Tables of Toxicity of Botulinum and Tetanus Neurotoxins
Abstract
:1. Introduction
1.1. Clostridial Neurotoxins
1.2. Structure of Clostridial Neurotoxins and Their Complexes
1.3. Toxicity Values for Botulinum Neurotoxins and Their Limitations
2. Botulinum Neurotoxins
2.1. Mouse Lethal Dose 50%
2.2. Toxicity in Different Animal Species
2.3. Oral Toxicity in Mice
2.4. Toxicity of BoNT/A1 in Human and Therapeutic Doses
3. Tetanus Neurotoxin
3.1. Toxicity in Different Mammals
3.2. Toxicity in Non-Mammal Animals
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gill, D.M. Bacterial toxins: A table of lethal amounts. Microbiol. Rev. 1982, 46, 86–94. [Google Scholar] [PubMed]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Masuyer, G.; Stenmark, P. Botulinum and tetanus neurotoxins. Annu. Rev. Biochem. 2019, 88, 811–837. [Google Scholar] [CrossRef] [PubMed]
- Udwadia, F.E. Tetanus; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Sobel, J. Botulism. Clin. Infect. Dis. 2005, 41, 1167–1173. [Google Scholar] [CrossRef]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum toxin as a biological weapon: Medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef]
- Bhattacharjee, Y. Biosecurity. Panel selects most dangerous select agents. Science 2011, 332, 1491–1492. [Google Scholar] [CrossRef]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef]
- Cohen, J.E.; Wang, R.; Shen, R.F.; Wu, W.W.; Keller, J.E. Comparative pathogenomics of Clostridium tetani. PLoS ONE 2017, 12, e0182909. [Google Scholar] [CrossRef]
- Chapeton-Montes, D.; Plourde, L.; Bouchier, C.; Ma, L.; Diancourt, L.; Criscuolo, A.; Popoff, M.R.; Brüggemann, H. The population structure of Clostridium tetani deduced from its pan-genome. Sci. Rep. 2019, 9, 11220. [Google Scholar] [CrossRef]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Lee, K.; Gu, S.; Jin, L.; Le, T.T.; Cheng, L.W.; Strotmeier, J.; Kruel, A.M.; Yao, G.; Perry, K.; Rummel, A.; et al. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog. 2013, 9, e1003690. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.H.; Jin, R. Architecture of the botulinum neurotoxin complex: A molecular machine for protection and delivery. Curr. Opin. Struct. Biol. 2015, 31, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D. Botulinum toxin drugs: Brief history and outlook. J. Neural Transm. (Vienna) 2016, 123, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. An update on new and unique uses of botulinum toxin in movement disorders. Toxicon 2018, 147, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed]
- Van Heyningen, W.E.; Mellanby, J. Microbial Toxins 2 A; Academic Press: New York, NY, USA, 1971; p. 69. [Google Scholar]
- Boroff, D.A.; Fleck, U. Statistical analysis of a rapid in vivo method for the titration of the toxin of Clostridium botulinum. J. Bacteriol. 1966, 92, 1580–1581. [Google Scholar]
- Wentzel, L.M.; Sterne, M.; Polson, A. High toxicity of pure botulinum type D toxin. Nature 1950, 166, 739–740. [Google Scholar] [CrossRef]
- Hambleton, P.; Pickett, A.M. Potency equivalence of botulinum toxin preparations. J. R. Soc. Med. 1994, 87, 719. [Google Scholar]
- McLellan, K.; Das, R.E.; Ekong, T.A.; Sesardic, D. Therapeutic botulinum type A toxin: Factors affecting potency. Toxicon 1996, 34, 975–985. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Jones, R.G.; Liu, Y.; Sesardic, D. Measurement of botulinum types A, B and E neurotoxicity using the phrenic nerve-hemidiaphragm: Improved precision with in-bred mice. Toxicon 2009, 53, 503–511. [Google Scholar] [CrossRef]
- Sharma, S.K.; Eblen, B.S.; Bull, R.L.; Burr, D.H.; Whiting, R.C. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis. Appl. Environ. Microbiol. 2005, 71, 3935–3941. [Google Scholar] [CrossRef] [PubMed]
- Pier, C.L.; Chen, C.; Tepp, W.H.; Lin, G.; Janda, K.D.; Barbieri, J.T.; Pellett, S.; Johnson, E.A. Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett. 2011, 585, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L. The life history of a botulinum toxin molecule. Toxicon 2013, 68, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Krilich, J.; Pellett, S.; Baudys, J.; Tepp, W.H.; Barr, J.R.; Johnson, E.A.; Kalb, S.R. Comparison of the catalytic properties of the botulinum neurotoxin subtypes A1 and A5. Biochim. Biophys. Acta 2013, 1834, 2722–2728. [Google Scholar] [CrossRef]
- Whitemarsh, R.C.; Tepp, W.H.; Bradshaw, M.; Lin, G.; Pier, C.L.; Scherf, J.M.; Johnson, E.A.; Pellett, S. Characterization of botulinum neurotoxin a subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect. Immun. 2013, 81, 3894–3902. [Google Scholar] [CrossRef]
- Azarnia Tehran, D.; Zanetti, G.; Leka, O.; Lista, F.; Fillo, S.; Binz, T.; Shone, C.C.; Rossetto, O.; Montecucco, C.; Paradisi, C.; et al. A novel inhibitor prevents the peripheral neuroparalysis of botulinum neurotoxins. Sci. Rep. 2015, 5, 17513. [Google Scholar] [CrossRef]
- Pellett, S.; Tepp, W.H.; Scherf, J.M.; Pier, C.L.; Johnson, E.A. Activity of botulinum neurotoxin type D (strain 1873) in human neurons. Toxicon 2015, 101, 63–69. [Google Scholar] [CrossRef]
- Moritz, M.S.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Pellett, S. Isolation and characterization of the novel botulinum neurotoxin a subtype 6. mSphere 2018, 3, e00466-18. [Google Scholar] [CrossRef]
- Torii, Y.; Kiyota, N.; Sugimoto, N.; Mori, Y.; Goto, Y.; Harakawa, T.; Nakahira, S.; Kaji, R.; Kozaki, S.; Ginnaga, A. Comparison of effects of botulinum toxin subtype A1 and A2 using twitch tension assay and rat grip strength test. Toxicon 2011, 57, 93–99. [Google Scholar] [CrossRef]
- Tepp, W.H.; Lin, G.; Johnson, E.A. Purification and characterization of a novel subtype A3 botulinum neurotoxin. Appl. Environ. Microbiol. 2012, 78, 3108–3113. [Google Scholar] [CrossRef]
- Jacobson, M.J.; Lin, G.; Tepp, W.; Dupuy, J.; Stenmark, P.; Stevens, R.C.; Johnson, E.A. Purification, modeling, and analysis of botulinum neurotoxin subtype A5 (BoNT/A5) from Clostridium botulinum strain A661222. Appl. Environ. Microbiol. 2011, 77, 4217–4222. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.S.; Tepp, W.H.; Inzalaco, H.N.; Johnson, E.A.; Pellett, S. Comparative functional analysis of mice after local injection with botulinum neurotoxin A1, A2, A6, and B1 by catwalk analysis. Toxicon 2019, 167, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.W.; Henderson, T.D., 2nd. Comparison of oral toxicological properties of botulinum neurotoxin serotypes A and B. Toxicon 2011, 58, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, E.; Bonifas, U.; Klimek, J.; Trösemeier, J.H.; Krämer, B.; Kegel, B.; Behrensdorf-Nicol, H.A. In vitro potency determination of botulinum neurotoxin B based on its receptor-binding and proteolytic characteristics. Toxicol In Vitro 2016, 34, 97–104. [Google Scholar] [CrossRef]
- Pellett, S.; Tepp, W.H.; Johnson, E.A. Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations. FEBS Lett. 2019, 593, 2675–2685. [Google Scholar] [CrossRef]
- Fan, Y.; Barash, J.R.; Lou, J.; Conrad, F.; Marks, J.D.; Arnon, S.S. Immunological characterization and neutralizing ability of monoclonal antibodies directed against botulinum neurotoxin type H. J. Infect. Dis. 2016, 213, 1606–1614. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, K.; Kohda, T.; Mukamoto, M.; Takeuchi, K.; Ihara, H.; Saito, M.; Kozaki, S. Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J. Biol. Chem. 2005, 280, 35164–35171. [Google Scholar] [CrossRef] [Green Version]
- Morbiato, L.; Carli, L.; Johnson, E.A.; Montecucco, C.; Molgó, J.; Rossetto, O. Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur. J. Neurosci. 2007, 25, 2697–2704. [Google Scholar] [CrossRef]
- Nakamura, K.; Kohda, T.; Umeda, K.; Yamamoto, H.; Mukamoto, M.; Kozaki, S. Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan. Vet. Microbiol. 2010, 140, 147–154. [Google Scholar] [CrossRef]
- Eleopra, R.; Montecucco, C.; Devigili, G.; Lettieri, C.; Rinaldo, S.; Verriello, L.; Pirazzini, M.; Caccin, P.; Rossetto, O. Botulinum neurotoxin serotype D is poorly effective in humans: An in vivo electrophysiological study. Clin. Neurophysiol. 2013, 124, 999–1004. [Google Scholar] [CrossRef]
- Chatla, K.; Gaunt, P.S.; Hanson, L.; Gao, D.X.; Wills, R. Determination of the median lethal dose of botulinum serotype E in channel catfish fingerlings. J. Aquat. Anim. Health 2012, 24, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, I.; Sakaguchi, G. Oral toxicities of Clostridium botulinum type C and toxins of different molecular sizes. Infect. Immun. 1980, 28, 303–309. [Google Scholar] [PubMed]
- Pellett, S.; Tepp, W.H.; Bradshaw, M.; Kalb, S.R.; Dykes, J.K.; Lin, G.; Nawrocki, E.M.; Pier, C.L.; Barr, J.R.; Maslanka, S.E.; et al. Purification and characterization of botulinum neurotoxin FA from a genetically modified Clostridium botulinum strain. mSphere 2016, 1, e00100-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavo, G.; Malizio, C.; Trimble, W.S.; Polverino de Laureto, P.; Milan, G.; Sugiyama, H.; Johnson, E.A.; Montecucco, C. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J. Biol. Chem. 1994, 269, 20213–20216. [Google Scholar]
- Wright, P.G. The neurotoxin of clostridium botulinum and Clostridium tetani. Pharmacol. Rev. 1955, 7, 413–465. [Google Scholar]
- Patarnello, T.; Bargelloni, L.; Rossetto, O.; Schiavo, G.; Montecucco, C. Neurotransmission and secretion. Nature 1993, 364, 581–582. [Google Scholar] [CrossRef]
- Peng, L.; Adler, M.; Demogines, A.; Borrell, A.; Liu, H.; Tao, L.; Tepp, W.H.; Zhang, S.C.; Johnson, E.A.; Sawyer, S.L.; et al. Widespread sequence variations in VAMP1 across vertebrates suggest a potential selective pressure from botulinum neurotoxins. PLoS Pathog. 2014, 10, e1004177. [Google Scholar] [CrossRef] [Green Version]
- Burgen, A.S.; Dickens, F.; Zatman, L.J. The action of botulinum toxin on the neuro-muscular junction. J. Physiol. 1949, 109, 10–24. [Google Scholar] [CrossRef]
- Meyer, K.F. Botulismus. In Handbuch der Pathogenen Mikroorganismen, 3rd ed.; Kolle, W., Wassermann, A., Fischer, S., Eds.; Urban & Schwarsenberg: Berlin, Germany, 1928; Volume IV, pp. 1269–1364. [Google Scholar]
- Torgeman, A.; Schwartz, A.; Diamant, E.; Baruchi, T.; Dor, E.; Ben, D.A.; Pass, A.; Barnea, A.; Tal, A.; Rosner, A.; et al. Studying the differential efficacy of postsymptom antitoxin treatment in type A versus type B botulism using a rabbit spirometry model. Dis. Model. Mech. 2018, 11, dmm035089. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.B.; Suzuki, D. Systemic toxicity of botulinum toxin by intramuscular injection in the monkey. Mov. Disord. 1988, 3, 333–335. [Google Scholar] [CrossRef]
- Kodihalli, S.; Emanuel, A.; Takla, T.; Hua, Y.; Hobbs, C.; LeClaire, R.; O’Donnell, D.C. Therapeutic efficacy of equine botulism antitoxin in Rhesus macaques. PLoS ONE 2017, 12, e0186892. [Google Scholar] [CrossRef] [PubMed]
- Sanford, D.C.; Barnewall, R.E.; Vassar, M.L.; Niemuth, N.; Metcalfe, K.; House, R.V.; Henderson, I.; Shearer, J.D. Inhalational botulism in rhesus macaques exposed to botulinum neurotoxin complex serotypes A1 and B1. Clin. Vaccine Immunol. 2010, 17, 1293–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatla, K.; Gaunt, P.S.; Petrie-Hanson, L.; Ford, L.; Hanson, L.A. Zebrafish sensitivity to botulinum neurotoxins. Toxins 2016, 8, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeClaire, R.D.; Pitt, L.M. Agent effect levels. In Biological Weapons Defense: Infectious Disease and Counterbioterrorism; Lindler, L.E., Lebeda, F.J., Korch, G., Eds.; Humana Press: Totowa, NJ, USA, 2005; p. 54. [Google Scholar]
- Walker, A.B. The relation between “Grass Disease” of horses and botulism. Brit. 5. Exper. Path. 1929, 10, 352–360. [Google Scholar]
- Lamanna, C.; Glassman, H.N. The isolation of type B botulinum toxin. J. Bacteriol. 1947, 54, 575–584. [Google Scholar]
- Prevot, A.R.; Brygoo, E.R. New investigations on botulinism and its five toxictypes. Ann. Inst. Pasteur (Paris) 1953, 85, 544–575. [Google Scholar]
- Jeffrey, J.S.; Galey, F.D.; Meteyer, C.U.; Kinde, H.; Rezvani, M. Type C botulism in turkeys: Determination of the median toxic dose. J. Vet. Diagn. Investig. 1994, 6, 93–95. [Google Scholar] [CrossRef]
- Sobel, J.; Dill, T.; Kirkpatrick, C.L.; Riek, L.; Luedtke, P.; Damrow, T.A. Clinical recovery and circulating botulinum toxin type F in adult patient. Emerg. Infect. Dis. 2009, 15, 969–971. [Google Scholar] [CrossRef]
- Ohishi, I.; Sugii, S.; Sakaguchi, G. Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect. Immun. 1977, 16, 107–109. [Google Scholar]
- Ohishi, I. Oral toxicities of Clostridium botulinum type A and B toxins from different strains. Infect. Immun. 1984, 43, 487–490. [Google Scholar]
- Sakaguchi, G. Clostridium botulinum toxins. Pharmacol. Ther. 1982, 19, 165–194. [Google Scholar] [CrossRef]
- Dolman, C.E.; Murakami, L. Clostridium botulinum type F with recent observations on other types. J. Infect. Dis. 1961, 109, 107–128. [Google Scholar] [CrossRef]
- Ohishi, I.; Hayashi, K.; Sakaguchi, G.; Tokuchi, M. Toxicities of Clostridium botulinum type C toxins of different molecular sizes in geese. Infect. Immun. 1981, 33, 623–624. [Google Scholar]
- Lee, K.; Lam, K.H.; Kruel, A.M.; Perry, K.; Rummel, A.; Jin, R. High-resolution crystal structure of HA33 of botulinum neurotoxin type B progenitor toxin complex. Biochem. Biophys. Res. Commun. 2014, 446, 568–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Tonozuka, T.; Ito, S.; Takeda, Y.; Sato, R.; Matsuo, I.; Ito, Y.; Oguma, K.; Nishikawa, A. Molecular diversity of the two sugar-binding sites of the β-trefoil lectin HA33/C (HA1) from Clostridium botulinum type C neurotoxin. Arch. Biochem. Biophys. 2011, 512, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.W.; Onisko, B.; Johnson, E.A.; Reader, J.R.; Griffey, S.M.; Larson, A.E.; Tepp, W.H.; Stanker, L.H.; Brandon, D.L.; Carter, J.M. Effects of purification on the bioavailability of botulinum neurotoxin type A. Toxicology 2008, 249, 123–129. [Google Scholar] [CrossRef]
- Chen, F.; Kuziemko, G.M.; Amersdorfer, P.; Wong, C.; Marks, J.D.; Stevens, R.C. Antibody mapping to domains of botulinum neurotoxin serotype A in the complexed and uncomplexed forms. Infect. Immun. 1997, 65, 1626–1630. [Google Scholar] [PubMed]
- Simpson, L.L. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 167–193. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Y.; Liu, T.; Zhou, Y.; Yang, P.; Zhu, J.; Chen, L.; Yang, Q. Efficacy and safety of botulinum toxin type a in the treatment of glabellar lines: A meta-analysis of randomized, placebo-controlled, double-blind trials. Plast. Reconstr. Surg. 2015, 136, 310e–318e. [Google Scholar] [CrossRef]
- Dressler, D.; Saberi, F.A.; Kollewe, K.; Schrader, C. Safety aspects of incobotulinumtoxinA high-dose therapy. J. Neural Transm. (Vienna) 2015, 122, 327–333. [Google Scholar] [CrossRef]
- Friedemann, U.; Hollander, A. Studies on tetanal toxin. I. Qualitative differences among various toxins revealed by bioassays in different species and by different routes of injection. J. Immunol. 1943, 47, 23–28. [Google Scholar]
- King, L.E., Jr.; Fedinec, A.A. Pathogenesis of local tetanus in rats: Neural ascent of tetanus toxin. Naunyn Schmiedebergs Arch. Pharmacol. 1974, 281, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Bruschettini, A. Sulla diffusione del tetano nell’organismo. Rif. Med. 1892, 8, 256–259. [Google Scholar]
- Roux, E.; Borrel, A. Tétanos cérébral et immunité contre le tétanos. Ann. Inst. Pasteur 1898, 12, 225–239. [Google Scholar]
- Wright, P.G. Nerve trunks as pathways in infection. Proc. Roy. Soc. Med. 1953, 46, 19–30. [Google Scholar]
- Tizzoni, G.; Cattani, G. Uber das tetanusgift [On tetanus toxin]. Zentralbl. Bakt. 1890, 8, 69–73. [Google Scholar]
- Wright, E.A. The effect of the injection of tetanus toxin into the central nervous system in rabbits. J. Immunol. 1953, 71, 41–44. [Google Scholar]
- Shumacker, H.B.; Lamont, A.; Firor, W.M. The reaction of tetanus sensitive and tetanus resistant animals to the injection of tetanal toxin into the spinal cord. J. Immunol. 1939, 37, 425–433. [Google Scholar]
- Lamanna, C. Toxicity of bacterial exotoxins by the oral route. Science 1960, 131, 1100–1101. [Google Scholar] [CrossRef]
- Dawson, D.J.; Mauritzen, C.M. Studies on tetanus toxin and toxoid. I. Isolation of tetanus toxin using DEAE-cellulose. Aust. J. Biol. Sci. 1967, 20, 253–263. [Google Scholar] [CrossRef]
- Bizzini, B.; Turpin, A.; Raynaud, M. Production et purification de la toxine tetanique. Ann. Inst. Pasteur (Paris) 1969, 116, 686–712. [Google Scholar]
- Court, G.; Nguyen, C.; Tayot, J.L. Purification of tetanus toxin by affinity chomatography on porous silica beads derivatized with polysialogangliosides. In Proceedings of the Sixth International Conference on Tetanus, Fondation Marcel Merieux, Lyon, France, 3–5 December 1981; pp. 331–344. [Google Scholar]
- Grasset, E.; Zoutendyk, A. Immunological studies in reptiles and their relation to aspects of immunity in higher animals. Publ. S. Afr. Inst. Med. Res. 1931, 4, 383–480. [Google Scholar]
- Rowson, K.E. The action of tetanus toxin in frogs. J. Gen. Microbiol. 1961, 25, 315–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, J.; Mellanby, J. The effect of tetanus toxin in the goldfish. J. Physiol. 1971, 215, 727–741. [Google Scholar] [CrossRef] [Green Version]
- Band, P.A.; Blais, S.; Neubert, T.A.; Cardozo, T.J.; Ichtchenko, K. Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr. Purif. 2010, 71, 62–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirazzini, M.; Henke, T.; Rossetto, O.; Mahrhold, S.; Krez, N.; Rummel, A.; Montecucco, C.; Binz, T. Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Lett. 2013, 587, 3831–3836. [Google Scholar] [CrossRef]
- Contreras, E.; Masuyer, G.; Qureshi, N.; Chawla, S.; Dhillon, H.S.; Lee, H.L.; Chen, J.; Stenmark, P.; Gill, S.S. A neurotoxin that specifically targets Anopheles mosquitoes. Nat. Commun. 2019, 10, 2869. [Google Scholar] [CrossRef] [PubMed]
BoNT Type. | i.p. LD50 (ng/Kg) |
---|---|
A1 | (0.25–0.45) [23,24,25,26,27,28,29,30] |
A2 | (0.11–0.53) [24,26,27,31] |
A3 | 0.85 [27,32] |
A4 | (400–500) [27] |
A5 | (0.35–0.40) [27,33] |
A6 | (0.26–0.3) [30,34] |
B1 | (0.21–0.50) [28,34,35,36,37] |
B2 | 0.4 [38] |
C1 | (0.92–2.3) [39,40,41] |
C/D | (0.8–1.92) [39,41] |
D1 | (0.02–0.83) * [28,29,39,41,42] |
D/C | 0.05 [41] |
E1 | (0.65–0.84) [24,43] |
E3 | 3.05 [37]; |
F1 | (2.4–3.6) # [37,44] |
FA | (1.30–2.2) [38,45] |
G | 5.00 [46] |
BoNT Type | Source | Mouse | Rat | Guinea Pig | Rabbit | Dog | Cat | Monkey | Fowl | Pigeon | Turkey | Zebra Fish * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | [50] | 1 | 2.5 | |||||||||
[51] | 1 | 0.5 | 0.3 | 15 | ||||||||
[52] | 1 | 0.8 (i.m.) | ||||||||||
[53] | 1 | 0.78 (i.m.) | ||||||||||
[54] | 1 | 0.5 (i.v.) | ||||||||||
[55] | 1 | 11 (inh.) | ||||||||||
[56] | 1 | 100 (ic.) | ||||||||||
B | [50] | 1 | 1000 | |||||||||
[52] | 1 | 0.1 (i.m.) | ||||||||||
[55] | 1 | 432 (inh.) | ||||||||||
[57] | 1 | 150 (inh.) | ||||||||||
[58] | 1 | 0.2 | ||||||||||
[59] | 1 | 0.3 | ||||||||||
C | [60] | 1 | 6 | 1 | 0.1 | 1.000 | 800 | 0.3 | 2000 | 20 | ||
[61] | 1 | 7 (i.v.) | ||||||||||
[56] | 1 | 400 (ic.) | ||||||||||
D | [60] | 1 | 320 | 0.2 | 0.2 | 100.000 | 15.000 | 100 | 100.000 | 2000 | ||
[56] | 1 | 20 (ic.) | ||||||||||
E | [60] | 1 | 40 | 0.5 | 1 | 100 | 400 | 1 | 25 | 25 | ||
F | [62] | 1 | 0.5 (s.c.) |
BoNT Type | Molecular Form of Toxin | Oral LD50 a | Relative Oral Toxicity b |
---|---|---|---|
A | LL-PTC | 0.12 × 106 | 358 |
L-PTC | 2.2 × 106 | 19.5 | |
M-PTC | 3.6 × 106 | 11.9 | |
Holotoxin | 43 × 106 | 1 | |
B | L-PTC | 1.5 × 103 | 28,700 |
M-PTC | 1.1 × 106 | 39 | |
Holotoxin | 24 × 106 | 1.8 | |
C | L-PTC | 5.3 × 103 | 8113 |
M-PTC | 1.6 × 105 | 268 | |
D | L-PTC | 6.2 × 104 | 693 |
M-PTC | 3.7 × 105 | 116 | |
E | M-PTC | 3.7 × 105 | 116 |
F | M-PTC | 1.1 × 106 | 39 |
Way of Inoculation | Mouse | Guinea Pig | Rabbit | Cat | Dog | Goat | Sheep | Horse | Monkey | Human |
---|---|---|---|---|---|---|---|---|---|---|
intramuscular (im) | 0.15 | 0.2 | 3 | 600 | 150 | 0.24 | 0.4 | 0.2 | 0.4 | 0.2 b |
intravenous (iv) | 0.2 | 12 | 480 | 240 | 2 | |||||
intraperitoneal (ip) | 0.15 | |||||||||
subcutaneous (sc) | 0.2 | 12 | ||||||||
intraventricular | 0.2 | 12 | ||||||||
intra-sciatic nerve | 1.2 | 0.25 | ||||||||
intra-spinal cord | 0.12 | 2.0 | 0.1 | |||||||
intra-medulla | 0.012 | 0.15 | ||||||||
intra-ventriculum | 0.1–0.2 | 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossetto, O.; Montecucco, C. Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins 2019, 11, 686. https://doi.org/10.3390/toxins11120686
Rossetto O, Montecucco C. Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins. 2019; 11(12):686. https://doi.org/10.3390/toxins11120686
Chicago/Turabian StyleRossetto, Ornella, and Cesare Montecucco. 2019. "Tables of Toxicity of Botulinum and Tetanus Neurotoxins" Toxins 11, no. 12: 686. https://doi.org/10.3390/toxins11120686
APA StyleRossetto, O., & Montecucco, C. (2019). Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins, 11(12), 686. https://doi.org/10.3390/toxins11120686