was added in the medium | [66] |
8 | Fermented fish sausage | Biogenic amines (BA) | Lactobacillus sakei KM5474, L. plantarum KM1450 | Reduced the amount of BA in fermented sausage | [67] |
9 | Fermented soybean | Tyramine | B. amyloliquefaciensD31-21, B. amyloliquefaciensO2-2, B. subtilis H3. | Reduced the tyramine content | [68] |
10 | Fermented foods | AB1 | Lactobacillus plantarum C88 | Improved the antioxidant system, facilitated the excretion of AB1, and regulated the AB1 metabolism in a rodent model | [69] |
11 | Korean fermented soybeans | AB1 | Aspergillus oryzae MAO103, A. oryzae MAO104 | Degraded the AB1 and suppressed the growth of AB1 producer | [70] |
12 | Sausages | Escherichia coli | Staphylococcus carnosus. L. sakei, L. plantarum, Pediococcus pentosaceus, P. acidilactici | Reduced the growth of E. coli | [71] |
13 | Fermented foods | Mycotoxins | L. plantarum LUHS135, L. paracasei LUHS244 | Reduced the mycotoxins and antimicrobial activity against common foodborne pathogens | [72] |
Processing conditions | |||||
14 | Dry-fermented sausages | Verotoxigenic E. coli (VEC) | Processing conditions | Fermentation temperature, pH, salt concentration influences the VEC survival in sausages | [73] |
15 | Dry-fermented sausages | Shiga toxigenic E. coli (STEC) | Post-processing conditions | Post-process heating, freezing and thawing, and storage conditions reduced the STEC in salami | [75] |
16 | Dry-fermented sausages | STEC | Post-processing conditions | Post-process heating, freezing and thawing, and storage conditions reduced the STEC in salami and morr | [76] |
17 | Fermented milk product | AM1 | Storage conditions and L. acidophilus strain LA-5 | Storage condition (4 °C for 3 weeks) affected the AM1 binding ability of L. acidophilus | [77] |
18 | Pepperoni-type sausage | Shiga toxigenic E. coli (STEC) | Post-processing conditions | Post-processing heating temperature, time, and final pH of the product influenced STEC content | [78] |
Fermentation process | |||||
19 | Meju | Aflatoxin producing fungal flora | Fermentation with plant extracts | Use of plant extracts significantly reduced the fungal microflora in meju | [26] |
20 | Ogi | Mycotoxins | Traditional processing | Traditional processing reduced the 16 different mycotoxins in ogi | [79] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review. Toxins 2019, 11, 4. https://doi.org/10.3390/toxins11010004
Sivamaruthi BS, Kesika P, Chaiyasut C. Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review. Toxins. 2019; 11(1):4. https://doi.org/10.3390/toxins11010004
Chicago/Turabian StyleSivamaruthi, Bhagavathi Sundaram, Periyanaina Kesika, and Chaiyavat Chaiyasut. 2019. "Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review" Toxins 11, no. 1: 4. https://doi.org/10.3390/toxins11010004
APA StyleSivamaruthi, B. S., Kesika, P., & Chaiyasut, C. (2019). Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review. Toxins, 11(1), 4. https://doi.org/10.3390/toxins11010004