A Neurotoxic Snake Venom without Phospholipase A2: Proteomics and Cross-Neutralization of the Venom from Senegalese Cobra, Naja senegalensis (Subgenus: Uraeus)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatographic Separation of Naja Senegalensis Venom
2.2. Venom Proteomes and Toxicity Correlation
2.3. Other Protein Constituents
2.4. The Lack of Phospholipase A2 (PLA2) in Naja Senegalensis Venom
2.5. Immunoreactivity and Neutralization of Antivenom
3. Conclusions
4. Materials and Methods
4.1. Consumables and Reagents
4.2. Venom and Antivenom
4.3. Animals and Ethics Statement
4.4. Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC)
4.5. Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
4.6. Venom Fractions in-Solution (FIS) Tryptic Digestion and Agilent Q-TOF Mass Spectrometry
4.7. Estimation of Protein Relative Abundance
4.8. Immunological Binding Activity Study of Antivenom
4.9. Determination of Median Lethal Dose (LD50) and Median Effective Dose (ED50)
4.10. Data Availability
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Hargreaves, A.; Wagstaff, S.C.; Faragher, B.; Lalloo, D.G. Snake envenoming: A disease of poverty. PLoS Negl. Trop. Dis. 2009, 3, e569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chippaux, J.-P. Snakebite envenomation turns again into a neglected tropical disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.J.; Faiz, M.A.; Abela-Ridder, B.; Ainsworth, S.; Bulfone, T.C.; Nickerson, A.D.; Habib, A.G.; Junghanss, T.; Fan, H.W.; Turner, M.; et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl. Trop. Dis. 2019, 13, e0007059. [Google Scholar] [CrossRef] [Green Version]
- WHO. Venomous Snakes and Antivenoms Search Interface. Available online: http://apps.who.int/bloodproducts/snakeantivenoms/database/ (accessed on 2 April 2020).
- Petras, D.; Sanz, L.; Segura, Á.; Herrera, M.; Villalta, M.; Solano, D.; Vargas, M.; León, G.; Warrell, D.A.; Theakston, R.D.G.; et al. Snake Venomics of African Spitting Cobras: Toxin Composition and Assessment of Congeneric Cross-Reactivity of the Pan-African EchiTAb-Plus-ICP Antivenom by Antivenomics and Neutralization Approaches. J. Proteome Res. 2011, 10, 1266–1280. [Google Scholar] [CrossRef]
- Liu, C.-C.; You, C.-H.; Wang, P.-J.; Yu, J.-S.; Huang, G.-J.; Liu, C.-H.; Hsieh, W.-C.; Lin, C.-C. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches. PLoS Negl. Trop. Dis. 2017, 11, e0006138. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.H.; Wong, K.Y.; Chong, H.P.; Tan, N.H.; Tan, K.Y. Proteomic insights into short neurotoxin-driven, highly neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity correlation of cobra envenomation in Asia. J. Proteom. 2019, 206, 103418. [Google Scholar] [CrossRef]
- Tan, N.H.; Wong, K.Y.; Tan, C.H. Venomics of Naja sputatrix, the Javan spitting cobra: A short neurotoxin-driven venom needing improved antivenom neutralization. J. Proteom. 2017, 157, 18–32. [Google Scholar] [CrossRef]
- Broadley, D.G. The snouted cobra, Naja annulifera, a valid species in southern Africa. J. Herpetol. Assoc. Afr. 1995, 44, 26–32. [Google Scholar] [CrossRef]
- Broadley, D.G.; Wüster, W. A review of the southern African ‘non-spitting’ cobras (Serpentes: Elapidae: Naja). Afr. J. Herpetol. 2004, 53, 101–122. [Google Scholar] [CrossRef]
- Trape, J.-F.; Chirio, L.; Broadley, N.G.; Wüster, W. Phylogeography and systematic revision of the Egyptian cobra (Serpentes: Elapidae: Naja haje) species complex, with a description of a new species from West Africa. Zootaxa 2009, 2236, 1–25. [Google Scholar] [CrossRef]
- Wallach, V.; Wüster, W.; Broadley, D. In Praise of Subgenera: Taxonomic Status of Cobras of the Genus Naja Laurenti (Serpentes: Elapidae). Zootaxa 2009, 2236, 26–36. [Google Scholar] [CrossRef]
- Trape, J.-F.; Mané, Y. The snakes of Mali. Bonn Zool. Bull. 2017, 66, 107–133. [Google Scholar]
- Trape, J.-F.; Mané, Y. The snakes of Niger. Amphib. Reptile Conserv. 2015, 9, 39–55. [Google Scholar]
- WHO. Guidelines for the Prevention and Clinical Management of Snakebite in Africa; World Health Organ: Brazzaville, Congo, 2010. [Google Scholar]
- Tan, C.H.; Wong, K.Y.; Tan, N.H.; Ng, T.S.; Tan, K.Y. Distinctive Distribution of Secretory Phospholipases A2 in the Venoms of Afro-Asian Cobras (Subgenus: Naja, Afronaja, Boulengerina and Uraeus). Toxins 2019, 11, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.Y.; Wong, K.Y.; Tan, N.H.; Tan, C.H. Quantitative proteomics of Naja annulifera (sub-Saharan snouted cobra) venom and neutralization activities of two antivenoms in Africa. Int. J. Biol. Macromol. 2020, 158, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.Y.; Tan, C.H.; Tan, K.Y.; Quraishi, N.H.; Tan, N.H. Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J. Proteom. 2018, 175, 156–173. [Google Scholar] [CrossRef]
- Tan, K.Y.; Tan, C.H.; Fung, S.Y.; Tan, N.H. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J. Proteom. 2015, 120, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Suryamohan, K.; Krishnankutty, S.P.; Guillory, J.; Jevit, M.; Schröder, M.S.; Wu, M.; Kuriakose, B.; Mathew, O.K.; Perumal, R.C.; Koludarov, I.; et al. The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nat. Genet. 2020, 52, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Chong, H.P.; Tan, K.Y.; Tan, N.H.; Tan, C.H. Exploring the Diversity and Novelty of Toxin Genes in Naja sumatrana, the Equatorial Spitting Cobra from Malaysia through De Novo Venom-Gland Transcriptomics. Toxins 2019, 11, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.Y.; Tan, C.H.; Chanhome, L.; Tan, N.H. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: Elucidating geographical venom variation and insights into sequence novelty. PeerJ 2017, 5, e3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senji Laxme, R.R.; Khochare, S.; de Souza, H.F.; Ahuja, B.; Suranse, V.; Martin, G.; Whitaker, R.; Sunagar, K. Beyond the ‘big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl. Trop. Dis. 2019, 13, e0007899. [Google Scholar] [CrossRef] [PubMed]
- Malih, I.; Ahmad Rusmili, M.R.; Tee, T.Y.; Saile, R.; Ghalim, N.; Othman, I. Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J. Proteom. 2014, 96, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.H.; Tan, C.H. Cytotoxicity of Snake Venoms and Toxins: Mechanisms and Applications; Nova Science Publishers: New York, NY, USA, 2016. [Google Scholar]
- Panagides, N.; Jackson, T.; Ikonomopoulou, M.; Arbuckle, K.; Pretzler, R.; Yang, D.; Ali, S.; Koludarov, I.; Dobson, J.; Sanker, B.; et al. How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. Toxins 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.C.; Huang, Y.K.; Chen, Y.W.; Chen, M.H.; Tu, A.T.; Chen, Y.C. Venom Ophthalmia and Ocular Complications Caused by Snake Venom. Toxins 2020, 12, 576. [Google Scholar] [CrossRef]
- Sharma, V.K.; Baranwal, V.K. Snake venom ophthalmia. Med. J. Armed Forces India 2015, 71, S197–S198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.Y.; Tan, C.H.; Tan, N.H. Venom and Purified Toxins of the Spectacled Cobra (Naja naja) from Pakistan: Insights into Toxicity and Antivenom Neutralization. Am. J. Trop. Med. Hyg. 2016, 94, 1392–1399. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.Y.; Tan, C.H.; Fung, S.Y.; Tan, N.H. Neutralization of the Principal Toxins from the Venoms of Thai Naja kaouthia and Malaysian Hydrophis schistosus: Insights into Toxin-Specific Neutralization by Two Different Antivenoms. Toxins 2016, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Chong, H.P.; Tan, K.Y.; Tan, C.H. Cytotoxicity of Snake Venoms and Cytotoxins From Two Southeast Asian Cobras (Naja sumatrana, Naja kaouthia): Exploration of Anticancer Potential, Selectivity, and Cell Death Mechanism. Front. Mol. Biosci. 2020, 7, 7. [Google Scholar] [CrossRef]
- Wang, C.-H.; Wu, W.-G. Amphiphilic β-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Lett. 2005, 579, 3169–3174. [Google Scholar] [CrossRef]
- Zhang, B.; Li, F.; Chen, Z.; Shrivastava, I.H.; Gasanoff, E.S.; Dagda, R.K. Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y.; Chang, C.C.; Chiu, T.H.; Chiu, P.J.S.; Tseng, T.C.; Lee, S.Y. Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1968, 259, 360–374. [Google Scholar] [CrossRef]
- Kwan, C.; Kwan, T.; Huang, S. Effect of calcium on the vascular contraction induced by cobra venom cardiotoxin. Clin. Exp. Pharmacol. Physiol. 2002, 29, 823–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, C.M.; Isbister, G.K.; Hodgson, W.C. Alpha neurotoxins. Toxicon 2013, 66, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, L.P.; Laustsen, A.H.; Lomonte, B.; Gutierrez, J.M. Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. J. Proteom. 2017, 150, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.H.; Wong, K.Y.; Tan, K.Y.; Tan, N.H. Venom proteome of the yellow-lipped sea krait, Laticauda colubrina from Bali: Insights into subvenomic diversity, venom antigenicity and cross-neutralization by antivenom. J. Proteom. 2017, 166, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Tan, K.Y.; Ng, T.S.; Sim, S.M.; Tan, N.H. Venom Proteome of Spine-Bellied Sea Snake (Hydrophis curtus) from Penang, Malaysia: Toxicity Correlation, Immunoprofiling and Cross-Neutralization by Sea Snake Antivenom. Toxins 2019, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nirthanan, S.; Awal, W.; Niranjan, N.R. Snake α-Neurotoxins and the Nicotinic Acetylcholine Receptor. In Snake Venoms; Gopalakrishnakone, P., Inagaki, H., Mukherjee, A.K., Rahmy, T.R., Vogel, C.-W., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 215–252. [Google Scholar]
- Kini, R.M.; Doley, R. Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon 2010, 56, 855–867. [Google Scholar] [CrossRef]
- Yap, M.K.; Fung, S.Y.; Tan, K.Y.; Tan, N.H. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra). Acta Trop. 2014, 133, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.H.H.B.; McCleary, R.J.R.; Salafutdinov, I.; Alam, F.; Shah, H.S.; Bibi, S.; Ali, A.; Khalid, S.; Hasan, S.M.F.; Sabatier, J.-M.; et al. Proteomics study of Southern Punjab Pakistani cobra (Naja naja: Formerly Naja naja karachiensis) venom. Toxicol. Environ. Chem. 2019, 101, 91–116. [Google Scholar] [CrossRef]
- Huang, H.W.; Liu, B.S.; Chien, K.Y.; Chiang, L.C.; Huang, S.Y.; Sung, W.C.; Wu, W.G. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J. Proteom. 2015, 128, 92–104. [Google Scholar] [CrossRef]
- Silva, A.; Cristofori-Armstrong, B.; Rash, L.D.; Hodgson, W.C.; Isbister, G.K. Defining the role of post-synaptic alpha-neurotoxins in paralysis due to snake envenoming in humans. Cell Mol. Life Sci. 2018, 75, 4465–4478. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.Y.; Tan, C.H.; Sim, S.M.; Fung, S.Y.; Tan, N.H. Geographical venom variations of the Southeast Asian monocled cobra (Naja kaouthia): Venom-induced neuromuscular depression and antivenom neutralization. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2016, 185-186, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Huynh, T.M.; Isbister, G.K.; Hodgson, W.C. Isolation and pharmacological characterization of α-Elapitoxin-Na1a, a novel short-chain postsynaptic neurotoxin from the venom of the Chinese Cobra (Naja atra). Biochem. Pharmacol. 2020, 181, 114059. [Google Scholar] [CrossRef] [PubMed]
- Utkin, Y.N.; Kukhtina, V.V.; Kryukova, E.V.; Chiodini, F.; Bertrand, D.; Methfessel, C.; Tsetlin, V.I. “Weak toxin” from Naja kaouthia is a nontoxic antagonist of alpha 7 and muscle-type nicotinic acetylcholine receptors. J. Biol. Chem. 2001, 276, 15810–15815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsson, F.H.H. Snake venom toxins the primary structure of protein S4C11: A neurotoxin homologue from the venom of forest cobra (Naja melanoleuca). Biochim. Biophys. Acta Protein Struct. 1975, 400, 310–321. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Hyodo, F.; Morita, T. Wide distribution of cysteine-rich secretory proteins in snake venoms: Isolation and cloning of novel snake venom cysteine-rich secretory proteins. Arch. Biochem. Biophys. 2003, 412, 133–141. [Google Scholar] [CrossRef]
- Heyborne, W.H.; Mackessy, S.P. Cysteine-rich secretory proteins in reptile venoms. In Handbook of Venoms and Toxins of Reptiles; Mackessy, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 325–336. [Google Scholar]
- Tadokoro, T.; Modahl, C.M.; Maenaka, K.; Aoki-Shioi, N. Cysteine-Rich Secretory Proteins (CRISPs) From Venomous Snakes: An Overview of the Functional Diversity in A Large and Underappreciated Superfamily. Toxins 2020, 12, 175. [Google Scholar] [CrossRef] [Green Version]
- Slagboom, J.; Kool, J.; Harrison, R.A.; Casewell, N.R. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 2017, 177, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.W.; Serrano, S.M.T. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008, 275, 3016–3030. [Google Scholar] [CrossRef]
- Rowan, E.G. What does β-bungarotoxin do at the neuromuscular junction? Toxicon 2001, 39, 107–118. [Google Scholar] [CrossRef]
- Chu, C.C.; Chu, S.T.; Chen, S.W.; Chen, Y.H. The non-phospholipase A2 subunit of beta-bungarotoxin plays an important role in the phospholipase A2-independent neurotoxic effect: Characterization of three isotoxins with a common phospholipase A2 subunit. Biochem. J. 1994, 303 Pt 1, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Owen, D.G.; Hall, A.; Stephens, G.; Stow, J.; Robertson, B. The relative potencies of dendrotoxins as blockers of the cloned voltage-gated K+ channel, mKv1.1 (MK-1), when stably expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 1997, 120, 1029–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhananjaya, B.L.; D’Souza, C.J. The pharmacological role of nucleotidases in snake venoms. Cell Biochem. Funct. 2010, 28, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.W.; Fritzinger, D.C. Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon 2010, 56, 1198–1222. [Google Scholar] [CrossRef]
- Tan, C.; Tan, K.Y.; Tan, N. A Protein Decomplexation Strategy in Snake Venom Proteomics: Methods and Protocols; Humana Press: New York, NY, USA, 2019; Volume 1871, pp. 83–92. [Google Scholar]
- Lynch, V.J. Inventing an arsenal: Adaptive evolution and neofunctionalization of snake venom phospholipase A(2) genes. BMC Evol. Biol. 2007, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Fry, B.G.; Wuster, W.; Kini, R.M.; Brusic, V.; Khan, A.; Venkataraman, D.; Rooney, A.P. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J. Mol. Evol. 2003, 57, 110–129. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, A. Mutation, Duplication, and More in the Evolution of Venomous Animals and Their Toxins. In Evolution of Venomous Animals and Their Toxins; Malhotra, A., Ed.; Springer: Dordrecht, The Netherlands, 2017; pp. 33–45. [Google Scholar] [CrossRef]
- Benjamin, J.M.; Abo, B.N.; Brandehoff, N. Review Article: Snake Envenomation in Africa. Curr. Trop. Med. Rep. 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Ainsworth, S.; Menzies, S.K.; Casewell, N.R.; Harrison, R.A. An analysis of preclinical efficacy testing of antivenoms for sub-Saharan Africa: Inadequate independent scrutiny and poor-quality reporting are barriers to improving snakebite treatment and management. PLoS Negl. Trop. Dis. 2020, 14, e0008579. [Google Scholar] [CrossRef]
- Gutierrez, J.M.; Solano, G.; Pla, D.; Herrera, M.; Segura, A.; Vargas, M.; Villalta, M.; Sanchez, A.; Sanz, L.; Lomonte, B.; et al. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins 2017, 9, 163. [Google Scholar] [CrossRef] [Green Version]
- Warrell, D.A.; Gutierrez, J.M.; Calvete, J.J.; Williams, D. New approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian J. Med. Res. 2013, 138, 38–59. [Google Scholar] [PubMed]
- Ramos-Cerrillo, B.; de Roodt, A.R.; Chippaux, J.P.; Olguín, L.; Casasola, A.; Guzmán, G.; Paniagua-Solís, J.; Alagón, A.; Stock, R.P. Characterization of a new polyvalent antivenom (Antivipmyn Africa) against African vipers and elapids. Toxicon 2008, 52, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, G.; Casewell, N.R.; Pla, D.; Quesada-Bernat, S.; Logan, R.A.E.; Bolton, F.M.S.; Wagstaff, S.C.; Gutiérrez, J.M.; Calvete, J.J.; Harrison, R.A. Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus Aspidelaps), and revealing the likely efficacy of available antivenom. J. Proteom. 2019, 198, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Oluoch, G.O.; Ainsworth, S.; Alsolaiss, J.; Bolton, F.; Arias, A.-S.; Gutiérrez, J.-M.; Rowley, P.; Kalya, S.; Ozwara, H.; et al. Preclinical antivenom-efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa. PLoS Negl. Trop. Dis. 2017, 11, e0005969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, A.; Segura, A.; Vargas, M.; Herrera, M.; Villalta, M.; Estrada, R.; Wu, F.; Litschka-Koen, T.; Perry, M.A.; Alape-Giron, A.; et al. Expanding the neutralization scope of the EchiTAb-plus-ICP antivenom to include venoms of elapids from Southern Africa. Toxicon 2017, 125, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, C.; Laustsen, A.H. Recent Advances in Next Generation Snakebite Antivenoms. Trop. Med. Infect. Dis. 2018, 3, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Rosa, G.; Olvera, F.; Archundia, I.G.; Lomonte, B.; Alagón, A.; Corzo, G. Horse immunization with short-chain consensus α-neurotoxin generates antibodies against broad spectrum of elapid venomous species. Nat. Commun. 2019, 10, 3642. [Google Scholar] [CrossRef] [Green Version]
- Ratanabanangkoon, K.; Tan, K.Y.; Eursakun, S.; Tan, C.H.; Simsiriwong, P.; Pamornsakda, T.; Wiriyarat, W.; Klinpayom, C.; Tan, N.H. A Simple and Novel Strategy for the Production of a Pan-specific Antiserum against Elapid Snakes of Asia. PLoS Negl. Trop. Dis. 2016, 10, e0004565. [Google Scholar] [CrossRef] [Green Version]
- Ratanabanangkoon, K.; Tan, K.Y.; Pruksaphon, K.; Klinpayom, C.; Gutiérrez, J.M.; Quraishi, N.H.; Tan, C.H. A pan-specific antiserum produced by a novel immunization strategy shows a high spectrum of neutralization against neurotoxic snake venoms. Sci. Rep. 2020, 10, 11261. [Google Scholar] [CrossRef]
- Tan, C.H.; Palasuberniam, P.; Blanco, F.B.; Tan, K.Y. Immunoreactivity and neutralization capacity of Philippine cobra antivenom against Naja philippinensis and Naja samarensis venoms. Trans. R. Soc. Trop. Med. Hyg. 2020, 115, 78–84. [Google Scholar] [CrossRef]
- Lewin, M.; Samuel, S.; Merkel, J.; Bickler, P. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation. Toxins 2016, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Lewin, M.R.; Williams, D.J.; Lomonte, B. Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms. Toxins 2020, 12, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayananda, K.S.; Sharath, B.K.; Gopinath, S.M. Purification of non toxic acidic phospholipase a2 from indian cobra (Naja naja) venom. Int. J. Pharma Bio Sci. 2013, 4, 408–415. [Google Scholar]
- Howard-Jones, N. A CIOMS ethical code for animal experimentation. WHO Chron. 1985, 39, 51–56. [Google Scholar] [PubMed]
- Finney, D.J. Probit Analysis, 2nd ed.; Cambridge University Press: New York, NY, USA, 1952; Volume 41, p. 627. [Google Scholar] [CrossRef]
- Morais, V.; Ifran, S.; Berasain, P.; Massaldi, H. Antivenoms: Potency or median effective dose, which to use? J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 191–193. [Google Scholar] [CrossRef]
- Tan, K.Y.; Tan, N.H.; Tan, C.H. Venom proteomics and antivenom neutralization for the Chinese eastern Russell’s viper, Daboia siamensis from Guangxi and Taiwan. Sci. Rep. 2018, 8, 8545. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, T.; Wu, S.; Yang, C.; Bai, M.; Shu, K.; Li, K.; Zhang, G.; Jin, Z.; He, F.; et al. iProX: An integrated proteome resource. Nucleic Acids Res. 2019, 47, D1211–D1217. [Google Scholar] [CrossRef] [Green Version]
Fraction | Protein Score | Spectra/Distinct Peptide | Protein Name a | Database Accession b | Species | Relative Abundance c (%) |
---|---|---|---|---|---|---|
1 | 85.56 | 7/5 | Short neurotoxin 1 | P68417 | N. annulifera | 1.34 |
2 | 33.91 | 3/2 | Short neurotoxin 2 | P01422 | N. annulifera | 4.31 |
3 | 167.70 | 17/8 | Long neurotoxin 1 | P25674 | N. haje haje | 5.08 |
100.90 | 10/5 | Long neurotoxin 1 | P01389 | N. anchietae | 5.74 | |
40.96 | 2/2 | Weak toxin S4C11 | P01400 | N. melanoleuca | 0.41 | |
36.36 | 5/2 | Short neurotoxin 3 | P01420 | N. annulifera | 0.82 | |
4 | 111.54 | 13/6 | Long neurotoxin 1 | P25674 | N. haje haje | 1.69 |
89.39 | 10/5 | Long neurotoxin 1 | P01389 | N. anchietae | 1.09 | |
5 | 144.02 | 17/7 | Long neurotoxin 1 | P25674 | N. haje haje | 0.27 |
98.09 | 11/5 | Long neurotoxin 1 | P01389 | N. anchietae | 0.22 | |
40.21 | 2/2 | Weak toxin CM-2a | P25678 | N. annulifera | 0.04 | |
6 | 142.81 | 15/7 | Long neurotoxin 1 | P25674 | N. haje haje | 1.19 |
36.07 | 3/2 | Weak toxin CM-2 | P01415 | N. haje haje | 0.08 | |
7 | 100.40 | 9/6 | Long neurotoxin 1 | P25674 | N. haje haje | 0.98 |
84.19 | 9/5 | Cytotoxin 5 | P01457 | N. haje haje | 0.81 | |
53.20 | 4/4 | Cytotoxin 5 | P01464 | N. annulifera | 0.34 | |
35.48 | 3/2 | Kunitz-type serine protease inhibitor 2 | P00986 | N. nivea | 3.15 | |
8 | 156.59 | 13/8 | Cytotoxin 5 | P01457 | N. haje haje | 13.56 |
64.07 | 5/4 | Cytotoxin 7 | P01466 | N. annulifera | 0.32 | |
59.56 | 5/4 | Cytotoxin 2 | P01463 | N. nivea | 0.62 | |
31.29 | 3/2 | Cytotoxin 10 | P01453 | N. annulifera | 1.05 | |
9 | 167.38 | 14/9 | Cytotoxin 2 | P01463 | N. nivea | 4.50 |
120.82 | 9/6 | Cytotoxin 3 | P01459 | N. annulifera | 8.40 | |
96.59 | 9/5 | Cytotoxin 5 | P01457 | N. haje haje | 9.31 | |
10 | 177.36 | 18/11 | Cytotoxin 2 | P01463 | N. nivea | 4.46 |
116.09 | 11/7 | Cytotoxin 5 | P01457 | N. haje haje | 5.33 | |
11 | 87.99 | 10/5 | Cytotoxin 11 | P62394 | N. haje haje | 0.83 |
80.53 | 9/4 | Cytotoxin 5 | P01457 | N. haje haje | 0.90 | |
46.48 | 4/3 | Cytotoxin 3 | P01459 | N. annulifera | 0.78 | |
53.58 | 5/3 | Cytotoxin 2 | P01463 | N. nivea | 0.73 | |
12 | 87.65 | 7/5 | Cysteine-rich venom protein natrin-2 | Q7ZZN8 | N. atra | 0.39 |
32.94 | 2/2 | Cysteine-rich venom protein latisemin | Q8JI38 | L. semifasciata | 0.07 | |
27.77 | 2/2 | Cytotoxin-like basic protein | P62377 | N. naja | 0.04 | |
13 | 30.15 | 2/2 | nigrescease-1 | B5KFV8 | C. nigrescens | 0.41 |
27.97 | 2/2 | Zinc metalloproteinase-disintegrin-like atrase-A | D5LMJ3 | N. atra | 2.56 | |
14 | 87.58 | 9/5 | Natrin-1 | CL85.Contig1_NnSL | N. naja | 2.19 |
85.22 | 8/5 | Cysteine-rich venom protein ophanin | Q7ZT98 | O. hannah | 2.63 | |
79.60 | 8/5 | Cysteine-rich venom protein natrin-1 | Q7T1K6 | N. atra | 2.61 | |
58.25 | 3/3 | Hemorrhagic metalloproteinase-disintegrin-like kaouthiagin | P82942 | N. kaouthia | 0.42 | |
41.46 | 3/2 | Metalloproteinase (Type III) 1 | U3EPC7 | M. fulvius | 1.06 | |
15 | 90.28 | 9/5 | Natrin-1 | CL85.Contig1_NnSL | N. naja | 0.26 |
41.20 | 3/3 | Cysteine-rich venom protein mossambin | P0DL16 | N. mossambica | 1.07 | |
39.89 | 3/2 | Metalloproteinase (Type III) 1 | U3EPC7 | M. fulvius | 0.10 | |
16 | 79.41 | 6/5 | Zinc metalloproteinase-disintegrin atragin | CL626.Contig4_NsM | N. sumatrana | 1.56 |
61.97 | 5/4 | Phosphodiesterase family member 3 | U3FAB3 | M. fulvius | 2.57 | |
57.52 | 4/3 | phosphodiesterase 1 | CL4383.Contig2_OhM | O. hannah | 1.04 | |
54.90 | 4/4 | Cobra venom factor | Unigene31407_Nk | N. kaouthia | 0.79 | |
45.85 | 3/3 | Cytotoxin 5 | P01457 | N. haje Sumatran | 0.41 | |
40.96 | 3/3 | Snake venom 5’-nucleotidase | CL3600.Contig1_NsM | N. sumatrana | 0.53 | |
30.17 | 2/2 | Cytotoxin 2 | P01462 | N. annulifera | 0.26 | |
17 | 46.97 | 4/3 | Metalloproteinase (Type III) 1 | U3EPC7 | M. fulvius | 0.44 |
36.59 | 3/2 | Zinc metalloproteinase mocarhagin | Unigene25077_NnSL | N. naja | 0.19 | |
26.93 | 2/2 | Cobra venom factor | CL4560.Contig1_NsM | N. sumatrana | <0.01 | |
26.03 | 2/2 | Zinc metalloproteinase-disintegrin-like atragin | D3TTC2 | N. atra | 0.03 |
Protein Family/Protein Name a | Database Accession b | Species | Relative Abundance (%) c |
---|---|---|---|
3FTX | 75.91 | ||
SNTX | 6.47 | ||
Short neurotoxin 1 | P68417 | N. annulifera | 1.34 |
Short neurotoxin 2 | P01422 | N. annulifera | 4.31 |
Short neurotoxin 3 | P01420 | N. annulifera | 0.82 |
LNTX | 16.26 | ||
Long neurotoxin 1 | P01389 | N. anchietae | 7.06 |
Long neurotoxin 1 | P25674 | N. haje algetic | 9.21 |
WTX | 0.53 | ||
Weak toxin S4C11 | P01400 | N. melanoleuca | 0.41 |
Weak toxin CM-2 | P01415 | N. haje haje | 0.08 |
Weak toxin CM-2a | P25678 | N. annulifera | 0.04 |
CTX | 52.64 | ||
Cytotoxin 10 | P01453 | N. annulifera | 1.05 |
Cytotoxin 5 | P01457 | N. haje haje | 30.32 |
Cytotoxin 3 | P01459 | N. annulifera | 9.18 |
Cytotoxin 2 | P01462 | N. annulifera | 0.26 |
Cytotoxin 2 | P01463 | N. nivea | 10.31 |
Cytotoxin 5 | P01464 | N. annulifera | 0.34 |
Cytotoxin 7 | P01466 | N. annulifera | 0.32 |
Cytotoxin-like basic protein | P62377 | N. naja | 0.04 |
Cytotoxin 11 | P62394 | N. haje haje | 0.83 |
CRISP | 9.23 | ||
Natrin-1 | CL85.Contig1_NnSL | N. naja | 2.45 |
Cysteine-rich venom protein mossambin | P0DL16 | N. mossambica | 1.07 |
Cysteine-rich venom protein natrin-1 | Q7T1K6 | N. atra | 2.61 |
Cysteine-rich venom protein ophanin | Q7ZT98 | O. hannah | 2.63 |
Cysteine-rich venom protein natrin-2 | Q7ZZN8 | N. atra | 0.39 |
Cysteine-rich venom protein latisemin | Q8JI38 | L. semifasciata | 0.07 |
Natrin-1 | CL317.Contig1_NsM | N. sumatrana | - |
Cysteine-rich seceretory protein Bc-CRPb | F2Q6G2 | B. candidus | - |
SVMP | 6.78 | ||
Nigrescease-1 | B5KFV8 | C. nigrescens | 0.41 |
Zinc metalloproteinase-disintegrin atragin | CL626.Contig4_NsM | N. sumatrana | 1.56 |
Zinc metalloproteinase-disintegrin-like atragin | D3TTC2 | N. atra | 0.03 |
Zinc metalloproteinase-disintegrin-like atrase-A | D5LMJ3 | N. atra | 2.56 |
Hemorrhagic metalloproteinase-disintegrin-like kaouthiagin | P82942 | N. kaouthia | 0.42 |
Metalloproteinase (Type III) 1 | U3EPC7 | M. fulvius | 1.59 |
Zinc metalloproteinase mocarhagin | Unigene25077_NnSL | N. naja | 0.19 |
PDE | 3.61 | ||
Phosphodiesterase 1 | CL4383.Contig2_OhM | O. hannah | 1.04 |
Phosphodiesterase family member 3 | U3FAB3 | M. fulvius | 2.57 |
Venom phosphodiesterase | A0A2D0TC04 | N. atra | - |
KSPI | 3.15 | ||
Kunitz-type serine protease inhibitor 2 | P00986 | N. nivea | 3.15 |
CVF | 0.79 | ||
Cobra venom factor | CL4560.Contig1_NsM | N. sumatrana | <0.01 |
Cobra venom factor | Unigene31407_Nk | N. kaouthia | 0.79 |
5’-NUC | 0.53 | ||
Snake venom 5’-nucleotidase | CL3600.Contig1_NsM2 | N. sumatrana | 0.53 |
i.v. LD50a (µg/g) | Venom (Origin) | Antivenom | Challenge Dose | ED50 b (µL) | R c (LD50/mL) | Potency d (mg/mL) | Reference |
---|---|---|---|---|---|---|---|
0.39 (0.25–0.61) | N. senegalensis (Mali) | VAPAV | 5 LD50 | 60.81 (52.77–70.08) | 82.22 | 0.59 | Present study |
1.57 (1.32–1.76) | N. annulifera (Eswatini) | SAIMR polyvalent | 3 LD50 | 52.33 (34.89–67.29) | 57.33 | 1.20 | [72] |
1.57 (1.32–1.76) | N. annulifera (Eswatini) | Fav-Afrique | 3 LD50 | 104.67 (72.46–134.57) | 28.66 | 0.60 | [72] |
2.99 (2.92–3.07) | N. annulifera (Not specified) | Antivipmyn-Africa | 3 LD50 | 304.99 (299.55–310.54) | 9.84 | 0.39 | [69] |
2.35 (1.92–2.87) | N. annulifera (Mozambique) | VAPAV | 2.5 LD50 | 125.00 (116.49–133.79) | 20.00 | 0.65 | [18] |
2.35 (1.92–2.87) | N. annulifera (Mozambique) | PANAF | 2.5 LD50 | 156.57 (127.48–190.32) | 15.97 | 0.52 | [18] |
0.43 (0.35–0.52) | N. haje (Uganda) | SAIMR polyvalent | 5 LD50 | 74.92 (73.02–77.35) | 66.74 | 0.46 | [71] |
0.67 (0.61–0.73) | N. haje (Not specified) | Antivipmyn-Africa | 3 LD50 | 73.59 (72.14–75.04) | 40.77 | 0.37 | [69] |
0.84 (0.57–1.04) | N. nivea (Not specified) | SAIMR polyvalent | 2 LD50 | 17.81 (15.58–20.35) | 112.33 | 0.94 | [70] |
0.45 (0.43–0.47) | N. nivea (Not specified) | Antivipmyn-Africa | 3 LD50 | 57.11 (56.67–57.44) | 52.53 | 0.31 | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, K.Y.; Tan, K.Y.; Tan, N.H.; Tan, C.H. A Neurotoxic Snake Venom without Phospholipase A2: Proteomics and Cross-Neutralization of the Venom from Senegalese Cobra, Naja senegalensis (Subgenus: Uraeus). Toxins 2021, 13, 60. https://doi.org/10.3390/toxins13010060
Wong KY, Tan KY, Tan NH, Tan CH. A Neurotoxic Snake Venom without Phospholipase A2: Proteomics and Cross-Neutralization of the Venom from Senegalese Cobra, Naja senegalensis (Subgenus: Uraeus). Toxins. 2021; 13(1):60. https://doi.org/10.3390/toxins13010060
Chicago/Turabian StyleWong, Kin Ying, Kae Yi Tan, Nget Hong Tan, and Choo Hock Tan. 2021. "A Neurotoxic Snake Venom without Phospholipase A2: Proteomics and Cross-Neutralization of the Venom from Senegalese Cobra, Naja senegalensis (Subgenus: Uraeus)" Toxins 13, no. 1: 60. https://doi.org/10.3390/toxins13010060
APA StyleWong, K. Y., Tan, K. Y., Tan, N. H., & Tan, C. H. (2021). A Neurotoxic Snake Venom without Phospholipase A2: Proteomics and Cross-Neutralization of the Venom from Senegalese Cobra, Naja senegalensis (Subgenus: Uraeus). Toxins, 13(1), 60. https://doi.org/10.3390/toxins13010060