Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice
Abstract
:1. Introduction
2. Results
2.1. Generation of VHHs to BoNT/A
2.2. VHH Library Construction and In Vivo Polyclonal Neutralization Verification
2.3. Selection of Individual VHH Clones and In Vivo Monoclonal Neutralization Assay
2.4. Modification of VHH Clones to Improve their Protective Activity
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Animal Housing Conditions
4.3. Antigen Preparation
4.4. Alpaca Immunization
4.5. Phage Display Library Construction
4.6. Phage Preparation and Biopanning
4.7. ELISA Screening for Specific VHHs
4.8. Protein Expression and Purification
4.9. Affinity and Binding Kinetic Measurements
4.10. Production of VHHs in Dimer Form and Fused with IgG Fc Fragments
4.11. Identification of the Toxin Polypeptide Chain that Binds Antibodies by Western Blot
4.12. Toxin Preparation for In Vivo Neutralization Assay
4.13. In Vivo Toxin Neutralization with Phages or Proteins
4.14. Blood Clearance of VHHs Modifications in Mice
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gill, D. Bacterial toxins—A table of lethal amounts. Microbiol. Rev. 1982, 46, 86–94. [Google Scholar] [PubMed]
- Goonetilleke, A.; Harris, J. Clostridial neurotoxins. J. Neurol. Neurosurg. Psychiatry 2004, 75, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.; Schechter, R.; Inglesby, T.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum toxin as a biological weapon—Medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Emmeluth, D. Botulism, 2nd ed.; Infobase Publishing: New York, NY, USA, 2010. [Google Scholar]
- Spickler, A.R. Botulism; Iowa State University: Ames, IA, USA, 2018; Available online: http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php (accessed on 19 February 2019).
- Yao, G.; Lam, K.H.; Weisemann, J.; Peng, L.; Krez, N.; Perry, K.; Shoemaker, C.B.; Dong, M.; Rummel, A.; Jin, R. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding. Sci. Rep. 2017, 7, 7438. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Botulism; World Health Organization: Geneva, Switzerland, 10 January 2018; Available online: https://www.who.int/news-room/fact-sheets/detail/botulism (accessed on 11 December 2018).
- Graham, R.; Thorp, F. The effect of formalin on botulinum toxins A, B and C. J. Immunol. 1929, 16, 391–401. [Google Scholar]
- Centers for Disease Control and Prevention, Morbidity and Mortality Weekly Report. Notice of CDC’s Discontinuation of Investigational Pentavalent (ABCDE) Botulinum Toxoid Vaccine for Workers at Risk for Occupational Exposure to Botulinum Toxins; Centers for Disease Control and Prevention: Altanta, GA, USA, 2011; Volume 60, pp. 1454–1455. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6042a3.htm (accessed on 25 January 2019).
- Nantel, A.J. Clostridium botulinum—International Programme on Chemical Safety—Bacteria; World Health Organization: Geneva, Switzerland, 1999. Available online: https://www.who.int/csr/delibepidemics/clostridiumbotulism.pdf (accessed on 8 February 2019).
- Patel, K.; Cai, S.; Singh, B. Current strategies for designing antidotes against botulinum neurotoxins. Expert Opin. Drug. Discov. 2014, 9, 319–333. [Google Scholar] [CrossRef]
- Yu, R.; Wang, S.; Yu, Y.Z.; Du, W.S.; Yang, F.; Yu, W.Y.; Sun, Z.W. Neutralizing antibodies of botulinum neurotoxin serotype A screened from a fully synthetic human antibody phage display library. J. Biomol. Screen. 2009, 14, 991–998. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Avril, A.; Miethe, S.; Mazuet, C.; Derman, Y.; Selby, K.; Thullier, P.; Pelat, T.; Urbain, R.; Fontayne, A.; et al. The European AntibotABE Framework Program and its update: Development of innovative botulinum antibodies. Toxins 2017, 9, 309. [Google Scholar] [CrossRef]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Bajyana Songa, E.; Bendahman, N.; Hammers, R. Naturally-occurring antibodies devoid of light-chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef]
- Harmsen, M.; De Haard, H. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 2007, 77, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Wesolowski, J.; Alzogaray, V.; Reyelt, J.; Unger, M.; Juarez, K.; Urrutia, M.; Cauerhff, A.; Danquah, W.; Rissiek, B.; Scheuplein, F.; et al. Single domain antibodies: Promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol. 2009, 198, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Muyldermans, S. Nanobodies: Natural single-domain antibodies. Ann. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jiang, S.; Ying, T. Single-Domain Antibodies as therapeutics against human viral diseases. Front. Immunol. 2017, 8, 1802. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Liu, J.; Hale, M.; Bernstein, R.D.; Moore, M.; Swain, M.D.; Goldman, E.R. Development of antiricin single domain antibodies toward detection and therapeutic reagents. Anal. Chem. 2008, 80, 9604–9611. [Google Scholar] [CrossRef] [PubMed]
- Burmistrova, D.; Tillib, S.; Shcheblyakov, D.; Dolzhikova, I.D.V.; Shcherbinin, D.N.; Zubkova, O.V.; Ivanova, T.I.; Tukhvatulin, A.I.; Shmarov, M.M.; Logunov, D.Y.; et al. Genetic passive immunization with adenoviral vector expressing chimeric nanobody-Fc molecules as therapy for genital infection caused by Mycoplasma hominis. PLoS ONE 2016, 11, e0150958. [Google Scholar] [CrossRef] [PubMed]
- Rossotti, M.; Gonzalez-Techera, A.; Guarnaschelli, J.; Yim, L.; Camacho, X.; Fernández, M.; Cabral, P.; Leizagoyen, C.; Chabalgoity, J.A.; González-Sapienza, G.; et al. Increasing the potency of neutralizing single-domain antibodies by functionalization with a CD11b/CD18 binding domain. MAbs 2015, 7, 820–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, M.; Eichhoff, A.; Schumacher, L.; Strysio, M.; Menzel, S.; Schwan, C.; Alzogaray, V.; Zylberman, V.; Seman, M.; Brandner, J.; et al. Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci. Rep. 2015, 5, 7850. [Google Scholar] [CrossRef] [PubMed]
- Luiz, M.; Pereira, S.; Prado, N.; Gonçalves, N.R.; Kayano, A.M.; Moreira-Dill, L.S.; Sobrinho, J.C.; Zanchi, F.B.; Fuly, A.L.; Fernandes, C.F.; et al. Camelid single-domain antibodies (VHHs) against Crotoxin: A basis for developing modular building blocks for the enhancement of treatment or diagnosis of crotalic envenoming. Toxins 2018, 10, 142. [Google Scholar] [CrossRef]
- Bernedo-Navarro, R.; Romao, E.; Yano, T.; Pinto, J.; De Greve, H.; Sterckx, Y.G.J.; Muyldermans, S. Structural basis for the specific neutralization of Stx2a with a camelid single domain antibody fragment. Toxins 2018, 10, 108. [Google Scholar] [CrossRef]
- Dong, J.; Thompson, A.A.; Fan, Y.; Lou, J.; Conrad, F.; Ho, M.; Pires-Alves, M.; Wilson, B.A.; Stevens, R.C.; Marks, J.D. A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic α-exosite binding region. J. Mol. Biol. 2010, 397, 1106–1118. [Google Scholar] [CrossRef]
- Thanongsaksrikul, J.; Chaicumpa, W. Botulinum neurotoxins and botulism: A novel therapeutic approach. Toxins 2011, 3, 469–488. [Google Scholar] [CrossRef]
- Arbabi-Ghahroudi, M. Camelid single-domain antibodies: Historical perspective and future outlook. Front. Immunol. 2017, 8, 1589. [Google Scholar] [CrossRef]
- CABLIVI; Genzyme Corporation: Cambridge, MA, USA, 2019; Available online: https://www.cablivi.com/ (accessed on 24 July 2019).
- Jank, L.; Pinto-Espinoza, C.; Duan, Y.; Koch-Nolte, F.; Magnus, T.; Rissiek, B. Current approaches and future perspectives for nanobodies in stroke diagnostic and therapy. Antibodies 2019, 8, 5. [Google Scholar] [CrossRef]
- Rotman, M.; Welling, M.M.; van den Boogaard, M.L.; Moursel, L.G.; van der Graaf, L.M.; van Buchem, M.A.; van der Maarel, S.M.; van der Weerd, L. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nucl. Med. Biol. 2015, 42, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, J.; Dmitriev, I.; Debatis, M.; Tremblay, J.M.; Beamer, G.; Kashentseva, E.A.; Curiel, D.T.; Shoemaker, C.B. Prolonged prophylactic protection from botulism with a single adenovirus treatment promoting serum expression of a VHH-based antitoxin protein. PLoS ONE 2014, 9, e106422. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.J.; Pishesha, N.; Mukherjee, J.; Zhang, S.; Deshycka, R.; Sudaryo, V.; Dong, M.; Shoemaker, C.B.; Lodish, H.F. Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat. Commun. 2017, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Suscovich, T.; Fortune, S.; Alter, G. Beyond binding: Antibody effector functions in infectious diseases. Nat. Rev. Immunol. 2018, 18, 46–61. [Google Scholar] [CrossRef]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed]
- Abdiche, Y.N.; Yeung, Y.A.; Chaparro-Riggers, J.; Barman, I.; Strop, P.; Chin, S.M.; Pham, A.; Bolton, G.; McDonough, D.; Lindquist, K.; et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs 2015, 7, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Derebe, M.G.; Nanjunda, R.K.; Gilliland, G.L.; Lacy, E.R.; Chiu, M.L. Human IgG subclass cross-species reactivity to mouse and cynomolgus monkey Fcγ receptors. Immunol. Lett. 2018, 197, 1–8. [Google Scholar] [CrossRef]
- Bell, A.; Wang, Z.J.; Arbabi-Ghahroudi, M.; Chang, T.A.; Durocher, Y.; Trojahn, U.; Baardsnes, J.; Jaramillo, M.L.; Li, S.; Baral, T.N.; et al. Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett. 2010, 289, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.C.; Yen, C.T.; Huang, Y.L.; Tarn, L.J.; Lung, C.C. Characterization of neutralizing antibodies and identification of neutralizing epitope mimics on the Clostridium botulinum neurotoxin type A. Appl. Environ. Microbiol. 2001, 67, 3201–3207. [Google Scholar] [CrossRef]
- Nowakowski, A.; Wang, C.; Powers, D.; Amersdorfer, P.; Smith, T.J.; Montgomery, V.A.; Sheridan, R.; Blake, R.; Smith, L.A.; Marks, J.D. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl. Acad. Sci. USA 2002, 99, 11346–11350. [Google Scholar] [CrossRef] [Green Version]
- Mazuet, C.; Dano, J.; Popoff, M.; Creminon, C.; Volland, H. Characterization of botulinum neurotoxin type A neutralizing monoclonal antibodies and influence of their half-lives on therapeutic activity. PLoS ONE 2010, 5, e12416. [Google Scholar] [CrossRef]
- Zhao, H.; Nakamura, K.; Kohda, T.; Mukamoto, M.; Kozaki, S. Characterization of the monoclonal antibody response to botulinum neurotoxin type A in the complexed and uncomplexed forms. Jpn. J. Infect. Dis. 2012, 65, 138–145. [Google Scholar]
- Miethe, S.; Mazuet, C.; Liu, Y.; Tierney, R.; Rasetti-Escargueil, C.; Avril, A.; Frenzel, A.; Thullier, P.; Pelat, T.; Urbain, R.; et al. Development of germline-humanized antibodies neutralizing botulinum neurotoxin A and B. PLoS ONE 2016, 11, e0161446. [Google Scholar] [CrossRef]
- Swain, M.D.; Anderson, G.P.; Zabetakis, D.; Bernstein, R.D.; Liu, J.L.; Sherwood, L.J.; Hayhurst, A.; Goldman, E.R. Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin. Anal. Bioanal. Chem. 2010, 398, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, J.M.; Kuo, C.L.; Abeijon, C.; Sepulveda, J.; Oyler, G.; Hu, X.; Jin, M.M.; Shoemaker, C.B. Camelid single domain antibodies (VHHs) as neuronal cell intrabody binding agents and inhibitors of Clostridium botulinum neurotoxin (BoNT) proteases. Toxicon 2010, 56, 990–998. [Google Scholar] [CrossRef]
- Henry, K.; MacKenzie, C. Antigen recognition by single-domain antibodies: Structural latitudes and constraints. MAbs 2018, 10, 815–826. [Google Scholar] [CrossRef]
- De Vlieger, D.; Ballegeer, M.; Rossey, I.; Schepens, B.; Saelens, X. Single-domain antibodies and their formatting to combat viral infections. Antibodies 2019, 8, 1. [Google Scholar] [CrossRef]
- Holliger, P.; Hudson, P. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 2005, 23, 1126–1136. [Google Scholar] [CrossRef]
- Raj, V.; Okba, N.; Gutierrez-Alvarez, J.; Drabek, D.; van Dieren, B.; Widagdo, W.; Lamers, M.M.; Widjaja, I.; Fernandez-Delgado, R.; Sola, I.; et al. Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. Sci. Adv. 2018, 4, eaas9667. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; He, L.; Sun, S.; Qiu, H.; Tai, W.; Chen, J.; Li, J.; Chen, Y.; Guo, Y.; Wang, Y.; et al. A novel nanobody targeting middle east respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV. J. Virol. 2018, 92, e00837-18. [Google Scholar] [CrossRef]
- Bobkov, V.; Zarca, A.; Van Hout, A.; Arimont, M.; Doijen, J.; Bialkowska, M.; Toffoli, E.; Klarenbeek, A.; van der Woning, B.; van der Vlient, H.J.; et al. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem. Pharmacol. 2018, 158, 413–424. [Google Scholar] [CrossRef]
- McEwan, W.; Tam, J.; Watkinson, R.; Bidgood, S.; Mallery, D.; James, L. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat. Immunol. 2013, 14, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Laursen, N.; Friesen, R.; Zhu, X.; Jongeneelen, M.; Blokland, S.; Vermond, J.; van Eijgen, A.; Tang, C.; van Diepen, H.; Obmolova, G.; et al. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science 2018, 362, 598–602. [Google Scholar] [CrossRef] [Green Version]
- Hussack, G.; Ryan, S.; van Faassen, H.; Rossotti, M.; MacKenzie, C.; Tanha, J. Neutralization of Clostridium difficile toxin B with VHH-Fc fusions targeting the delivery and CROPs domains. PLoS ONE 2018, 13, e0208978. [Google Scholar] [CrossRef]
- Sepulveda, J.; Mukherjee, J.; Tzipori, S.; Simpson, L.; Shoemaker, C. Efficient serum clearance of botulinum neurotoxin achieved using a pool of small antitoxin binding agents. Infect. Immun. 2010, 78, 756–763. [Google Scholar] [CrossRef]
- Miethe, S.; Rasetti-Escargueil, C.; Liu, Y.; Chahboun, S.; Pelat, T.; Avril, A.; Frenzel, A.; Schirrmann, T.; Thullier, P.; Sesardic, D.; et al. Development of neutralizing scFv-Fc against botulinum neurotoxin A light chain from a macaque immune library. MAbs 2014, 6, 446–459. [Google Scholar] [CrossRef]
- Torgeman, A.; Ozeri, E.; Ben David, A.; Diamant, E.; Rosen, O.; Schwartz, A.; Barnea, A.; Makovitzki, A.; Mimran, A.; Zichel, R. Role of homologous Fc fragment in the potency and efficacy of anti-botulinum antibody preparations. Toxins 2017, 9, 180. [Google Scholar] [CrossRef]
- Abbasova, S.A.G.; Ruddenko, N.V.; Gorokhovatskiĭ, A.I.; Kapralova, M.V.; Vinogradova, I.D.; Vertiev, I.D.V.; Nesmeianov, V.A.; Grishin, E.V. Monoclonal antibodies to type A, B, E and F botulinum neurotoxins. Bioorg. Khimiia 2011, 37, 344–351. [Google Scholar] [CrossRef]
- Arbabi-Ghahroudi, M.; Desmyter, A.; Wyns, L.; Hamers, R.; Muyldermans, S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997, 414, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Ledsgaard, L.; Kilstrup, M.; Karatt-Vellatt, A.; McCafferty, J.; Laustsen, A. Basics of antibody phage display technology. Toxins 2018, 10, 236. [Google Scholar] [CrossRef]
- Hoogenboom, H.R.; Griffiths, A.D.; Johnson, K.S.; Chiswell, D.J.; Hudson, P.; Winter, G. Multi-subunit proteins on the surface of filamentous phage: Methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991, 19, 4133–4137. [Google Scholar] [CrossRef]
Clones Binding to BoNT/A-DTT | Ka (1/Ms) | Kd (1/s) | Rmax (RU) | KA (1/M) | KD (M) | Chi2 |
---|---|---|---|---|---|---|
B11 (BoNT/A) | 8.67 × 103 | 2.3 × 10−4 | 17 | 3.37 × 107 | 2.65× 10−8 | 3.9 |
B11 (BoNT/A-DTT) | 7.06 × 103 | 4.37 × 10−4 | 23.6 | 1.62 × 107 | 6.19 × 10−8 | 1.8 |
G3 (BoNT/A) | 1.51 × 104 | 4.54 × 10−4 | 10.4 | 3.32 × 107 | 3.01 × 10−8 | 1.0 |
G3 (BoNT/A-DTT) | 1.72 × 104 | 1.84 × 10−3 | 43.1 | 9.34 × 106 | 1.07 × 10−7 | 5.7 |
Primer | Sequence |
---|---|
VH1-SfiI | CATGCCATGACTCGCGGCCCAGCCGGCCATGGCCCAGGTGCAGCTGGTGCAGTCTGG |
VH2-SfiI | CATGCCATGACTCGCGGCCCAGCCGGCCATGGCCCAGGTCACCTTGAAGGAGTCTGG |
VH3-SfiI | CATGCCATGACTCGCGGCCCAGCCGGCCATGGCCGAGGTGCAGCTGGTGGAGTCTGG |
VH4-SfiI | CATGCCATGACTCGCGGCCCAGCCGGCCATGGCCCAGGTGCAGCTGCAGGAGTCGGG |
CH2FORTA4 | CGCCATCAAGGTACCAGTTGA |
VHH-NotI | CCACGATTCTGCGGCCGCTGAGGAGACRGTGACCTGGGTCC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godakova, S.A.; Noskov, A.N.; Vinogradova, I.D.; Ugriumova, G.A.; Solovyev, A.I.; Esmagambetov, I.B.; Tukhvatulin, A.I.; Logunov, D.Y.; Naroditsky, B.S.; Shcheblyakov, D.V.; et al. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins 2019, 11, 464. https://doi.org/10.3390/toxins11080464
Godakova SA, Noskov AN, Vinogradova ID, Ugriumova GA, Solovyev AI, Esmagambetov IB, Tukhvatulin AI, Logunov DY, Naroditsky BS, Shcheblyakov DV, et al. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins. 2019; 11(8):464. https://doi.org/10.3390/toxins11080464
Chicago/Turabian StyleGodakova, Svetlana A., Anatoly N. Noskov, Irina D. Vinogradova, Galina A. Ugriumova, Andrey I. Solovyev, Ilias B. Esmagambetov, Amir I. Tukhvatulin, Denis Y. Logunov, Boris S. Naroditsky, Dmitry V. Shcheblyakov, and et al. 2019. "Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice" Toxins 11, no. 8: 464. https://doi.org/10.3390/toxins11080464
APA StyleGodakova, S. A., Noskov, A. N., Vinogradova, I. D., Ugriumova, G. A., Solovyev, A. I., Esmagambetov, I. B., Tukhvatulin, A. I., Logunov, D. Y., Naroditsky, B. S., Shcheblyakov, D. V., & Gintsburg, A. L. (2019). Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins, 11(8), 464. https://doi.org/10.3390/toxins11080464