Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia
Abstract
:1. Introduction
2. Staphylococcus aureus Pneumonia
3. Contribution of OMICs Techniques to SAP Research
3.1. Genomics
3.2. Proteomics
3.3. Metabolomics
4. Targeting Virulence Factors Associated with Biofilms
4.1. Haemolysins
4.1.1. Alpha-Toxin (Hla)
4.1.2. Beta- and Gamma-Toxin (Hlb & Hlg)
4.2. Phenol-Soluble Modulins (PSMs)
4.3. Cell Wall-Anchored Proteins
4.3.1. Fibronectin-Binding Protein A (FnBPA)
4.3.2. Staphylococcal Protein A (SpA)
4.3.3. S. aureus Surface Protein X (SasX)
4.3.4. Staphylococcal Sortases (Srt)
5. Other Explored S. aureus Pneumonia-Related Targets
5.1. Panton-Valentine Leukocidin (PVL)
5.2. S. aureus Extracellular Vesicles (SEVs)
5.3. Lipoteichoic Acid (LTA)
6. Potential Unexplored Targets in S. aureus Pneumonia
6.1. Leukocidin AB (LukAB)
6.2. Leukocidin ED (LukED)
6.3. Ferric Uptake Regulator (Fur)
7. Multicomponent Vaccines
7.1. Therapeutics Neutralizing Multiple Leukocidins
7.2. Multitarget Therapeutics Involving PSMs
8. Current Issues Hampering S. aureus Vaccine Research
9. Alternative Therapeutic Strategies
9.1. Bacteriophages
9.2. Outer Membrane Vesicles (OMVs)
10. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dadonaite, B. Pneumonia. Available online: https://ourworldindata.org/pneumonia (accessed on 3 September 2020).
- World Health Organization. Pneumonia. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 3 September 2020).
- United Nations Children’s Fund. Pneumonia. Available online: https://data.unicef.org/topic/child-health/pneumonia/ (accessed on 3 September 2020).
- MacKenzie, G. The definition and classification of pneumonia. Pneumonia 2016, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Causes of Pneumonia. Available online: https://www.cdc.gov/pneumonia/causes.html (accessed on 30 June 2020).
- Laterre, P.-F.; Garber, G.; Levy, H.; Wunderink, R.; Kinasewitz, G.T.; Sollet, J.-P.; Maki, D.G.; Bates, B.; Yan, S.C.B.; Dhainaut, J.-F. Severe community-acquired pneumonia as a cause of severe sepsis: Data from the PROWESS study. Crit. Care Med. 2005, 33, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, K.; Abele-Horn, M.; Andreas, S.; Deja, M.; Ewig, S.; Gastmeier, P.; Gatermann, S.; Gerlach, H.; Grabein, B.; Heußel, C.P.; et al. Epidemiologie, Diagnostik und Therapie erwachsener Patienten mit nosokomialer Pneumonie—Update 2017—S3 Guideline of the German Society for Anaesthesiology and Intensive Care Medicine, the German Society for Infectious Diseases, the German Society for Hygiene and Microbiology, the German Respiratory Society and the Paul-Ehrlich-Society for Chemotherapy, the German Radiological Society and the Society for Virology. Pneumologie 2018, 72, 15–63. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Uhlemann, A.-C.; Otto, M.; Lowy, F.D.; DeLeo, F.R. Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2014, 21, 563–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollef, M.H.; Micek, S.T. Staphylococcus aureus pneumonia: A “superbug” infection in community and hospital settings. Chest 2005, 128, 1093–1097. [Google Scholar] [CrossRef]
- Lanks, C.W.; Musani, A.I.; Hsia, D.W. Community-acquired Pneumonia and Hospital-acquired Pneumonia. Med. Clin. N. Am. 2019, 103, 487–501. [Google Scholar] [CrossRef]
- Micek, S.T.; Kollef, K.E.; Reichley, R.M.; Roubinian, N.; Kollef, M.H. Health Care-Associated Pneumonia and Community-Acquired Pneumonia: A Single-Center Experience. Antimicrob. Agents Chemother. 2007, 51, 3568–3573. [Google Scholar] [CrossRef] [Green Version]
- Ewig, S.; Höffken, G.; Kern, W.V.; Rohde, G.; Flick, H.; Krause, R.; Ott, S.R.; Bauer, T.; Dalhoff, K.; Gatermann, S.; et al. Behandlung von erwachsenen Patienten mit ambulant erworbener Pneumonie und Prävention—Update 2016. Pneumologie 2016, 70, 151–200. [Google Scholar] [CrossRef]
- Rotstein, C.; Evans, G.; Born, A.; Grossman, R.; Light, R.B.; Magder, S.; McTaggart, B.; Weiss, K.; Zhanel, G.G. Clinical Practice Guidelines for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia in Adults. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 19–53. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, G.-X.; She, D.-Y.; Liang, Z.-X.; Wang, R.-T.; Yang, Z.; Chen, L.-A.; Cui, J.-C. Healthcare-associated Pneumonia. Chin. Med. J. 2015, 128, 2707–2713. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Lee, N.; Cilloniz, C.; Vila, J.; Van Der Eerden, M. Laboratory diagnosis of pneumonia in the molecular age. Eur. Respir. J. 2016, 48, 1764–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, D.M.; Shaver, A. Prevalence of and outcomes from Staphylococcus aureus pneumonia among hospitalized patients in the United States, 2009–2012. Am. J. Infect. Control. 2017, 45, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Paling, F.P.; Hazard, D.; Bonten, M.J.M.; Goossens, H.; Jafri, H.S.; Malhotra-Kumar, S.; Sifakis, F.; Weber, S.; Kluytmans, J.A.J.W.; for the ASPIRE-ICU Study Team. Association of Staphylococcus aureus Colonization and Pneumonia in the Intensive Care Unit. JAMA Netw. Open 2020, 3, e2012741. [Google Scholar] [CrossRef]
- Watanakunakorn, C. Bacteremic Staphylococcus aureus Pneumonia. Scand. J. Infect. Dis. 1987, 19, 623–627. [Google Scholar] [CrossRef]
- DeRyke, C.A.; Lodise, T.P.; Rybak, M.J.; McKinnon, P.S. Epidemiology, Treatment, and Outcomes of Nosocomial Bacteremic Staphylococcus aureus Pneumonia. Chest 2005, 128, 1414–1422. [Google Scholar] [CrossRef]
- González, C.; Rubio, M.; Romero-Vivas, J.; González, M.; Picazo, J.J. Staphylococcus aureus bacteremic pneumonia: Differences between community and nosocomial acquisition. Int. J. Infect. Dis. IJID 2003, 7, 102–108. [Google Scholar] [CrossRef] [Green Version]
- De La Calle, C.; Morata, L.; Cobos-Trigueros, N.; Martinez, J.A.; Cardozo, C.; Mensa, J.; Soriano, A. Staphylococcus aureus bacteremic pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 497–502. [Google Scholar] [CrossRef]
- Sharov, K.S. SARS-CoV-2-related pneumonia cases in pneumonia picture in Russia in March-May 2020: Secondary bacterial pneumonia and viral co-infections. J. Glob. Health 2020, 10. [Google Scholar] [CrossRef]
- Peacock, S.J.; Paterson, G.K. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577–601. [Google Scholar] [CrossRef]
- Chambers, H.F.; DeLeo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Genet. 2009, 7, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.R. Livestock-associated Staphylococcus aureus: Origin, evolution and public health threat. Trends Microbiol. 2012, 20, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, G. USA300 abroad: Global spread of a virulent strain of community-associated methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2012, 18, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Liu, D.; Ma, Y.; Gao, W. Comparison of community- and healthcare-associated methicillin-resistant Staphylococcus aureus isolates at a Chinese tertiary hospital, 2012–2017. Sci. Rep. 2018, 8, 17916. [Google Scholar] [CrossRef] [PubMed]
- Drougka, E.; Foka, A.; Liakopoulos, A.; Doudoulakakis, A.; Jelastopulu, E.; Chini, V.; Spiliopoulou, A.; Levidiotou, S.; Panagea, T.; Vogiatzi, A.; et al. A 12-year survey of methicillin-resistant Staphylococcus aureus infections in Greece: ST80-IV epidemic? Clin. Microbiol. Infect. 2014, 20, O796–O803. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018, 4, 18033. [Google Scholar] [CrossRef]
- International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Classification of Staphylococcal Cassette Chromosome mec (SCCmec): Guidelines for Reporting Novel SCCmec Elements. Antimicrob. Agents Chemother. 2009, 53, 4961–4967. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017, 41, 430–449. [Google Scholar] [CrossRef]
- Jensen, S.O.; Lyon, B.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Futur. Microbiol. 2009, 4, 565–582. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Liu, W.; Huang, W.; Fu, Q.; Li, M. Molecular Characteristic and Virulence Gene Profiles of Community-Associated Methicillin-Resistant Staphylococcus aureus Isolates from Pediatric Patients in Shanghai, China. Front. Microbiol. 2016, 7, 1818. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Community-associated MRSA: What makes them special? Int. J. Med. Microbiol. 2013, 303, 324–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.Y. Molecular Pathogenesis of Staphylococcus aureus Infection. Pediatr. Res. 2009, 65, 71R–77R. [Google Scholar] [CrossRef]
- Médecins Sans Frontières. Staphylococcal Pneumonia. In Clinical Guidelines—Diagnosis and Treatment Manual; Medecins Sans Frontieres: Geneva, Switzerland, 2020. [Google Scholar]
- Fournier, B.; Philpott, D.J. Recognition of Staphylococcus aureus by the Innate Immune System. Clin. Microbiol. Rev. 2005, 18, 521–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, D.; Ryan, C.L.; Alonzo, F.; Torres, V.J.; Planet, P.J.; Prince, A.S. CD4+ T cells promote the pathogenesis of Staphylococcus aureus pneumonia. J. Infect. Dis. 2014, 211, 835–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaan, A.N.; Surewaard, B.G.; Nijland, R.; Van Strijp, J.A.G. Neutrophils Versus Staphylococcus aureus: A Biological Tug of War. Annu. Rev. Microbiol. 2013, 67, 629–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shambat, S.M.; Chen, P.; Hoang, A.T.N.; Bergsten, H.; Vandenesch, F.; Siemens, N.; Lina, G.; Monk, I.R.; Foster, T.J.; Arakere, G.; et al. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. Dis. Model. Mech. 2015, 8, 1413–1425. [Google Scholar] [CrossRef] [Green Version]
- Karauzum, H.; Datta, S.K. Adaptive Immunity against Staphylococcus aureus. Curr. Top. Microbiol. Immunol. 2016, 409, 419–439. [Google Scholar] [CrossRef]
- Parker, D.; Prince, A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin. Immunopathol. 2012, 34, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Novick, R.P. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 2003, 48, 1429–1449. [Google Scholar] [CrossRef]
- Vanhommerig, E.; Moons, P.; Pirici, D.; Lammens, C.; Hernalsteens, J.-P.; De Greve, H.; Kumar-Singh, S.; Goossens, H.; Malhotra-Kumar, S. Comparison of Biofilm Formation between Major Clonal Lineages of Methicillin Resistant Staphylococcus aureus. PLoS ONE 2014, 9, e104561. [Google Scholar] [CrossRef]
- Kong, C.; Neoh, H.-M.; Nathan, S. Targeting Staphylococcus Aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins 2016, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, K.; Torres, V.J. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef]
- Kuroda, M.; Ohta, T.; Uchiyama, I.; Baba, T.; Yuzawa, H.; Kobayashi, I.; Cui, L.; Oguchi, A.; Aoki, K.-I.; Nagai, Y.; et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 2001, 357, 1225–1240. [Google Scholar] [CrossRef]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.-I.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef]
- Lindsay, J.A. Hospital-associated MRSA and antibiotic resistance—What have we learned from genomics? Int. J. Med. Microbiol. 2013, 303, 318–323. [Google Scholar] [CrossRef]
- Lindsay, J.A. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int. J. Med. Microbiol. 2014, 304, 103–109. [Google Scholar] [CrossRef]
- Lindsay, J.A. Staphylococci: Evolving Genomes. Microbiol. Spectr. 2019, 7, 485–498. [Google Scholar] [CrossRef]
- Fitzgerald, J.R.; Holden, M.T.G. Genomics of Natural Populations of Staphylococcus aureus. Annu. Rev. Microbiol. 2016, 70, 459–478. [Google Scholar] [CrossRef]
- Surmann, K.; Simon, M.; Hildebrandt, P.; Pförtner, H.; Michalik, S.; Stentzel, S.; Steil, L.; Dhople, V.M.; Bernhardt, J.; Schlüter, R.; et al. A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection. J. Proteom. 2015, 128, 203–217. [Google Scholar] [CrossRef]
- Richter, E.; Harms, M.; Ventz, K.; Nölker, R.; Fraunholz, M.J.; Mostertz, J.; Hochgräfe, F. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus. J. Proteome Res. 2016, 15, 4369–4386. [Google Scholar] [CrossRef]
- Michalik, S.; Depke, M.; Murr, A.; Salazar, M.G.; Kusebauch, U.; Sun, Z.; Meyer, T.C.; Surmann, K.; Pförtner, H.; Hildebrandt, P.; et al. A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Sci. Rep. 2017, 7, 9718. [Google Scholar] [CrossRef] [PubMed]
- Ventura, C.L.; Higdon, R.; Kolker, E.; Skerrett, S.J.; Rubens, C.E. Host Airway Proteins Interact with Staphylococcus aureus during Early Pneumonia. Infect. Immun. 2008, 76, 888–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescott, M.A.; Pastey, M.K. Identification of Unique Blood and Urine Biomarkers in Influenza Virus and Staphylococcus aureus Co-infection: A Preliminary Study. Biomark. Insights 2010, 5, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Arshad, H.; Alfonso, J.C.L.; Franke, R.; Michaelis, K.; Araujo, L.; Habib, A.; Zboromyrska, Y.; Lücke, E.; Strungaru, E.; Akmatov, M.K.; et al. Decreased plasma phospholipid concentrations and increased acid sphingomyelinase activity are accurate biomarkers for community-acquired pneumonia. J. Transl. Med. 2019, 17, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Slupsky, C.M.; Cheypesh, A.; Chao, D.V.; Fu, H.; Rankin, K.N.; Marrie, T.J.; Lacy, P. Streptococcus pneumoniae and Staphylococcus aureus Pneumonia Induce Distinct Metabolic Responses. J. Proteome Res. 2009, 8, 3029–3036. [Google Scholar] [CrossRef] [PubMed]
- Ambroggio, L.; Florin, T.A.; Shah, S.S.; Ruddy, R.; Yeomans, L.; Trexel, J.; Stringer, K.A. Emerging Biomarkers of Illness Severity: Urinary Metabolites Associated with Sepsis and Necrotizing Methicillin-Resistant Staphylococcus aureus Pneumonia. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 1033–1042. [Google Scholar] [CrossRef]
- Archer, N.K.; Mazaitis, M.J.; Costerton, J.W.; Leid, J.G.; Powers, M.E.; Shirtliff, M.E. Staphylococcus aureus biofilms. Virulence 2011, 2, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Staphylococcal Biofilms. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal Biofilms. Curr. Top. Microbiol. Immunol. 2008, 322, 207–228. [Google Scholar]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [Green Version]
- Parsek, M.R.; Singh, P.K. Bacterial Biofilms: An Emerging Link to Disease Pathogenesis. Annu. Rev. Microbiol. 2003, 57, 677–701. [Google Scholar] [CrossRef]
- Wang, B.; Muir, T.W. Regulation of Virulence in Staphylococcus Aureus: Molecular Mechanisms and Remaining Puzzles. Cell Chem. Biol. 2016, 23, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Scherr, T.D.; Hanke, M.L.; Huang, O.; James, D.B.A.; Horswill, A.R.; Bayles, K.W.; Fey, P.D.; Torres, V.J.; Kielian, T. Staphylococcus aureus Biofilms Induce Macrophage Dysfunction Through Leukocidin AB and Alpha-Toxin. mBio 2015, 6, e01021-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Reijer, P.M.; Haisma, E.M.; Lemmens-den Toom, N.A.; Willemse, J.; Koning, R.A.; Demmers, J.A.; Dekkers, D.H.; Rijkers, E.; El Ghalbzouri, A.; Nibbering, P.H.; et al. Detection of Alpha-Toxin and Other Virulence Factors in Biofilms of Staphylococcus aureus on Polystyrene and a Human Epidermal Model. PLoS ONE 2016, 11, e0145722. [Google Scholar] [CrossRef]
- Lei, M.G.; Gupta, R.K.; Lee, C.Y. Proteomics of Staphylococcus aureus biofilm matrix in a rat model of orthopedic implant-associated infection. PLoS ONE 2017, 12, e0187981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, A.C.; Leonard, A.; Schäuble, M.; Rieckmann, L.M.; Hoyer, J.; Maass, S.; Lalk, M.; Becher, D.; Pané-Farré, J.; Riedel, K. Virulence Factors Produced by Staphylococcus aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Mol. Cell. Proteom. 2019, 18, 1036–1053. [Google Scholar] [CrossRef] [PubMed]
- Diep, B.A.; Hilliard, J.J.; Le, V.T.M.; Tkaczyk, C.; Le, H.N.; Tran, V.G.; Rao, R.L.; Dip, E.C.; Pereira-Franchi, E.P.; Cha, P.; et al. Targeting Alpha Toxin to Mitigate Its Lethal Toxicity in Ferret and Rabbit Models of Staphylococcus aureus Necrotizing Pneumonia. Antimicrob. Agents Chemother. 2017, 61, e02456-16. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J.; Lin, Y.-C.; Gillman, A.N.; Parks, P.J.; Schlievert, P.M.; Peterson, M.L. Alpha-Toxin Promotes Staphylococcus Aureus Mucosal Biofilm Formation. Front. Cell. Infect. Microbiol. 2012, 2, 64. [Google Scholar] [CrossRef] [Green Version]
- Stulik, L.; Rouha, H.; Labrousse, D.; Visram, Z.C.; Badarau, A.; Maierhofer, B.; Groß, K.; Weber, S.; Kramarić, M.D.; Glojnarić, I.; et al. Preventing lung pathology and mortality in rabbit Staphylococcus aureus pneumonia models with cytotoxin-neutralizing monoclonal IgGs penetrating the epithelial lining fluid. Sci. Rep. 2019, 9, 5339. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Hilliard, J.J.; Shi, Y.; Tkaczyk, C.; Cheng, L.I.; Yu, X.; Datta, V.; Ren, S.; Feng, H.; Zinsou, R.; et al. Assessment of an Anti-Alpha-Toxin Monoclonal Antibody for Prevention and Treatment of Staphylococcus Aureus-Induced Pneumonia. Antimicrob. Agents Chemother. 2013, 58, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Wardenburg, J.B.; Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 2008, 205, 287–294. [Google Scholar] [CrossRef]
- Ragle, B.E.; Wardenburg, J.B. Anti-Alpha-Hemolysin Monoclonal Antibodies Mediate Protection against Staphylococcus aureus Pneumonia. Infect. Immun. 2009, 77, 2712–2718. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Cohen, T.S.; Shi, Y.; Datta, V.; Hilliard, J.J.; Tkaczyk, C.; Suzich, J.; Stover, C.K.; Sellman, B.R. MEDI4893* Promotes Survival and Extends the Antibiotic Treatment Window in a Staphylococcus aureus Immunocompromised Pneumonia Model. Antimicrob. Agents Chemother. 2015, 59, 4526–4532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzin, A.; Yu, L.; Barraud, O.; François, B.; Garcia, M.S.; Eggimann, P.; Dequin, P.-F.; Laterre, P.-F.; Huberlant, V.; Viña, L.; et al. 2160. Performance of the Cepheid Rapid PCR Test for Patient Screening and Association with Efficacy of Suvratoxumab, A Novel Anti-Staphylococcus Aureus Monoclonal Antibody, During the Phase 2 SAATELLITE study. Open Forum Infect. Dis. 2019, 6, S733. [Google Scholar] [CrossRef]
- François, B.; for the MASTER 1 Study Group; Mercier, E.; Gonzalez, C.; Asehnoune, K.; Nseir, S.; Fiancette, M.; Desachy, A.; Plantefève, G.; Meziani, F.; et al. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: First-in-human trial. Intensiv. Care Med. 2018, 44, 1787–1796. [Google Scholar] [CrossRef]
- Magyarics, Z.; Provost, K.; Adi, N.; Czarnik, T.; Japaridze, K.; Kartsivadze, N.; Kirov, M.; Campanaro, E.; Muir, L.; Kollef, M.H.; et al. Results of a Phase 2, Randomized, Double-Blind, Placebo-Controlled Study to Determine the Safety and Efficacy of a Single Dose of the Monoclonal Antibody Combination ASN100 for the Prevention of Staphylococcus aureus Pneumonia in Endotracheal Heavily Colonized, Mechanically Ventilated Subjects. In Proceedings of the 29th Meeting of the European Society of Microbiology and Infectious Diseases (ECCMID), Amsterdam, The Netherlands, 13–16 April 2019. [Google Scholar]
- Hayashida, A.; Bartlett, A.H.; Foster, T.J.; Park, P.W. Staphylococcus aureus Beta-Toxin Induces Lung Injury through Syndecan-1. Am. J. Pathol. 2009, 174, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Niu, C.; Ma, B.; Xue, X.; Li, Z.; Chen, Z.; Li, F.; Zhou, S.; Luo, X.; Hou, Z. Inhibiting PSMα-induced neutrophil necroptosis protects mice with MRSA pneumonia by blocking the agr system. Cell Death Dis. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Du, X.; Hong, X.; Li, T.; Zheng, B.; He, L.; Wang, Y.; Otto, M.; Li, M. Targeting Surface Protein SasX by Active and Passive Vaccination to Reduce Staphylococcus aureus Colonization and Infection. Infect. Immun. 2015, 83, 2168–2174. [Google Scholar] [CrossRef] [Green Version]
- Wardenburg, J.B.; Bae, T.; Otto, M.; DeLeo, F.R.; Schneewind, O. Poring over pores: α-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat. Med. 2007, 13, 1405–1406. [Google Scholar] [CrossRef]
- Tran, V.G.; Venkatasubramaniam, A.; Adhikari, R.P.; Krishnan, S.; Wang, X.; Le, V.T.M.; Le, H.N.; Vu, T.T.T.; Schneider-Smith, E.; Aman, M.J.; et al. Efficacy of Active Immunization with Attenuated α-Hemolysin and Panton-Valentine Leukocidin in a Rabbit Model of Staphylococcus aureus Necrotizing Pneumonia. J. Infect. Dis. 2019, 221, 267–275. [Google Scholar] [CrossRef]
- Diep, B.A.; Le, V.T.M.; Badiou, C.; Le, H.N.; Pinheiro, M.G.; Duong, A.H.; Wang, X.; Dip, E.C.; Aguiar-Alves, F.; Basuino, L.; et al. IVIG-mediated protection against necrotizing pneumonia caused by MRSA. Sci. Transl. Med. 2016, 8, 357ra124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karauzum, H.; Adhikari, R.P.; Sarwar, J.; Devi, V.S.; Abaandou, L.; Haudenschild, C.; Mahmoudieh, M.; Boroun, A.R.; Vu, H.; Nguyen, T.; et al. Structurally Designed Attenuated Subunit Vaccines for S. aureus LukS-PV and LukF-PV Confer Protection in a Mouse Bacteremia Model. PLoS ONE 2013, 8, e65384. [Google Scholar] [CrossRef] [PubMed]
- Poojary, N.S.; Ramlal, S.; Urs, R.M.; Murali, H.S.; Batra, H.V. Application of monoclonal antibodies generated against Panton-Valentine Leukocidin (PVL-S) toxin for specific identification of community acquired methicillin resistance Staphylococcus aureus. Microbiol. Res. 2014, 169, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Askarian, F.; Lapek, J.D.J.; Dongre, M.; Tsai, C.-M.; Kumaraswamy, M.; Kousha, A.; Valderrama, J.A.; Ludviksen, J.A.; Cavanagh, J.P.; Uchiyama, S.; et al. Staphylococcus aureus Membrane-Derived Vesicles Promote Bacterial Virulence and Confer Protective Immunity in Murine Infection Models. Front. Microbiol. 2018, 9, 262. [Google Scholar] [CrossRef]
- Wang, X.; Thompson, C.D.; Weidenmaier, C.; Lee, J.C. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.J.; Kim, M.-H.; Jeon, J.; Kim, O.Y.; Choi, Y.; Seo, J.; Hong, S.-W.; Lee, W.-H.; Jeon, S.G.; Gho, Y.S.; et al. Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity. PLoS ONE 2015, 10, e0136021. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.; Wolf, J.M.; Prados-Rosales, R.; Casadevall, A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Genet. 2015, 13, 620–630. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Luo, J.-M.; Wang, Y.-H.; Shi, Y.-F.; Liu, H.; Ba, J.-H.; Zhang, T.-T. Inhibitory effects of simvastatin on staphylococcus aureus lipoteichoic acid-induced inflammation in human alveolar macrophages. Clin. Exp. Med. 2013, 14, 151–160. [Google Scholar] [CrossRef]
- Hoogerwerf, J.J.; De Vos, A.F.; Bresser, P.; Van Der Zee, J.S.; Pater, J.M.; De Boer, A.; Tanck, M.; Lundell, D.L.; Her-Jenh, C.; Draing, C.; et al. Lung Inflammation Induced by Lipoteichoic Acid or Lipopolysaccharide in Humans. Am. J. Respir. Crit. Care Med. 2008, 178, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Leemans, J.C.; Heikens, M.; Van Kessel, K.P.M.; Florquin, S.; Van Der Poll, T. Lipoteichoic Acid and Peptidoglycan from Staphylococcus aureus Synergistically Induce Neutrophil Influx into the Lungs of Mice. Clin. Diagn. Lab. Immunol. 2003, 10, 950–953. [Google Scholar] [CrossRef] [Green Version]
- Hoogerwerf, J.J.; De Vos, A.F.; Levi, M.; Bresser, P.; Van Der Zee, J.S.; Draing, C.; Von Aulock, S.; Van Der Poll, T. Activation of coagulation and inhibition of fibrinolysis in the human lung on bronchial instillation of lipoteichoic acid and lipopolysaccharide. Crit. Care Med. 2009, 37, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhou, H.; Cheng, P.; Yang, Y.; Tong, Y.; Zuo, Q.; Feng, Q.; Zou, Q.-M.; Zeng, H. A novel bivalent fusion vaccine induces broad immunoprotection against Staphylococcus aureus infection in different murine models. Clin. Immunol. 2018, 188, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Thammavongsa, V.; Rauch, S.; Kim, H.K.; Missiakas, D.M.; Schneewind, O. Protein A-neutralizing monoclonal antibody protects neonatal mice against Staphylococcus aureus. Vaccine 2015, 33, 523–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Emolo, C.; Holtfreter, S.; Wiles, S.; Kreiswirth, B.; Missiakas, D.; Schneewind, O. Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. J. Bacteriol. 2018, 200. [Google Scholar] [CrossRef] [Green Version]
- Varshney, A.K.; Kuzmicheva, G.A.; Lin, J.; Bowling, R.A., Jr.; Sunley, K.M.; Kwan, T.-Y.; Mays, H.R.; Rambhadran, A.; Zhang, Y.; Martin, R.L.; et al. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS ONE 2018, 13, e0190537. [Google Scholar] [CrossRef] [Green Version]
- Huynh, T.; Stecher, M.; McKinnon, J.; Jung, N.; Rupp, M.E. Safety and Tolerability of 514G3, a True Human Anti-Protein A Monoclonal Antibody for the Treatment of S. aureus Bacteremia. Open Forum Infect. Dis. 2016, 3. [Google Scholar] [CrossRef]
- Sharma-Kuinkel, B.K.; Tkaczyk, C.; Bonnell, J.; Yu, L.; Tovchigrechko, A.; Tabor, D.E.; Park, L.P.; Ruffin, F.; Esser, M.T.; Sellman, B.R.; et al. Associations of pathogen-specific and host-specific characteristics with disease outcome in patients with Staphylococcus aureus bacteremic pneumonia. Clin. Transl. Immunol. 2019, 8, e01070. [Google Scholar] [CrossRef] [Green Version]
- Torres, V.J.; Attia, A.S.; Mason, W.J.; Hood, M.I.; Corbin, B.D.; Beasley, F.C.; Anderson, K.L.; Stauff, D.L.; McDonald, W.H.; Zimmerman, L.J.; et al. Staphylococcus aureus Fur Regulates the Expression of Virulence Factors That Contribute to the Pathogenesis of Pneumonia. Infect. Immun. 2010, 78, 1618–1628. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, I.P.; Sapparapu, G.; James, D.B.A.; Cassat, J.E.; Nagarsheth, M.; Kose, N.; Putnam, N.; Boguslawski, K.M.; Jones, L.S.; Wood, J.B.; et al. Monoclonal Antibodies Against the Staphylococcus aureus Bicomponent Leukotoxin AB Isolated Following Invasive Human Infection Reveal Diverse Binding and Modes of Action. J. Infect. Dis. 2017, 215, 1124–1131. [Google Scholar] [CrossRef]
- Kailasan, S.; Kort, T.; Mukherjee, I.; Liao, G.C.; Kanipakala, T.; Williston, N.; Ganjbaksh, N.; Venkatasubramaniam, A.; Holtsberg, F.W.; Karauzum, H.; et al. Rational Design of Toxoid Vaccine Candidates for Staphylococcus aureus Leukocidin AB (LukAB). Toxins 2019, 11, 339. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.B.; Jones, L.S.; Soper, N.R.; Nagarsheth, M.; Creech, C.B.; Thomsen, I.P. Commercial Intravenous Immunoglobulin Preparations Contain Functional Neutralizing Antibodies against the Staphylococcus aureus Leukocidin LukAB (LukGH). Antimicrob. Agents Chemother. 2017, 61, 00968-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iii, F.A.; Kozhaya, L.; Rawlings, S.A.; Reyes-Robles, T.; Dumont, A.L.; Myszka, D.G.; Landau, N.R.; Unutmaz, D.; Torres, V.J. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nat. Cell Biol. 2013, 493, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 2014, 17, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berube, B.J.; Wardenburg, J.B. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue. Toxins 2013, 5, 1140–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouaux, E. α-Hemolysin from Staphylococcus aureus: An Archetype of β-Barrel, Channel-Forming Toxins. J. Struct. Biol. 1998, 121, 110–122. [Google Scholar] [CrossRef]
- Tavares, A.; Nielsen, J.B.; Boye, K.; Rohde, S.; Paulo, A.C.; Westh, H.; Schønning, K.; De Lencastre, H.; Miragaia, M. Insights into Alpha-Hemolysin (Hla) Evolution and Expression among Staphylococcus aureus Clones with Hospital and Community Origin. PLoS ONE 2014, 9, e98634. [Google Scholar] [CrossRef] [Green Version]
- Tabor, D.E.; Yu, L.; Mok, H.; Tkaczyk, C.; Sellman, B.R.; Wu, Y.; Oganesyan, V.; Slidel, T.; Jafri, H.S.; McCarthy, M.; et al. Staphylococcus aureus Alpha-Toxin Is Conserved among Diverse Hospital Respiratory Isolates Collected from a Global Surveillance Study and Is Neutralized by Monoclonal Antibody MEDI4893. Antimicrob. Agents Chemother. 2016, 60, 5312–5321. [Google Scholar] [CrossRef] [Green Version]
- Powers, M.E.; Kim, H.K.; Wang, Y.; Wardenburg, J.B. ADAM10 Mediates Vascular Injury Induced by Staphylococcus aureus α-Hemolysin. J. Infect. Dis. 2012, 206, 352–356. [Google Scholar] [CrossRef]
- Ragle, B.E.; Karginov, V.A.; Wardenburg, J.B. Prevention and Treatment of Staphylococcus aureus Pneumonia with a β-Cyclodextrin Derivative. Antimicrob. Agents Chemother. 2009, 54, 298–304. [Google Scholar] [CrossRef] [Green Version]
- McElroy, M.C.; Harty, H.R.; Hosford, G.E.; Boylan, G.M.; Pittet, J.-F.; Foster, T.J. Alpha-Toxin Damages the Air-Blood Barrier of the Lung in a Rat Model of Staphylococcus Aureus-Induced Pneumonia. Infect. Immun. 1999, 67, 5541–5544. [Google Scholar] [CrossRef] [Green Version]
- Wardenburg, J.B.; Patel, R.J.; Schneewind, O. Surface Proteins and Exotoxins Are Required for the Pathogenesis of Staphylococcus aureus Pneumonia. Infect. Immun. 2006, 75, 1040–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caiazza, N.C.; O’Toole, G.A. Alpha-Toxin Is Required for Biofilm Formation by Staphylococcus aureus. J. Bacteriol. 2003, 185, 3214–3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Cheng, L.I.; Helfer, D.R.; Ashbaugh, A.G.; Miller, R.J.; Tzomides, A.J.; Thompson, J.M.; Ortines, R.V.; Tsai, A.S.; Liu, H.; et al. Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets. Proc. Natl. Acad. Sci. USA 2017, 114, E5094–E5102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Reijer, P.M.; Sandker, M.J.; Snijders, S.V.; Tavakol, M.; Hendrickx, A.P.; Van Wamel, W.J.B. Combining in vitro protein detection and in vivo antibody detection identifies potential vaccine targets against Staphylococcus aureus during osteomyelitis. Med. Microbiol. Immunol. 2016, 206, 11–22. [Google Scholar] [CrossRef]
- Holtfreter, S.; Kolata, J.; Bröker, B.M. Towards the immune proteome of Staphylococcus aureus—The anti-S. aureus antibody response. Int. J. Med. Microbiol. 2010, 300, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.O.A.; Randolph, A.G.; Agan, A.A.; Yip, W.-K.; Truemper, E.J.; Weiss, S.L.; Ackerman, K.G.; Schwarz, A.J.; Giuliano, J.S.; Hall, M.W.; et al. Staphylococcus aureus α-Toxin Response Distinguishes Respiratory Virus–Methicillin-Resistant S. aureus Coinfection in Children. J. Infect. Dis. 2016, 214, 1638–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karginov, V.A.; Nestorovich, E.M.; Schmidtmann, F.; Robinson, T.M.; Yohannes, A.; Fahmi, N.-E.; Bezrukov, S.M.; Hecht, S.M. Inhibition of S. aureus α-hemolysin and B. anthracis lethal toxin by β-cyclodextrin derivatives. Bioorg. Med. Chem. 2007, 15, 5424–5431. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, X.; Liu, S.; Li, G.; Shi, L.; Dong, J.; Li, W.; Deng, X.; Niu, X. Morin hydrate attenuates Staphylococcus aureus virulence by inhibiting the self-assembly of α-hemolysin. J. Appl. Microbiol. 2015, 118, 753–763. [Google Scholar] [CrossRef]
- Jiang, L.; Yi, T.; Shen, Z.; Teng, Z.; Wang, J. Aloe-emodin Attenuates Staphylococcus aureus Pathogenicity by Interfering with the Oligomerization of α-Toxin. Front. Cell. Infect. Microbiol. 2019, 9, 157. [Google Scholar] [CrossRef]
- Dong, J.; Qiu, J.; Wang, J.; Li, H.; Dai, X.; Zhang, Y.; Wang, X.; Tan, W.; Niu, X.; Deng, X.; et al. Apigenin alleviates the symptoms of Staphylococcus aureus pneumonia by inhibiting the production of alpha-hemolysin. FEMS Microbiol. Lett. 2013, 338, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Lubkin, A.; Lee, W.L.; Alonzo, F.; Wang, C.; Aligo, J.; Keller, M.; Girgis, N.M.; Reyes-Robles, T.; Chan, R.; O’Malley, A.; et al. Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice. Cell Host Microbe 2019, 25, 463–470.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huseby, M.J.; Kruse, A.C.; Digre, J.; Kohler, P.L.; Vocke, J.A.; Mann, E.E.; Bayles, K.W.; Bohach, G.A.; Schlievert, P.M.; Ohlendorf, D.H.; et al. Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc. Natl. Acad. Sci. USA 2010, 107, 14407–14412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, A.; Vu, B.G.; Stach, C.S.; Merriman, J.A.; Horswill, A.R.; Salgado-Paboón, W.; Schlievert, P.M. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis. Biochemistry 2016, 55, 2510–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatasubramaniam, A.; Kanipakala, T.; Ganjbaksh, N.; Mehr, R.; Mukherjee, I.; Krishnan, S.; Bae, T.; Aman, M.J.; Adhikari, R. A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System. Toxins 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.; Borges, A.; Simões, M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins 2018, 10, 252. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.S.; Joo, H.-S.; Duong, A.C.; Dieringer, T.D.; Tan, V.Y.; Song, Y.; Fischer, E.R.; Cheung, G.Y.C.; Li, M.; Otto, M. Essential Staphylococcus aureus toxin export system. Nat. Med. 2013, 19, 364–367. [Google Scholar] [CrossRef]
- Otto, M. Phenol-soluble modulins. Int. J. Med. Microbiol. 2014, 304, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Braughton, K.R.; Kretschmer, D.; Bach, T.-H.L.; Queck, S.Y.; Li, M.; Kennedy, A.D.; Dorward, D.W.; Klebanoff, S.J.; Peschel, A.; et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 2007, 13, 1510–1514. [Google Scholar] [CrossRef]
- Grosz, M.; Kolter, J.; Paprotka, K.; Winkler, A.-C.; Schäfer, D.; Chatterjee, S.S.; Geiger, T.; Wolz, C.; Ohlsen, K.; Otto, M.; et al. Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin α. Cell. Microbiol. 2014, 16, 451–465. [Google Scholar] [CrossRef] [Green Version]
- Bloes, D.A.; Haasbach, E.; Hartmayer, C.; Hertlein, T.; Klingel, K.; Kretschmer, D.; Planz, O.; Peschel, A. Phenol-Soluble Modulin Peptides Contribute to Influenza A Virus-Associated Staphylococcus aureus Pneumonia. Infect. Immun. 2017, 85, e00620-17. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Höök, M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Genet. 2014, 12, 49–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, G.H.; Mohamed, N.; Scully, I.L.; Cooper, D.; Begier, E.; Eiden, J.; Jansen, K.; Gurtman, A.; Anderson, A.S.; Naglaa, M. Staphylococcus aureus: The current state of disease, pathophysiology and strategies for prevention. Expert Rev. Vaccines 2016, 15, 1373–1392. [Google Scholar] [CrossRef] [PubMed]
- Ferry, T.; Perpoint, T.; Vandenesch, F.; Etienne, J. Virulence determinants in Staphylococcus aureus and their involvement in clinical syndromes. Curr. Infect. Dis. Rep. 2005, 7, 420–428. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, E.; Pozzi, C.; Houston, P.; Humphreys, H.; Robinson, D.A.; Loughman, A.; Foster, T.J.; O’Gara, J.P. A Novel Staphylococcus Aureus Biofilm Phenotype Mediated by the Fibronectin-Binding Proteins, FnBPA and FnBPB. J. Bacteriol. 2008, 190, 3835–3850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raafat, D.; Otto, M.; Reppschläger, K.; Iqbal, J.; Holtfreter, S. Fighting Staphylococcus Aureus Biofilms with Monoclonal Antibodies. Trends Microbiol. 2019, 27, 303–322. [Google Scholar] [CrossRef]
- Fowler, V.G.; Proctor, R.A. Where does a Staphylococcus aureus vaccine stand? Clin. Microbiol. Infect. 2014, 20, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Falugi, F.; Kim, H.K.; Missiakas, D.M.; Schneewind, O. Role of Protein A in the Evasion of Host Adaptive Immune Responses by Staphylococcus aureus. mBio 2013, 4, e00575-13. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.I.; Lee, A.; Reddy, B.; Muir, A.; Soong, G.; Pitt, A.; Cheung, A.; Prince, A. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat. Med. 2004, 10, 842–848. [Google Scholar] [CrossRef]
- Kim, H.K.; Cheng, A.G.; Kim, H.-Y.; Missiakas, D.M.; Schneewind, O. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J. Exp. Med. 2010, 207, 1863–1870. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Emolo, C.; DeDent, A.C.; Falugi, F.; Missiakas, D.M.; Schneewind, O. Protein A-Specific Monoclonal Antibodies and Prevention of Staphylococcus aureus Disease in Mice. Infect. Immun. 2012, 80, 3460–3470. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.J. Surface Proteins of Staphylococcus aureus. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Du, X.; Villaruz, A.E.; Diep, B.A.; Wang, D.; Song, Y.; Tian, Y.; Hu, J.; Yu, F.; Lu, Y.; et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat. Med. 2012, 18, 816–819. [Google Scholar] [CrossRef]
- Holden, M.T.G.; Lindsay, J.A.; Corton, C.; Quail, M.A.; Cockfield, J.D.; Pathak, S.; Batra, R.; Parkhill, J.; Bentley, S.D.; Edgeworth, J.D. Genome Sequence of a Recently Emerged, Highly Transmissible, Multi-Antibiotic- and Antiseptic-Resistant Variant of Methicillin-Resistant Staphylococcus aureus, Sequence Type 239 (TW). J. Bacteriol. 2010, 192, 888–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, M. How colonization factors are linked to outbreaks of methicillin-resistant Staphylococcus aureus: The roles of SasX and ACME. Biomol. Concepts 2013, 4, 533–537. [Google Scholar] [CrossRef]
- Mazmanian, S.K.; Liu, G.; Jensen, E.R.; Lenoy, E.; Schneewind, O. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 2000, 97, 5510–5515. [Google Scholar] [CrossRef] [Green Version]
- Mazmanian, S.K.; Ton-That, H.; Su, K.; Schneewind, O. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 2293–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clancy, K.W.; Melvin, J.A.; McCafferty, D.G. Sortase transpeptidases: Insights into mechanism, substrate specificity, and inhibition. Biopolymers 2010, 94, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Gao, Y.; Wang, H.; Niu, X.; Wang, J. Baicalin Weakens Staphylococcus aureus Pathogenicity by Targeting Sortase B. Front. Cell. Infect. Microbiol. 2018, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Cascioferro, S.; Cusimano, M.G.; Schillaci, D. Antiadhesion agents against Gram-positive pathogens. Futur. Microbiol. 2014, 9, 1209–1220. [Google Scholar] [CrossRef]
- Maresso, A.W.; Schneewind, O. Sortase as a Target of Anti-Infective Therapy. Pharmacol. Rev. 2008, 60, 128–141. [Google Scholar] [CrossRef]
- Ou, Y.; He, X.; Yuan, Z.; Yin, Z.; Fu, H.; Lin, J.; He, C.; Liang, X.-X.; Lv, C.; Shu, G.; et al. Erianin against Staphylococcus aureus Infection via Inhibiting Sortase A. Toxins 2018, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- Yoong, P.; Torres, V.J. The effects of Staphylococcus aureus leukotoxins on the host: Cell lysis and beyond. Curr. Opin. Microbiol. 2013, 16, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.-O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine Leukocidin—Producing Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Perret, M.; Badiou, C.; Lina, G.; Burbaud, S.; Benito, Y.; Bes, M.; Cottin, V.; Couzon, F.; Juruj, C.; Dauwalder, O.; et al. Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cell. Microbiol. 2012, 14, 1019–1036. [Google Scholar] [CrossRef]
- Peng, Z.; Takeshita, M.; Shibata, N.; Tada, H.; Tanaka, Y.; Kaneko, J. Rim domain loops of staphylococcal β-pore forming bi-component toxin S-components recognize target human erythrocytes in a coordinated manner. J. Biochem. 2018, 164, 93–102. [Google Scholar] [CrossRef]
- Li, H.-T.; Zhang, T.-T.; Huang, J.; Zhou, Y.-Q.; Zhu, J.-X.; Wu, B.-Q. Factors Associated with the Outcome of Life-Threatening Necrotizing Pneumonia due to Community-Acquired Staphylococcus aureus in Adult and Adolescent Patients. Respir. Int. Rev. Thorac. Dis. 2010, 81, 448–460. [Google Scholar] [CrossRef]
- Vandenesch, F.; Couzon, F.; Boisset, S.; Benito, Y.; Brown, E.L.; Lina, G.; Etienne, J.; Bowden, M.G. The Panton-Valentine leukocidin is a virulence factor in a murine model of necrotizing pneumonia. J. Infect. Dis. 2010, 201, 967–969. [Google Scholar] [CrossRef] [Green Version]
- Takigawa, Y.; Fujiwara, K.; Saito, T.; Nakasuka, T.; Ozeki, T.; Okawa, S.; Takada, K.; Iwamoto, Y.; Kayatani, H.; Minami, D.; et al. Rapidly Progressive Multiple Cavity Formation in Necrotizing Pneumonia Caused by Community-acquired Methicillin-resistant Staphylococcus aureus Positive for the Panton-Valentine Leucocidin Gene. Int. Med. 2019, 58, 685–691. [Google Scholar] [CrossRef] [Green Version]
- Mosquera, M.; Montero, L.; Pérez-Lescure, F.J.; Aragón, A. Pediatric case of fatal necrotizing pneumonia due to Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in Spain. Enferm. Infecc. Microbiol. Clínica 2019, 37, 63. [Google Scholar] [CrossRef]
- Schwartz, K.L.; Nourse, C. Panton–Valentine leukocidin-associated Staphylococcus aureus necrotizing pneumonia in infants: A report of four cases and review of the literature. Eur. J. Nucl. Med. Mol. Imaging 2011, 171, 711–717. [Google Scholar] [CrossRef]
- Löffler, B.; Niemann, S.; Ehrhardt, C.; Horn, D.; Lanckohr, C.; Lina, G.; Ludwig, S.; Peters, G. Pathogenesis of Staphylococcus aureus necrotizing pneumonia: The role of PVL and an influenza coinfection. Expert Rev. Anti. Infect. Ther. 2013, 11, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Rouzic, N.; Janvier, F.; Libert, N.; Javouhey, E.; Lina, G.; Nizou, J.-Y.; Pasquier, P.; Stamm, D.; Brinquin, L.; Pelletier, C.; et al. Prompt and Successful Toxin-Targeting Treatment of Three Patients with Necrotizing Pneumonia Due to Staphylococcus aureus Strains Carrying the Panton-Valentine Leukocidin Genes. J. Clin. Microbiol. 2010, 48, 1952–1955. [Google Scholar] [CrossRef] [Green Version]
- Soavi, L.; Signorini, L.; Stellini, R.; Acquarolo, A.; Fiorese, B.; Magri, S.; Pantosti, A.; Suter, F.; Carori, G. Linezolid and clindamycin improve the outcome of severe, necrotizing pneumonia due to community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). Le Infez. Med. 2011, 19, 42–44. [Google Scholar]
- Croisier, D.; Hayez, D.; Da Silva, S.; Labrousse, D.; Biek, D.; Badiou, C.; Dumitrescu, O.; Guerard, P.; Charles, P.-E.; Piroth, L.; et al. In VivoEfficacy of Ceftaroline Fosamil in a Methicillin-Resistant Panton-Valentine Leukocidin-Producing Staphylococcus aureus Rabbit Pneumonia Model. Antimicrob. Agents Chemother. 2014, 58, 1855–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinarello, C.A. Blocking interleukin-1β in acute and chronic autoinflammatory diseases. J. Intern. Med. 2011, 269, 16–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrousse, D.; Perret, M.; Hayez, D.; Da Silva, S.; Badiou, C.; Couzon, F.; Bes, M.; Chavanet, P.; Lina, G.; Vandenesch, F.; et al. Kineret®/IL-1ra Blocks the IL-1/IL-8 Inflammatory Cascade during Recombinant Panton Valentine Leukocidin-Triggered Pneumonia but Not during S. aureus Infection. PLoS ONE 2014, 9, e97546. [Google Scholar] [CrossRef]
- Lee, E.-Y.; Choi, D.-Y.; Kim, D.-K.; Kim, J.-W.; Park, J.O.; Kim, S.; Kim, S.-H.; Desiderio, D.M.; Kim, Y.-K.; Kim, K.P.; et al. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 2009, 9, 5425–5436. [Google Scholar] [CrossRef]
- Neuhaus, F.C.; Baddiley, J. A Continuum of Anionic Charge: Structures and Functions of d-Alanyl-Teichoic Acids in Gram-Positive Bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 686–723. [Google Scholar] [CrossRef] [Green Version]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [Green Version]
- Beutler, B.; Jiang, Z.; Georgel, P.; Crozat, K.; Croker, B.; Rutschmann, S.; Du, X.; Hoebe, K. GENETIC ANALYSIS OF HOST RESISTANCE: Toll-Like Receptor Signaling and Immunity at Large. Annu. Rev. Immunol. 2006, 24, 353–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldblatt, D. Conjugate vaccines. Clin. Exp. Immunol. 2000, 119, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.-Y.; Huang, Z.-X.; Hou, X.-R.; Zhu, P.; Wang, X.-Y.; Luo, H.-B.; Liu, B.-Y. Immunization with a peptide mimicking Lipoteichoic acid protects mice against Staphylococcus aureus infection. Vaccine 2019, 37, 4325–4335. [Google Scholar] [CrossRef] [PubMed]
- Dumont, A.L.; Nygaard, T.K.; Watkins, R.L.; Smith, A.; Kozhaya, L.; Kreiswirth, B.N.; Shopsin, B.; Unutmaz, D.; Voyich, J.M.; Torres, V.J. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol. Microbiol. 2011, 79, 814–825. [Google Scholar] [CrossRef] [Green Version]
- Berends, E.T.M.; Zheng, X.; Zwack, E.E.; Ménager, M.M.; Cammer, M.; Shopsin, B.; Torres, V.J. Staphylococcus aureus Impairs the Function of and Kills Human Dendritic Cells via the LukAB Toxin. mBio 2019, 10, e01918-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malachowa, N.; Kobayashi, S.D.; Freedman, B.; Dorward, D.W.; DeLeo, F.R. Staphylococcus aureus Leukotoxin GH Promotes Formation of Neutrophil Extracellular Traps. J. Immunol. 2013, 191, 6022–6029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocadello, S.; Minasov, G.; Shuvalova, L.; Dubrovska, I.; Sabini, E.; Bagnoli, F.; Grandi, G.; Anderson, W.F. Crystal structures of the components of the Staphylococcus aureus leukotoxin ED. Acta Crystallogr. Sect. D Struct. Biol. 2016, 72, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seilie, E.S.; Wardenburg, J.B. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin. Cell Dev. Biol. 2017, 72, 101–116. [Google Scholar] [CrossRef]
- Iii, F.A.; Benson, M.A.; Chen, J.; Novick, R.P.; Shopsin, B.; Torres, V.J. Staphylococcus aureus leucocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth in vivo. Mol. Microbiol. 2012, 83, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Tam, K.; Schultz, M.; Reyes-Robles, T.; Vanwalscappel, B.; Horton, J.; Alonzo, F.; Wu, B.; Landau, N.R.; Torres, V.J. Staphylococcus aureus Leukocidin LukED and HIV-1 gp120 Target Different Sequence Determinants on CCR5. mBio 2016, 7, e02024-16. [Google Scholar] [CrossRef] [Green Version]
- Fillat, M.F. The FUR (ferric uptake regulator) superfamily: Diversity and versatility of key transcriptional regulators. Arch. Biochem. Biophys. 2014, 546, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Troxell, B.; Hassan, H.M. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell. Infect. Microbiol. 2013, 3, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagnoli, F.; Fontana, M.R.; Soldaini, E.; Mishra, R.P.N.; Fiaschi, L.; Cartocci, E.; Nardi-Dei, V.; Ruggiero, P.; Nosari, S.; De Falco, M.G.; et al. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2015, 112, 3680–3685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, R.A. Challenges for a Universal Staphylococcus aureus Vaccine. Clin. Infect. Dis. 2012, 54, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- Jansen, K.U.; Anderson, A.S. The role of vaccines in fighting antimicrobial resistance (AMR). Hum. Vaccines Immunother. 2018, 14, 2142–2149. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.S.; Fowler, V.G.; Shukla, S.K.; Rose, W.E.; A Proctor, R. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol. Rev. 2020, 44, 123–153. [Google Scholar] [CrossRef] [Green Version]
- Rouha, H.; Badarau, A.; Visram, Z.C.; Battles, M.B.; Prinz, B.; Magyarics, Z.; Nagy, G.; Mirkina, I.; Stulik, L.; Zerbs, M.; et al. Five birds, one stone: Neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. mAbs 2015, 7, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Diep, B.A.; Le, V.T.M.; Visram, Z.C.; Rouha, H.; Stulik, L.; Dip, E.C.; Nagy, G.; Nagy, E. Improved Protection in a Rabbit Model of Community-Associated Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia upon Neutralization of Leukocidins in Addition to Alpha-Hemolysin. Antimicrob. Agents Chemother. 2016, 60, 6333–6340. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.T.T.; Nguyen, N.T.Q.; Tran, V.G.; Gras, E.; Mao, Y.; Jung, D.H.; Tkaczyk, C.; Sellman, B.R.; Diep, B.A. Protective Efficacy of Monoclonal Antibodies Neutralizing Alpha-Hemolysin and Bicomponent Leukocidins in a Rabbit Model of Staphylococcus aureus Necrotizing Pneumonia. Antimicrob. Agents Chemother. 2019, 64. [Google Scholar] [CrossRef]
- Rouha, H.; Weber, S.; Janesch, P.; Maierhofer, B.; Gross, K.; Dolezilkova, I.; Mirkina, I.; Visram, Z.C.; Malafa, S.; Stulik, L.; et al. Disarming Staphylococcus aureus from destroying human cells by simultaneously neutralizing six cytotoxins with two human monoclonal antibodies. Virulence 2017, 9, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, R.P.; Karauzum, H.; Sarwar, J.; Abaandou, L.; Mahmoudieh, M.; Boroun, A.R.; Vu, H.; Nguyen, T.; Devi, V.S.; Shulenin, S.; et al. Novel Structurally Designed Vaccine for S. aureus α-Hemolysin: Protection against Bacteremia and Pneumonia. PLoS ONE 2012, 7, e38567. [Google Scholar] [CrossRef] [PubMed]
- CARB-X. IBT-VO2. Available online: https://carb-x.org/gallery/integrated-biotherapeutics/ (accessed on 11 August 2020).
- Wolfmeier, H.; Mansour, S.C.; Liu, L.T.; Pletzer, D.; Draeger, A.; Babiychuk, E.B.; Hancock, R.E. Liposomal Therapy Attenuates Dermonecrosis Induced by Community-Associated Methicillin-Resistant Staphylococcus aureus by Targeting α-Type Phenol-Soluble Modulins and α-Hemolysin. EBioMedicine 2018, 33, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Buckley, P.T.; O’Malley, A.; Sause, W.E.; Alonzo, F.; Lubkin, A.; Boguslawski, K.M.; Payne, A.; Fernandez, J.; Strohl, W.R.; et al. Identification of biologic agents to neutralize the bicomponent leukocidins of Staphylococcus aureus. Sci. Transl. Med. 2019, 11, eaat0882. [Google Scholar] [CrossRef]
- Adhikari, R.; Kort, T.; Shulenin, S.; Kanipakala, T.; Ganjbaksh, N.; Roghmann, M.-C.; Holtsberg, F.W.; Aman, M.J. Antibodies to S. aureus LukS-PV Attenuated Subunit Vaccine Neutralize a Broad Spectrum of Canonical and Non-Canonical Bicomponent Leukotoxin Pairs. PLoS ONE 2015, 10, e0137874. [Google Scholar] [CrossRef]
- Song, L.; Hobaugh, M.R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J.E. Structure of Staphylococcal alpha -Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Kawai, Y.; Tanaka, Y.; Hirano, N.; Kaneko, J.; Tomita, N.; Ohta, M.; Kamio, Y.; Yao, M.; Tanaka, I. Crystal structure of the octameric pore of staphylococcal -hemolysin reveals the -barrel pore formation mechanism by two components. Proc. Natl. Acad. Sci. USA 2011, 108, 17314–17319. [Google Scholar] [CrossRef] [Green Version]
- Trstenjak, N.; Milić, D.; Graewert, M.A.; Rouha, H.; Svergun, D.; Djinović-Carugo, K.; Nagy, E.; Badarau, A. Molecular mechanism of leukocidin GH–integrin CD11b/CD18 recognition and species specificity. Proc. Natl. Acad. Sci. USA 2019, 117, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Pédelacq, J.-D.; Maveyraud, L.; Prévost, G.; Baba-Moussa, L.; González, A.; Courcelle, E.; Shepard, W.; Monteil, H.; Samama, J.-P.; Mourey, L. The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 1999, 7, 277–287. [Google Scholar] [CrossRef] [Green Version]
- IBT Inc. IBT Vaccines Receives $3.9 mil. to Advance Development of IBT-V02, the First Multivalent Toxoid Vaccine for MRSA. Available online: https://www.integratedbiotherapeutics.com/2019/ibt-vaccines-receives-3-9-mil-to-advance-development-of-ibt-v02-the-first-multivalent-toxoid-vaccine-for-mrsa/ (accessed on 11 August 2020).
- Berube, B.J.; Sampedro, G.R.; Otto, M.; Wardenburg, J.B. Thepsmα Locus Regulates Production of Staphylococcus aureus Alpha-Toxin during Infection. Infect. Immun. 2014, 82, 3350–3358. [Google Scholar] [CrossRef] [Green Version]
- Jenul, C.; Horswill, A.R. Regulation of Staphylococcus aureus Virulence. Microbiol. Spectr. 2019, 7, 6. [Google Scholar] [CrossRef]
- François, B.; Jafri, H.S.; Chastre, J.; Sánchez-García, M.; Eggimann, P.; Dequin, P.-F.; Huberlant, V.; Soria, L.V.; Boulain, T.; Bretonnière, C.; et al. Suvratoxumab for Prevention of Staphylococcus aureus Ventilator-Associated Pneumonia. (In Preparation)
- Malachowa, N.; Kobayashi, S.D.; Braughton, K.R.; Whitney, A.R.; Parnell, M.J.; Gardner, D.J.; DeLeo, F.R. Staphylococcus aureus Leukotoxin GH Promotes Inflammation. J. Infect. Dis. 2012, 206, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Dumont, A.L.; Yoong, P.; Day, C.J.; Alonzo, F.; McDonald, W.H.; Jennings, M.P.; Torres, V.J. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc. Natl. Acad. Sci. USA 2013, 110, 10794–10799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, A.; Wang, H.; Kitur, K.; Parker, D. Humanized Mice Exhibit Increased Susceptibility to Staphylococcus aureus Pneumonia. J. Infect. Dis. 2016, 215, 1386–1395. [Google Scholar] [CrossRef] [Green Version]
- Holtfreter, S.; Radcliff, F.J.; Grumann, D.; Read, H.; Johnson, S.; Monecke, S.; Ritchie, S.; Clow, F.; Goerke, C.; Bröker, B.M.; et al. Characterization of a Mouse-Adapted Staphylococcus aureus Strain. PLoS ONE 2013, 8, e71142. [Google Scholar] [CrossRef] [Green Version]
- Trübe, P.; Hertlein, T.; Mrochen, D.M.; Schulz, D.; Jorde, I.; Krause, B.; Zeun, J.; Fischer, S.; Wolf, S.A.; Walther, B.; et al. Bringing together what belongs together: Optimizing murine infection models by using mouse-adapted Staphylococcus aureus strains. Int. J. Med. Microbiol. 2019, 309, 26–38. [Google Scholar] [CrossRef]
- Trstenjak, N.; Stulik, L.; Rouha, H.; Zmajkovic, J.; Zerbs, M.; Nagy, E.; Badarau, A. Adaptation of the Staphylococcus aureus leukocidin LukGH for the rabbit host by protein engineering. Biochem. J. 2019, 476, 275–292. [Google Scholar] [CrossRef]
- Takemura-Uchiyama, I.; Uchiyama, J.; Osanai, M.; Morimoto, N.; Asagiri, T.; Ujihara, T.; Daibata, M.; Sugiura, T.; Matsuzaki, S. Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect. 2014, 16, 512–517. [Google Scholar] [CrossRef]
- Prazak, J.; Iten, M.; Cameron, D.R.; Save, J.; Grandgirard, D.; Resch, G.; Goepfert, C.; Leib, S.L.; Takala, J.; Jakob, S.M.; et al. Bacteriophages Improve Outcomes in Experimental Staphylococcus aureus Ventilator-associated Pneumonia. Am. J. Respir. Crit. Care Med. 2019, 200, 1126–1133. [Google Scholar] [CrossRef]
- Prazak, J.; Valente, L.; Iten, M.; Grandgirard, D.; Leib, S.L.; Jakob, S.M.; Haenggi, M.; Que, Y.-A.; Cameron, D.R. Nebulized Bacteriophages for Prophylaxis of Experimental Ventilator-Associated Pneumonia Due to Methicillin-Resistant Staphylococcus aureus. Crit. Care Med. 2020, 48, 1042–1046. [Google Scholar] [CrossRef]
- Lehman, S.M.; Mearns, G.; Rankin, D.; Cole, R.A.; Smrekar, F.; Branston, S.D.; Morales, S. Design and Preclinical Development of a Phage Product for the Treatment of Antibiotic-Resistant Staphylococcus aureus Infections. Viruses 2019, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Ooi, M.L.; Drilling, A.J.; Morales, S.; Fong, S.; Moraitis, S.; Macias-Valle, L.; Vreugde, S.; Psaltis, A.J.; Wormald, P.-J. Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngol. Neck Surg. 2019, 145, 723–729. [Google Scholar] [CrossRef]
- Petrovic, F.A.; Lin, R.C.Y.; Ho, J.; Maddocks, S.; Zankour, B.N.L.; Iredell, J.R.; Khalid, A.; Venturini, C.; Chad, R.; Morales, S.; et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 2020, 5, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Li, X.; Wang, B.; Gong, P.; Xiao, F.; Yang, M.; Zhang, L.; Songying, O.; Hu, L.; Cheng, M.; et al. Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus. Appl. Environ. Microbiol. 2016, 82, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.Y.; Jun, K.I.; Kang, C.K.; Song, K.-H.; Choe, P.G.; Bang, J.-H.; Kim, E.S.; Park, S.W.; Bin Kim, H.; Kim, N.J.; et al. Efficacy of Intranasal Administration of the Recombinant Endolysin SAL200 in a Lethal Murine Staphylococcus Aureus Pneumonia Model. Antimicrob. Agents Chemother. 2019, 63, 02009–02018. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.S. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Irene, C.; Fantappiè, L.; Caproni, E.; Zerbini, F.; Anesi, A.; Tomasi, M.; Zanella, I.; Stupia, S.; Prete, S.; Valensin, S.; et al. Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine. Proc. Natl. Acad. Sci. USA 2019, 116, 21780–21788. [Google Scholar] [CrossRef] [Green Version]
Class | CAP (a) [11,12,13] | HAP/VAP [11,14] | HCAP [12,15] |
---|---|---|---|
Gram-positive | Streptococcus pneumoniae Staphylococcus aureus(b) | Streptococcus pneumoniae Streptococcus spp. Staphylococcus aureus (b) | Streptococcus pneumoniae Staphylococcus aureus(b) |
Gram-negative | Mycoplasma pneumoniae Chlamydophila pneumoniae Haemophilus influenzae Legionella spp. Pseudomonas aeruginosa Enterobacteriaceae (Escherichia coli, Klebsiella spp., Enterobacter spp., Proteus mirabilis) | Enterobacteriaceae (Escherichia coli, Klebsiella spp., Enterobacter spp., Proteus spp.) Serratia marcescens Pseudomonas aeruginosa Acinetobacter spp. Haemophilus influenza Stenotrophomonas maltophilia | Haemophilus influenzae Pseudomonas aeruginosa Acinetobacter baumannii Stenotrophomonas maltophilia |
Targeted in SAP | Virulence Factor | Research Stage a | Approach/Strategy | Main Results | Advantages of Targeting b | Disadvantages of Targeting b | References |
---|---|---|---|---|---|---|---|
Yes | Hla | PC | in vitro: tissue cultures in vivo: murine, rabbit, and ferret models | Protective potential of passive and active immunization | Core virulence factor; crucial role in SAP | Complex regulation | [69,72,73,74,75,76,77,78,79,80,81] |
C | Human clinical trials | Protective potential of passive immunization | |||||
Hlb/Hlg | PC | in vivo: murine SAP model | Hlb-deficient S. aureus shows less severe histopathology | Prevalent in nearly all S. aureus lineages; distinct role in pathogenesis | NA | [82] | |
PSMs | PC | in vivo: murine SAP model | Reduced mouse mortality by indirect targeting (blocking Agr system) | Distinct role in SAP | Neutrophils are more protected than macrophages | [83] | |
SasX | PC | in vitro: cell culture; vaccination studies in mice (skin abscess and lung infection model) | Induction of antigen-specific IgG response; protection from S. aureus-induced infection and colonization | (i) active immunization induced IgG1 response and reduced acute lung injury; (ii) active and passive immunization reduced S. aureus colonization; (iii) anti-SasX IgG increased S. aureus killing by human neutrophils | NK | [84] | |
Yes | Srt | PC | in vitro: cell culture in vivo: murine S. aureus lung infection models | Deletion of SrtB reduced mortality; reduced S.aureus adhesion to human lung epithelial cells | Anti-inflammatory effects on macrophage | NK | [85] |
PVL | PC | in vitro: polymorphonuclear leukocytes in vivo: rabbit SAP, murine sepsis models | Neutralization of cytotoxic effects (IVIG); protective immunity | Important role in pathogenesis of necrotizing pneumonia | Low prevalence | [86,87,88,89] | |
SEVs | PC | in vivo: murine models (SAP, systemic infection, skin infection, sepsis) | Induction of protective immunity | Nano-size; safety profile; multivalent nature; longer persistence in host; induction of innate/adaptive immune response; intrinsic adjuvanticity | Insufficient humoral response (reason for failure of passive immunization) | [90,91,92,93] | |
LTA | PC | in vitro: cell cultures; in vivo: healthy humans | Neutrophil recruitment; proinflammatory; pro-apoptotic effects on macrophages; affects hemostasis | Crucial S. aureus component | Weak immunogenicity | [94,95,96,97] | |
No | SpA | PC | in vivo: murine models (skin abscess, sepsis) | Induction of protective immunity against S. aureus-induced infection | Induction of antigen-specific IgG response; protection from abscess formation and neonatal sepsis in mice; prevention of S. aureus colonization | Unexplored as single target | [98,99,100,101,102] |
C | Vaccination study in human (S. aureus bacteremia) | Good safety profile and minimal side effects in patients | |||||
FnBPA | PC | in vitro: cell culture in vivo: vaccination studies in mice (FnBPA/SpA bivalent fusion vaccine; murine pneumonia and bacteremia model) | Induction of protective immunity against S. aureus-induced infections; induction of S. aureus killing by neutrophils | Bivalent vaccine more promising than SpA alone | Unexplored as single target | [103] | |
Fur | PC | in vivo: murine SAP model | S. aureus lacking Fur is less virulent and protected against killing by neutrophils | Regulates several immunomodulatory proteins | Not yet targeted | [104] | |
No | LukAB | PC | in vitro: cell cultures in vivo: murine immunization (sepsis) | Neutralization of cytotoxicity; prevention of cell lysis | Main contributor in human phagocyte killing | Not well described | [105,106,107] |
LukED | PC | in vitro: cell cultures | Induction of partial resistance to killing; functional inhibition of LukED | Highly conserved in epidemic MRSA lineages | NK | [108] |
Antigen(s) | Year | Type of Study a | Study Title | No. of Subjects | Aim | Clinical Trials Identifier | Countries b | Status of Trial | Outcome |
---|---|---|---|---|---|---|---|---|---|
SpA | 2015 | I, R | A I-II study of the safety and efficacy of a true human antibody, 514G3, in subjects sospitalized with bacteremia due to S. aureus | 52 | Evaluating the safety of 514G3 in patients with S. aureus bacteremia | NCT02357966 | US | completed | Results c |
PVL | 2016 | O, NR | Panton-Valentine leucocidin: independent severity factor of S. aureus pneumonias | 234 | Assessing patient survival according to the PVL character of isolated S. aureus strains | NCT02798497 | FR | completed | No published results |
PVL | 2017 | O, Re | Epidemiology of post-influenza bacterial pneumonia due to a Panton-Valentine leukocidin positive S. aureus (FLUVALENTINE) | 35 | Evaluating the mortality of ICU patients with post-influenza bacterial pneumonia due to a PVL+ S. aureus | NCT03367624 | FR | unknown | No published results |
Hla | 2019 | I, R | A phase II randomized, double-blind, placebo-controlled, single-dose, dose-ranging study of the efficacy and safety of MEDI4893, a human monoclonal antibody against S. aureus alpha Toxin in mechanically ventilated adult subjects (SAATELLITE) | 213 | Studying the efficacy and safety of MEDI4893 (suvratoxumab) | NCT02296320 | BE, CH, CZ, ES, FR, DE, GR, HU, PT, US | completed | Preliminary results d Results e |
Hla | 2019 | I, R | A randomized double-blind placebo-controlled multicenter phase III Study of efficacy and safety of AR-301 as adjunct therapy to antibiotics in the treatment of ventilator-associated pneumonia (VAP) caused by S. aureus | 240 | Testing of AR-301 as adjunctive to antibiotics in S. aureus VAP treatment | NCT03816956 | BE, BR, BY, EE, FR, GE, IL, IN, LV, MX, RS, RU, TR, UA, US, ZA | recruiting | Trial currently ongoing |
Hla, LukSF-PV, LukED, Hlg, LukGH | 2019 | I, R | A phase II, randomized, double-Blind, placebo-controlled study to determine the safety and efficacy of a single dose of ASN100 for the prevention of S. aureus pneumonia in heavily colonized, mechanically ventilated subjects | 155 | Assessing prevention of SAP in mechanically ventilated, heavily S. aureus-colonized subjects | NCT02940626 | AT, CZ, ES, FR, GE, HU, IL, IN, PL, PT, RO, RS, RU, UA, US, ZA | completed | No published results |
Hla | 2020 | I, R | A randomized, double-blind, placebo-controlled, single ascending dose study to assess the safety, pharmacokinetics, efficacy and pharmacodynamics of KBSA301 in severe pneumonia (S. aureus) | 48 | Evaluating the safety, pharmacokinetics and efficacy of KBSA301 in severe SAP | NCT01589185 | BE, ES, FR, US | completed | Preliminary results f |
(A) Issues Hampering S. aureus Vaccine Research | Potential Solution | References |
Redundancy of S. aureus virulence factors | Target regulatory factors | [83,201,208] |
Genetic variations among S. aureus isolates/lineages | ||
Complex regulatory mechanisms | ||
Lower presence and expression of virulence factors in HA-MRSA | [34,35] | |
Antibody-based therapy less effective in highly colonized SAP patients | Prophylactic antibody use to be explored | [209] |
High tropism of S. aureus virulence factors Inferior transferability of conventional mouse models into clinical research | Humanized mice | [194,210,211,212,213,214,215] 10.3390/ijms21197061 |
Mouse-adapted S. aureus strains | ||
Recombinant toxins | ||
(B) Alternative Therapeutic Strategies | Explored in SAP | References |
Bacteriophages | Yes | [216,217,218,219,220,221,222,223,224] |
Outer membrane vesicles | No | [225] |
Nanoparticles (nasal vaccination) | No | 10.1016/j.addr.2008.09.005 |
Nanoparticles (treatment of pulmonary diseases) | Yes | 10.1002/wnan.1401 |
10.1038/s41551-017-0187-5 | ||
Antimicrobial peptides (antibiotic alternative) | No | 10.1093/jac/dkw381 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlaeminck, J.; Raafat, D.; Surmann, K.; Timbermont, L.; Normann, N.; Sellman, B.; van Wamel, W.J.B.; Malhotra-Kumar, S. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins 2020, 12, 721. https://doi.org/10.3390/toxins12110721
Vlaeminck J, Raafat D, Surmann K, Timbermont L, Normann N, Sellman B, van Wamel WJB, Malhotra-Kumar S. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins. 2020; 12(11):721. https://doi.org/10.3390/toxins12110721
Chicago/Turabian StyleVlaeminck, Jelle, Dina Raafat, Kristin Surmann, Leen Timbermont, Nicole Normann, Bret Sellman, Willem J. B. van Wamel, and Surbhi Malhotra-Kumar. 2020. "Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia" Toxins 12, no. 11: 721. https://doi.org/10.3390/toxins12110721
APA StyleVlaeminck, J., Raafat, D., Surmann, K., Timbermont, L., Normann, N., Sellman, B., van Wamel, W. J. B., & Malhotra-Kumar, S. (2020). Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins, 12(11), 721. https://doi.org/10.3390/toxins12110721