First Report on Microcystis as a Potential Microviridin Producer in Bulgarian Waterbodies
Abstract
:1. Introduction
2. Results
2.1. Phytoplankton Species Composition and Abundance, Obtained by Light Microscopy (LM)
2.2. Results on General Phytoplankton Composition from HPLC Analysis of Marker Pigments
2.3. Results from PCR Analysis for Microcystin-Producing Strains
3. Discussion
4. Materials and Methods
4.1. Sites and Sampling
4.2. Phytoplankton Species Composition and Abundance Assessment by Conventional Light Microscopy (LM)
4.3. Phytoplankton Composition Assessment by HPLC Marker Pigment Analysis
4.4. Molecular-Genetic Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svirčev, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef]
- Meriluoto, J.; Spoof, L.; Codd, J. (Eds.) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons, Ltd.: Chichester, UK, 2017. [Google Scholar] [CrossRef]
- Falfushynska, H.; Horyn, O.; Osypenko, I.; Rzymski, P.; Wejnerowski, Ł.; Dziuba, M.K.; Sokolova, I.M. Multibiomarker-based assessment of toxicity of central European strains of filamentous cyanobacteria Aphanizomenon gracile and Raphidiopsis raciborskii to zebrafish Danio rerio. Water Res. 2021, 194, 116923. [Google Scholar] [CrossRef]
- Welker, M.; Von Döhren, H. Cyanobacterial peptides–Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 2006, 30, 530–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, E.M.L. Cyanobacterial peptides beyond microcystins–A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res. 2019, 151, 488–499. [Google Scholar] [CrossRef]
- Kust, A.; Řeháková, K.; Vrba, J.; Maicher, V.; Mareš, J.; Hrouzek, P.; Chiriac, M.-C.; Benedová, Z.; Tesařová, B.; Saurav, K. Insight into unprecedented diversity of cyanopeptides in eutrophic ponds using an ms/ms networking approach. Toxins 2020, 12, 561. [Google Scholar] [CrossRef]
- do Amaral, S.C.; Monteiro, P.R.; Neto, J.D.S.P.; Serra, G.M.; Gonçalves, E.C.; Xavier, L.P.; Santos, A.V. Current knowledge on microviridin from cyanobacteria. Mar. Drugs 2021, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Ishitsuka, M.O.; Kusumi, T.; Kakisawa, H.; Kunimitsu, K.; Watanabe, M.M. Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microsystis viridis. J. Am. Chem. Soc. 1990, 112, 8180–8182. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Yang, G.; McBride, J.L.; Bruner, S.D.; Ding, Y. A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate. Nat. Commun. 2018, 9, 1780. [Google Scholar] [CrossRef]
- Okino, T.; Matsuda, H.; Murakami, M.; Yamaguchi, K. New microviridins, elastase inhibitors from the blue-green alga Microcystis aeruginosa. Tetrahedron 1995, 51, 10679–10686. [Google Scholar] [CrossRef]
- Shin, H.J.; Murakami, M.; Matsuda, H.; Yamaguchi, K. Microviridins D-F, serine protease inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-204). Tetrahedron 1996, 52, 8159–8168. [Google Scholar] [CrossRef]
- Rohrlack, T.; Christoffersen, K.; Hansen, P.E.; Zhang, W.; Czarnecki, O.; Henning, M.; Fastner, J.; Erhard, M.; Neilan, B.A.; Kaebernick, M. Isolation, characterization, and quantitative analysis of microviridin J, a new Microcystis metabolite toxic to Daphnia. J. Chem. Ecol. 2003, 29, 1757–1770. [Google Scholar] [CrossRef] [PubMed]
- Rohrlack, T.; Christoffersen, K.; Kaebernick, M.; Neilan, B.A. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl. Environ. Microbiol. 2004, 70, 5047–5050. [Google Scholar] [CrossRef] [Green Version]
- Vegman, M.; Carmeli, S. Three aeruginosins and a microviridin from a bloom assembly of Microcystis spp. collected from a fishpond near Kibbutz Lehavot HaBashan, Israel. Tetrahedron 2014, 70, 6817–6824. [Google Scholar] [CrossRef]
- Rounge, T.B.; Rohrlack, T.; Nederbragt, A.J.; Kristensen, T.; Jakobsen, K.S. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain. BMC Genom. 2009, 10, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziemert, N.; Ishida, K.; Liaimer, A.; Hertweck, C.; Dittmann, E. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew. Chem. Int. Ed. Engl. 2008, 47, 7756–7759. [Google Scholar] [CrossRef] [PubMed]
- Ziemert, N.; Ishida, K.; Weiz, A.; Hertweck, C.; Dittmann, E. Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Appl. Environ. Microbiol. 2010, 76, 3568–3574. [Google Scholar] [CrossRef] [Green Version]
- Philmus, B.; Christiansen, G.; Yoshida, W.Y.; Hemscheidt, T.K. Post-translational modification in microviridin biosynthesis. ChemBioChem 2008, 9, 3066–3073. [Google Scholar] [CrossRef]
- Philmus, B.; Guerrette, J.P.; Hemscheidt, T.K. Substrate specificity and scope of MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster. ACS Chem. Biol. 2009, 4, 429–434. [Google Scholar] [CrossRef]
- Reshef, V.; Carmeli, S. New microviridins from a water bloom of the cyanobacterium Microcystis aeruginosa. Tetrahedron 2006, 62, 7361–7369. [Google Scholar] [CrossRef]
- Funk, M.; Van Der Donk, W. Ribosomal natural products, tailored to fit. Acc. Chem. Res. 2017, 50, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Sivonen, K.; Naganawa, E.; Harada, K. Non-toxic peptides from toxic cyanobacteria, Oscillatoria agardhii. Tetrahedron 2000, 56, 725–733. [Google Scholar] [CrossRef]
- Gatte-Picchi, D.; Weiz, A.; Ishida, K.; Hertweck, C.; Dittmann, E. Functional analysis of environmental DNA-derived microviridins provides new insights into the diversity of the tricyclic peptide family. Appl. Environ. Microbiol. 2014, 80, 1380–1387. [Google Scholar] [CrossRef] [Green Version]
- Sieber, S.; Grendelmeier, S.M.; Harris, L.A.; Mitchell, D.A.; Gademann, K. Microviridin 1777: A toxic chymotrypsin inhibitor discovered by a metabologenomic approach. J. Nat. Prod. 2020, 83, 438–446. [Google Scholar] [CrossRef]
- Welker, M.; Brunke, M.; Preussel, K.; Lippert, I.; von Döhren, H. Diversity and distribution of Microcystis (cyanobacteria) oligopeptide chemotypes from natural communities studies by single-colony mass spectrometry. Microbiology 2004, 150, 1785–1796. [Google Scholar] [CrossRef] [Green Version]
- Welker, M.; Christiansen, G.; von Döhren, H. Diversity of coexisting Planktothrix (cyanobacteria) chemotypes deduced by mass spectral analysis of microcystins and other oligopeptides. Arch. Microbiol. 2005, 182, 288–298. [Google Scholar] [CrossRef]
- Martins, J.; Saker, M.; Moreira, C.; Welker, M.; Fastner, J.; Vasconcelos, V. Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies. Appl. Environ. Microbiol. 2009, 82, 951–961. [Google Scholar] [CrossRef]
- Martins, J.; Vasconcelos, V. Cyanobactins from cyanobacteria: Current genetic and chemical state of knowledge. Mar. Drugs 2015, 13, 6910–6946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2014, 30, 108–160. [Google Scholar] [CrossRef]
- Sandonato, B.B.; Santos, V.G.; Luizete, M.F.; Bronzel, J.L., Jr.; Eberlin, M.N.; Milagre, H.M.S. MALDI imaging mass spectrometry of fresh water cyanobacteria: Spatial distribution of toxins and other metabolites. J. Braz. Chem. Soc. 2017, 28, 521–528. [Google Scholar] [CrossRef]
- Pereira, D.; Pimenta, A.; Giani, A. Profiles of toxic and non-toxic oligopeptides of Radiocystis fernandoii (Cyanobacteria) exposed to three different light intensities. Microbiol. Res. 2012, 167, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Sun, Q.; Ishida, K.; Matsuda, H.; Okino, T.; Yamaguchi, K. Microvirdins, elastase inhibitors from the cyanobacterium Nostoc minutum (NIES-26). Phytochemistry 1997, 45, 1197–1202. [Google Scholar] [CrossRef]
- Dehm, D.; Krumbholz, J.; Baunach, M.; Wiebach, V.; Hinrichs, K.; Guljamow, A.; Tabuchi, T.; Jenke-Kodama, H.; Süssmuth, R.; Dittmann, E. Unlocking the spatial control of secondary metabolism uncovers hidden natural product diversity in Nostoc punctiforme. ACS Chem. Biol. 2019, 14, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, G.; Stoyneva-Gärtner, M.; Uzunov, B. Algal toxic compounds and their aeroterrestrial, airborne and other extremophilic producers with attention to soil and plant contamination: A review. Toxins 2021, 13, 322. [Google Scholar] [CrossRef]
- Rohrlack, T.; Christiansen, G.; Kurmayer, R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in Cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 2013, 79, 2642–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaebernick, M.; Rohrlack, T.; Christoffersen, K.; Neilan, B.A. A spontaneous mutant of microcystin biosynthesis: Genetic characterization and effect on Daphnia. Environ. Microbiol. 2001, 3, 669–679. [Google Scholar] [CrossRef]
- Czarnecki, O.; Henning, M.; Lippert, I.; Welker, M. Identification of peptide metabolites of Microcystis (Cyanobacteria) that inhibit trypsin-like activity in planktonic herbivorous Daphnia (Cladocera). Environ. Microbiol. 2006, 8, 77–87. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Bagchi, D.; Bagchi, S.N. Proteolytic activity in Microcystis aeruginosa PCC7806 is inhibited by a trypsin-inhibitory cyanobacterial peptide with a partial structure of microviridin. J. Appl. Phycol. 2008, 20, 1045–1052. [Google Scholar] [CrossRef]
- Michev, T.; Stoyneva, M. (Eds.) Inventory of Bulgarian Wetlands and Their Biodiversity; Elsi-M: Sofia, Bulgaria, 2007. [Google Scholar]
- Stoyneva-Gärtner, M.P.; Descy, J.-P.; Latli, A.; Uzunov, B.; Pavlova, V.; Bratanova, Z.l.; Babica, P.; Maršálek, B.; Meriluoto, J.; Spoof, L. Assessment of cyanoprokaryote blooms and of cyanotoxins in Bulgaria in a 15-years period (2000–2015). Adv. Oceanogr. Limnol. 2017, 8, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Descy, J.P. SOP5: Estimation of cyanobacteria biomass by marker pigment analysis. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Meriluoto, J., Spoof, L., Codd, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 343–349. [Google Scholar]
- Sarmento, H.; Descy, J.-P. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. J. Appl. Phycol. 2008, 20, 1001–1011. [Google Scholar] [CrossRef]
- Mackey, M.D.; Mackey, D.J.; Higgins, H.W.; Wright, S.W. CHEMTAX—A program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 1996, 144, 265–283. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.W.; Jeffrey, S.W. Pigment markers for phytoplankton production. In Marine Organic Matter: Biomarkers, Isotopes and DNA. The Handbook of Environmental Chemistry; Volkman, J.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 2N, pp. 71–104. [Google Scholar]
- NCBI: National Centre for Biotechnology Information (NCBI). Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 12 May 2021).
- BLAST: Basic Local Alignment Search Tool (BLAST). Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 12 May 2021).
- WebLogo. Available online: http://weblogo.berkeley.edu/ (accessed on 27 May 2021).
- Radkova, M.; Stefanova, K.; Uzunov, B.; Gärtner, G.; Stoyneva-Gärtner, M. Morphological and molecular identification of microcystin-producing cyanobacteria in nine shallow Bulgarian water bodies. Toxins 2020, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, R.; Nenova, E.; Uzunov, B.; Shishiniova, M.; Stoyneva, M. Phytoplankton composition of Vaya Lake (2004–2006). Bulg. J. Agric. Sci. 2014, 20 (Suppl. 1), 165–172. [Google Scholar]
- Descy, J.-P.; Stoyneva-Gärtner, M.P.; Uzunov, B.A.; Dimitrova, P.H.; Pavlova, V.T.; Gärtner, G. Studies on cyanoprokaryotes of the water bodies along the Bulgarian Black Sea Coast (1890–2017): A review, with special reference to new, rare and harmful taxa. Acta Zool. Bulgar. 2018, 43–52. [Google Scholar]
- Stoyneva-Gärtner, M.P.; Uzunov, B.A.; Descy, J.-P.; Gärtner, G.; Draganova, P.H.; Borisova, C.I.; Pavlova, V.; Mitreva, M. Pilot application of drone-observations and pigment marker detection by HPLC in the studies of CyanoHABs in Bulgarian inland waters. Mar. Freshw. Res. 2019, 71, 606–616. [Google Scholar] [CrossRef]
- Stoyneva-Gärtner, M.; Stefanova, K.; Descy, J.-P.; Uzunov, B.; Radkova, M.; Pavlova, V.; Mitreva, M.; Gärtner, G. Microcystis aeruginosa and M. wesenbergii were the primary planktonic microcystin producers in several Bulgarian waterbodies (August 2019). Appl. Sci. 2021, 11, 357. [Google Scholar] [CrossRef]
- Uzunov, B.; Stefanova, K.; Radkova, M.; Descy, J.-P.; Gärtner, G.; Stoyneva-Gärtner, M. Microcystis species and their toxigenic strains in phytoplankton of ten Bulgarian wetlands (August 2019). Botanica 2021, 27, 77–94. [Google Scholar]
- AlgaeBase. Available online: http://www.algaebase.org/ (accessed on 26 May 2021).
- Rott, E. Some results from phytoplankton counting intercalibration. Schweiz. Z. Hydrol. 1981, 43, 34–62. [Google Scholar] [CrossRef]
- Stoyneva, M.P.; Descy, J.-P.; Vyverman, W. Green algae in Lake Tanganyika: Is morphological variation a response to seasonal changes? Hydrobiologia 2007, 578, 7–16. [Google Scholar] [CrossRef]
- Padisák, J.; Chorus, I.; Welker, M.; Maršálek, B.; Kurmayer, R. Laboratory analyses of cyanobacteria and water chemistry. In Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; Chorus, I., Welker, M., Eds.; CRC Press: London, UK, 2021; pp. 689–743. [Google Scholar]
- Li, K.; Condurso, H.; Li, G.; Ding, Y.; Bruner, S. Structural basis for precursor protein-directed ribosomal peptide macrocyclization. Nat. Chem. Biol. 2016, 12, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Waterbody | MA | MC | MN | MW | SS/DC | TTs |
---|---|---|---|---|---|---|
Lake Durankulak East | <0.5% | n.d. | n.d. | n.d. | <0.05%. | n.d. |
Lake Durankulak West | n.d. | n.d. | n.d. | <1% | <0.05%. | <0.05% |
Lake Vaya | n.d. | n.d | n.d | n.d | <0.05% | n.d. |
Res. Poroy | n.d. | n.d. | n.d. | <0.5%. | n.d. | n.d. |
Res. Mandra East | <5% | n.d. | n.d. | <0.5% | n.d. | <0.05% |
Res. Mandra West | <0.1% | n.d. | n.d. | <0.5% | <0.05%. | <0.05% |
Lake Uzungeren | n.d. | n.d | n.d | n.d | <0.05% | n.d. |
Res. Zhrebchevo | <0.5% | n.d. | <0.05%. | n.d. | <0.05%. | n.d. |
Res. Duvanli | n.d. | <0.01% | <0.1% | <1% | <0.1% | <0.05% |
Res. Sinyata Reka | <0.5% | n.d. | n.d. | <1% | <0.05%. | <0.05% |
Microviridin Variants/Amino Acids | Z1 | Z2 | Z3 | T | X | KYPSD | W | E | E/D | Z4 |
---|---|---|---|---|---|---|---|---|---|---|
Microviridin A | Y | G | G | T | F | KYPSD | W | E | E | Y |
Por 2 | Y | G | G | T | L | KYPSD | W | E | E | Y |
MV Microcystis aeruginosa NIES 843 | Y | G | G | T | F | KYPSD | W | E | D | Y |
MV Microcystis viridis NIES 102 | Y | G | G | T | F | KYPSD | W | E | E | Y |
Microviridin B/C | F | G | T | T | L | KYPSD | W | E | E | Y |
Blu (and M. aeruginosa NIES 298) | F | G | T | T | L | KYPSD | W | E | E | Y |
Microviridin D/K | Y*(F) | G | N | T | M | KYPSD | W | E | D*(E) | Y |
Microviridin E/F | F | S | T | Y | KYPSD | W | E | D | F | |
Microviridin G/H | Y | P | Q | T | L | KYPSD | W | E | E | Y |
Microviridin I | Y | P | T | T | L | KYPSD | W | E | D | Y |
Microviridin J | I | S | T | R | KYPSD | W | E | E | W | |
Microviridin L | Y | G | G | T | F | KYPSD | W | E | D | Y |
Microviridin SD1684, SD1634, SD1652 | T | A | T | R | KYPSD | W | E | D | Y | |
Microviridin LH1667 | Y | S | T | F | KYPSD | W | E | D | Y | |
Microviridin 1777 | Y | N | V | T | F | KYPSD | W | E | D | Y |
CBJ55500.1 (Microcystis 199) | Y | G | V | T | L | KYPSD | W | E | E | F |
Dur (W), Man (E) 1, 2, 4, Man (W) 5, Vai | Y | G | V | T | L | KYPSD | W | E | E | F |
MV from a field sample MV/MC19 | Y | N | V | T | L | KYPSD | W | E | E | F |
Dur (E), Man (E) 3, Uz, Zh | Y | N | V | T | L | KYPSD | W | E | E | F |
MV Izancya | F | G | T | T | F | KYPSD | W | E | D | Y |
Por 1 | F | G | T | T | F | KYPSD | W | E | D | Y |
MV Microcystis NIES 100 | F | G | T | T | F | KYPSD | W | E | D | F |
MV Microcystis PCC 9805 | T | S | T | R | KYPSD | W | E | E | F | |
MV Microcystis NIES 103 | Y | G | G | T | F | KYPSD | W | E | E | Y |
MV Microcystis PCC 7005 | G | R | G | T | L | KYPSD | W | E | E | S |
MV from a field sample | Y | S | T | R | KYPSD | W | E | E | F | |
MV from a field sample | A | N | V | T | L | KYPSD | W | G | E | F |
MV from a field sample | Y | G | G | T | L | KYPSD | W | E | D | Y |
MV from a field sample | Y | G | S | T | F | KYPSD | W | E | D | F |
MV from a field sample | Y | E | V | T | L | KYPSD | W | E | E | F |
Waterbody | Alt | Latitude | Longitude | Area | WT | pH | SD | EC | TD | DO | TP | TN |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lake Durankulak (IBW0216) West | 2 | 43°40.0006′ | 29°32.6166′ | 26.5 | 8.89 | 0.6 | 0.974 | 631 | 7.86 | 0.30 | 0.66 | |
East | 4 | 43°40.5355′ | 28°33.0806′ | 369 | 26.7 | 8.91 | 0.6 | 0.105 | 680 | 6.04 | 0.33 | 0.63 |
Res. Poroy (IBW3038) | 43 | 42°43.3403′ | 27°37.5255′ | 223 | 27.5 | 8.05 | 0.4 | 0.644 | 416 | 7.6 | 0.10 | 0.31 |
Res. Mandra (IBW1720) West | 7 | 42°24.0295′ | 27°19.1194′ | 25.88 | 7.9 | 0.45 | 0.676 | 436 | 7.93 | 0.66 | 0.46 | |
East | 8 | 42°25.9303′ | 27°26.7652′ | 3366 | 27.2 | 8.46 | 0.45 | 0.578 | 375 | 7.87 | 1.5 | 1.8 |
Lake Vaya (IBW0191) | −2 | 42°30.5940′ | 27°22.075′ | 2463 | 27.9 | 9.22 | 0.15 | 0.490 | 17 | 7.69 | 0.50 | 0.26 |
Lake Uzungeren (IBW0710) | −3 | 42°26.1551′ | 27°27.2235′ | 177 | 27.6 | 8.45 | 0.45 | 0.175 | 1132 | 9.7 | 0.40 | 0.28 |
Res. Zhrebchevo (IBW2545) | 253 | 42°36.6024′ | 25°51.2345′ | 1851 | 27.6 | 7.70 | 0.7 | 0.358 | 233 | 8.01 | 0.10 | 0.18 |
Res. Duvanli (IBW1483) | 250 | 42°23.1851′ | 24°43.1000′ | 27 | 26.3 | 8.76 | 0.4 | 4.050 | 291 | 7.09 | 0.10 | 0.25 |
Res. Sinyata Reka (IBW1890) | 317 | 42°28.1480′ | 24°42.217′ | 6 | 27.4 | 9.72 | 0.5 | 0.470 | 305 | 9.36 | 25 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzunov, B.; Stefanova, K.; Radkova, M.; Descy, J.-P.; Gärtner, G.; Stoyneva-Gärtner, M. First Report on Microcystis as a Potential Microviridin Producer in Bulgarian Waterbodies. Toxins 2021, 13, 448. https://doi.org/10.3390/toxins13070448
Uzunov B, Stefanova K, Radkova M, Descy J-P, Gärtner G, Stoyneva-Gärtner M. First Report on Microcystis as a Potential Microviridin Producer in Bulgarian Waterbodies. Toxins. 2021; 13(7):448. https://doi.org/10.3390/toxins13070448
Chicago/Turabian StyleUzunov, Blagoy, Katerina Stefanova, Mariana Radkova, Jean-Pierre Descy, Georg Gärtner, and Maya Stoyneva-Gärtner. 2021. "First Report on Microcystis as a Potential Microviridin Producer in Bulgarian Waterbodies" Toxins 13, no. 7: 448. https://doi.org/10.3390/toxins13070448
APA StyleUzunov, B., Stefanova, K., Radkova, M., Descy, J. -P., Gärtner, G., & Stoyneva-Gärtner, M. (2021). First Report on Microcystis as a Potential Microviridin Producer in Bulgarian Waterbodies. Toxins, 13(7), 448. https://doi.org/10.3390/toxins13070448