Ochratoxins in Wines: A Review of Their Occurrence in the Last Decade, Toxicity, and Exposure Risk in Humans
Abstract
:1. Introduction
2. Occurrence of Ochratoxins in Wines
2.1. Ochratoxin A
2.2. Other Ochratoxins
3. Toxicity of Ochratoxins and Risk of Exposure through the Consumption of Contaminated Wine
3.1. OTA Toxicity and Biotransformation
3.2. Toxicity Associated with OTA Derivates
3.3. Risk of Exposure to Ochratoxins through the Consumption of Contaminated Wines
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Bayman, P.; Baker, J.L. Ochratoxins: A global perspective. Mycopathologia 2006, 162, 215–223. [Google Scholar] [CrossRef]
- Commission. E. Commission Regulation EC No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0401&from=ES (accessed on 1 March 2021).
- Abrunhosa, L.; Paterson, R.R.; Venâncio, A. Biodegradation of ochratoxin A for food and feed decontamination. Toxins 2010, 2, 1078–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esti, M.; Benucci, I.; Liburdi, K.; Acciaro, G. Monitoring of ochratoxin A fate during alcoholic fermentation of wine-must. Food Control 2012, 27, 53–56. [Google Scholar] [CrossRef]
- Lasram, S.; Mani, A.; Zaied, C.; Chebil, S.; Abid, S.; Bacha, H.; Mliki, A.; Ghorbel, A. Evolution of ochratoxin A content during red and rose vinification. J. Sci. Food Agric. 2008, 88, 1696–1703. [Google Scholar] [CrossRef]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef]
- Freire, L.; Furtado, M.M.; Guerreiro, T.M.; da Graça, J.S.; da Silva, B.S.; Oliveira, D.N.; Catharino, R.R.; Sant’Ana, A.S. The presence of ochratoxin A does not influence Saccharomyces cerevisiae growth kinetics but leads to the formation of modified ochratoxins. Food Chem. Toxicol. 2019, 133, 110756. [Google Scholar] [CrossRef]
- Remiro, R.; Ibáñez-Vea, M.; González-Peñas, E.; Lizarraga, E. Validation of a liquid chromatography method for the simultaneous quantification of ochratoxin A and its analogues in red wines. J. Chromatogr. A 2010, 1217, 8249–8256. [Google Scholar] [CrossRef] [PubMed]
- Gil-Serna, J.; Vázquez, C.; González-Jaén, M.T.; Patiño, B. Wine contamination with ochratoxins: A Review. Beverages 2018, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Lorenzini, M.; Simonato, B.; Favati, F.; Bernardi, P.; Sbarbati, A.; Zapparoli, G. Filamentous fungi associated with natural infection of noble rot on withered grapes. Int. J. Food Microbiol. 2018, 272, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Louda, M.; Ostry, V.; Toman, J.; Ali, N.; Grosse, Y.; Malirova, E.; Pacovsky, J.; Pickova, D.; Brodak, M. Analyses of biomarkers of exposure to nephrotoxic mycotoxins in a cohort of patients with renal tumours. Mycotoxin Res. 2019, 35, 391–403. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Fernandes, A.; Venâncio, A. Ochratoxin Aremoval during the main steps of wine making. In Proceedings of the 7 Encontro de Qu’ımica dos Alimentos, Viseu, Portugal, 13–16 April 2005. ESAV- IPV/SPQ (2005). [Google Scholar]
- Dachery, B.; Veras, F.F.; Dal Magro, L.; Manfroi, V.; Welke, J.E. Exposure risk assessment to ochratoxin A through consumption of juice and wine considering the effect of steam extraction time and vinification stages. Food Chem. Toxicol. 2017, 109, 237–244. [Google Scholar] [CrossRef]
- El Khoury, A.; Atoui, A. Ochratoxin A: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef] [Green Version]
- Ratola, N.; Abade, E.; Simoes, T.; Venâncio, A.; Alves, A. Evolution of ochratoxin A content from must to wine in Port Wine microvinification. Anal. Bioanal. Chem. 2005, 382, 405–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, L.; Guerreiro, T.M.; Caramês, E.T.S.; Lopes, L.S.; Orlando, E.A.; Pereira, G.E.; Lima Pallone, J.A.; Catharino, R.R.; Sant’Ana, A.S. Influence of Maturation Stages in Different Varieties of Wine Grapes (Vitis vinifera) on the Production of Ochratoxin A and Its Modified Forms by Aspergillus carbonarius and Aspergillus niger. J. Agric. Food Chem. 2018, 66, 8824–8831. [Google Scholar] [CrossRef] [Green Version]
- Amezqueta, S.; Schorr-Galindo, S.; Murillo-Arbizu, M.; Gonzalez-Peñas, E.; De Cerain, A.L.; Guiraud, J. OTA-producing fungi in foodstuffs: A review. Food Control 2012, 26, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Freire, L.; Guerreiro, T.M.; Pia, A.K.; Lima, E.O.; Oliveira, D.N.; Melo, C.F.; Catharino, R.R.; Sant’Ana, A.S. A quantitative study on growth variability and production of ochratoxin A and its derivatives by A. carbonarius and A. niger in grape-based medium. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Leggieri, M.C.; Mitchell, D.; Aldred, D.; Battilani, P.; Magan, N. Hydro-and thermotimes for conidial germination kinetics of the ochratoxigenic species Aspergillus carbonarius in vitro, on grape skin and grape flesh. Fungal Biol. 2014, 118, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Freire, L.; Braga, P.A.; Furtado, M.M.; Delafiori, J.; Dias-Audibert, F.L.; Pereira, G.E.; Reyes, F.G.; Catharino, R.R.; Sant’Ana, A.S. From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 2020, 113, 107167. [Google Scholar] [CrossRef]
- Gonçalves, A.; Palumbo, R.; Guimarães, A.; Gkrillas, A.; Dall’Asta, C.; Dorne, J.-L.; Battilani, P.; Venâncio, A. The route of mycotoxins in the grape food chain. Am. J. Enol. Vitic. 2020, 71, 89–104. [Google Scholar] [CrossRef]
- Frisvad, J.C. Mycotoxins and Mycotoxigenic Fungi in Storage; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Lataste, C.; Guérin, L.; Molot, B.; Solanet, D.; Berger, J.-L.; Cottereau, P. Évolution de la contamination en ochratoxine A: Du vignoble Français au vin. Le Progrès Agric. Vitic. 2004, 121, 57–64. [Google Scholar]
- Cecchini, F.; Morassut, M.; Garcia Moruno, E.; Di Stefano, R. Influence of yeast strain on ochratoxin A content during fermentation of white and red must. Food Microbiol. 2006, 23, 411–417. [Google Scholar] [CrossRef]
- Bornet, A.; Teissedre, P. Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. Eur. Food Res. Technol. 2008, 226, 681–689. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Borneman, A.R. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Appl. Microbiol. Biotechnol. 2011, 92, 441–447. [Google Scholar] [CrossRef]
- Quintela, S.; Villarán, M.C.; de Armentia, I.L.; Elejalde, E. Ochratoxin A removal in wine: A review. Food control 2013, 30, 439–445. [Google Scholar] [CrossRef]
- Moruno, E.G.; Sanlorenzo, C.; Boccaccino, B.; Di Stefano, R. Treatment with yeast to reduce the concentration of ochratoxin A in red wine. Am. J. Enol. Vitic. 2005, 56, 73–76. [Google Scholar]
- Fernandes, A.; Venâncio, A.; Moura, F.; Garrido, J.; Cerdeira, A. Fate of ochratoxin A during a vinification trial. Asp. Appl. Biol. 2003, 68, 73–80. [Google Scholar]
- Gambuti, A.; Strollo, D.; Genovese, A.; Ugliano, M.; Ritieni, A.; Moio, L. Influence of enological practices on ochratoxin A concentration in wine. Am. J. Enol. Vitic. 2005, 56, 155–162. [Google Scholar]
- Leong, S.-L.L.; Hocking, A.D.; Varelis, P.; Giannikopoulos, G.; Scott, E.S. Fate of ochratoxin A during vinification of Semillon and Shiraz grapes. J. Agric. Food Chem. 2006, 54, 6460–6464. [Google Scholar] [CrossRef]
- Zimmerli, B.; Dick, R. Ochratoxin A in table wine and grape-juice: Occurrence and risk assessment. Food Addit. Contam. 1996, 13, 655–668. [Google Scholar] [CrossRef]
- Silva, L.J.; Rodrigues, A.P.; Pereira, A.M.; Lino, C.M.; Pena, A. Ochratoxin A in the Portuguese Wine Market, Occurrence and Risk Assessment. Food Addit. Contam. Part. B 2019, 12, 145–149. [Google Scholar] [CrossRef]
- Torović, L.; Lakatoš, I.; Majkić, T.; Beara, I. Risk to public health related to the presence of ochratoxin A in wines from Fruška Gora. LWT 2020, 129, 109537. [Google Scholar] [CrossRef]
- Remiro, R.; González-Peñas, E.; Lizarraga, E.; de Cerain, A.L. Quantification of ochratoxin A and five analogs in Navarra red wines. Food Control 2012, 27, 139–145. [Google Scholar] [CrossRef]
- Pizzutti, I.R.; de Kok, A.; Scholten, J.; Righi, L.W.; Cardoso, C.D.; Rohers, G.N.; da Silva, R.C. Development, optimization and validation of a multimethod for the determination of 36 mycotoxins in wines by liquid chromatography–tandem mass spectrometry. Talanta 2014, 129, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Ostry, V.; Malir, F.; Dofkova, M.; Skarkova, J.; Pfohl-Leszkowicz, A.; Ruprich, J. Ochratoxin A dietary exposure of ten population groups in the Czech Republic: Comparison with data over the world. Toxins 2015, 7, 3608–3635. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, V.; Pitonzo, R.; Avellone, G.; Di Fiore, A.; Monte, L.; Ogorka, A.Z.T. Determination of Aflatoxins and Ochratoxins in Sicilian Sweet Wines by High-Performance Liquid Chromatography with Fluorometric Detection and Immunoaffinity Cleanup. Food Anal. Methods 2015, 8, 569–577. [Google Scholar] [CrossRef]
- Gentile, F.; La Torre, G.L.; Potortì, A.G.; Saitta, M.; Alfa, M.; Dugo, G. Organic wine safety: UPLC-FLD determination of Ochratoxin A in Southern Italy wines from organic farming and winemaking. Food Control 2016, 59, 20–26. [Google Scholar] [CrossRef]
- Hajok, I.; Kowalska, A.; Piekut, A.; Ćwieląg-Drabek, M. A risk assessment of dietary exposure to ochratoxin A for the Polish population. Food Chem. 2019, 284, 264–269. [Google Scholar] [CrossRef]
- Leal, T.; Abrunhosa, L.; Domingues, L.; Venâncio, A.; Oliveira, C. BSA-based sample clean-up columns for ochratoxin A determination in wine: Method development and validation. Food Chem. 2019, 300, 125204. [Google Scholar] [CrossRef] [Green Version]
- Žurga, P.; Vahčić, N.; Pasković, I.; Banović, M.; Malenica Staver, M. Occurence of Ochratoxin A and Biogenic Amines in Croatian Commercial Red Wines. Foods 2019, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Batrinou, A.; Houhoula, D.; Papageorgiou, E. Rapid detection of mycotoxins on foods and beverages with enzyme linked immunosorbent assay. Qual. Assur. Saf. Crop. Foods 2020, 12, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Vega, M.; Ríos, G.; Von Baer, D.; Mardones, C.; Tessini, C.; Herlitz, E.; Saelzer, R.; Ruiz, M.A. Ochratoxin A occurrence in wines produced in Chile. Food Control 2012, 28, 147–150. [Google Scholar] [CrossRef]
- Al-Taher, F.; Banaszewski, K.; Jackson, L.; Zweigenbaum, J.; Ryu, D.; Cappozzo, J. Rapid method for the determination of multiple mycotoxins in wines and beers by LC-MS/MS using a stable isotope dilution assay. J. Agric. Food Chem. 2013, 61, 2378–2384. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, N.J.; Chen, C.; Palumbo, J.D.; Bianchini, A.; Cappozzo, J.; Stratton, J.; Ryu, D.; Wu, F. A risk assessment of dietary Ochratoxin a in the United States. Food Chem. Toxicol. 2017, 100, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariño-Repizo, L.; Gargantini, R.; Manzano, H.; Raba, J.; Cerutti, S. Assessment of ochratoxin A occurrence in Argentine red wines using a novel sensitive quechers-solid phase extraction approach prior to ultra high performance liquid chromatography-tandem mass spectrometry methodology. J. Sci. Food Agric. 2017, 97, 2487–2497. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, C.L.; Bartley, A.; Welch, A.Z.; Berry, J.P. High incidence and levels of Ochratoxin A in wines sourced from the United States. Toxins 2018, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrúa, A.A.; Mendes, J.M.; Arrúa, P.; Ferreira, F.P.; Caballero, G.; Cazal, C.; Kohli, M.M.; Peralta, I.; Ulke, G.; Fernández Ríos, D. Occurrence of Deoxynivalenol and Ochratoxin A in Beers and Wines Commercialized in Paraguay. Toxins 2019, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Tamura, M.; Takahashi, A.; Uyama, A.; Mochizuki, N. A method for multiple mycotoxin analysis in wines by solid phase extraction and multifunctional cartridge purification, and ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Toxins 2012, 4, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.D.; Li, G.H.; Wang, D.B.; Shao, Y.; Li, J.G.; Xiong, Z.H.; Wu, Y.N. Exposure assessment to ochratoxin A in Chinese wine. J. Agric. Food Chem. 2014, 62, 8908–8913. [Google Scholar] [CrossRef] [PubMed]
- Puangkham, S.; Poapolathep, A.; Jermnak, U.; Imsilp, K.; Tanhan, P.; Chokejaroenrat, C.; Poapolathep, S. Monitoring and health risk of mycotoxins in imported wines and beers consumed in Thailand. World Mycotoxin J. 2017, 10, 401–409. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, X.; Han, S.-Y.; Li, M.; Ma, T.-Z.; Sheng, W.-J.; Zhu, X. Simultaneous Analysis of 20 Mycotoxins in Grapes and Wines from Hexi Corridor Region (China): Based on a QuEChERS-UHPLC-MS/MS Method. Molecules 2018, 23, 1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasram, S.; Oueslati, S.; Chebil, S.; Mliki, A.; Ghorbel, A. Occurrence of ochratoxin A in domestic beers and wines from Tunisia by immunoaffinity clean-up and liquid chromatography. Food Addit. Contam. Part. B 2013, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Prelle, A.; Spadaro, D.; Denca, A.; Garibaldi, A.; Gullino, M.L. Comparison of clean-up methods for ochratoxin A on wine, beer, roasted coffee and chili commercialized in Italy. Toxins 2013, 5, 1827–1844. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, V.; Avellone, G.; Pitonzo, R.; Capocchiano, V.G.; Mazza, A.; Cicero, N.; Dugo, G. Natural co-occurrence of ochratoxin A, ochratoxin B and aflatoxins in Sicilian red wines. Food Addit. Contam. Part. A 2015, 32, 1343–1351. [Google Scholar] [CrossRef]
- Campone, L.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Rastrelli, L. Rapid and automated on-line solid phase extraction HPLC–MS/MS with peak focusing for the determination of ochratoxin A in wine samples. Food Chem. 2018, 244, 128–135. [Google Scholar] [CrossRef]
- Kholová, A.; Lhotská, I.; Uhrová, A.; Špánik, I.; Machyňáková, A.; Solich, P.; Šatínský, D. Determination of Ochratoxin A and Ochratoxin B in Archived Tokaj Wines (Vintage 1959–2017) Using On-Line Solid Phase Extraction Coupled to Liquid Chromatography. Toxins 2020, 12, 739. [Google Scholar] [CrossRef]
- Remiro, R.; Irigoyen, A.; González-Peñas, E.; Lizarraga, E.; de Cerain, A.L. Levels of ochratoxins in Mediterranean red wines. Food Control 2013, 32, 63–68. [Google Scholar] [CrossRef]
- FAO. Manual sobre la aplicación del sistema de Análisis de Peligros y de Puntos críticos de control (APPCC) en la prevención y control de las micotoxinas. Estud. FAO Aliment. Nutr. 2003, 73, 130. [Google Scholar]
- Nogueira, L.; Foerster, C.; Groopman, J.; Egner, P.; Koshiol, J.; Ferreccio, C. Association of aflatoxin with gallbladder cancer in Chile. JAMA 2015, 313, 2075–2077. [Google Scholar] [CrossRef] [Green Version]
- Pitt, J. Toxigenic fungi and mycotoxins. Br. Med. Bull. 2000, 56, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Castegnaro, M.; Canadas, D.; Vrabcheva, T.; Petkova-Bocharova, T.; Chernozemsky, I.N.; Pfohl-Leszkowicz, A. Balkan endemic nephropathy: Role of ochratoxins A through biomarkers. Mol. Nutr. Food Res. 2006, 50, 519–529. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–99. [Google Scholar] [CrossRef] [PubMed]
- Kőszegi, T.; Poór, M. Ochratoxin A: Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins 2016, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, V.B.; Preedy, V.R. Handbook of Nutrition, Diet., and Epigenetics; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Berger, V.; Gabriel, A.-F.; Sergent, T.; Trouet, A.; Larondelle, Y.; Schneider, Y.-J. Interaction of ochratoxin A with human intestinal Caco-2 cells: Possible implication of a multidrug resistance-associated protein (MRP2). Toxicol. Lett. 2003, 140–141, 465–476. [Google Scholar] [CrossRef]
- Il’ichev, Y.V.; Perry, J.L.; Simon, J.D. Interaction of ochratoxin A with human serum albumin. Preferential binding of the dianion and pH effects. J. Phys. Chem. B 2002, 106, 452–459. [Google Scholar] [CrossRef]
- Leitner, A.; Zöllner, P.; Paolillo, A.; Stroka, J.; Papadopoulou-Bouraoui, A.; Jaborek, S.; Anklam, E.; Lindner, W. Comparison of methods for the determination of ochratoxin A in wine. Anal. Chim. Acta 2002, 453, 33–41. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Ikoma, T.; Tsuchiya, Y.; Asai, T.; Okano, K.; Ito, N.; Endoh, K.; Yamamoto, M.; Nakamura, K. Ochratoxin A contamination of red chili peppers from Chile, Bolivia and Peru, countries with a high incidence of gallbladder cancer. Asian Pac. J. Cancer Prev. 2015, 16, 5987–5991. [Google Scholar] [CrossRef] [Green Version]
- Ringot, D.; Chango, A.; Schneider, Y.-J.; Larondelle, Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem. Biol. Interact. 2006, 159, 18–46. [Google Scholar] [CrossRef]
- Fazekas, B.; Tar, A.; Kovács, M. Ochratoxin A content of urine samples of healthy humans in Hungary. Acta Vet. Hung. 2005, 53, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in southern Italy by urinary mul-ti-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef]
- Fuchs, R.; Hult, K.; Appelgren, L. Distribution of 14C-ochratoxin A and 14C-ochratoxin B in rats: A comparison based on whole-body autoradiography. IARC Sci. Publ. 1991, 115, 201–203. [Google Scholar]
- Mally, A.; Keim-Heusler, H.; Amberg, A.; Kurz, M.; Zepnik, H.; Mantle, P.; Völkel, W.; Hard, G.C.; Dekant, W. Biotransformation and nephrotoxicity of ochratoxin B in rats. Toxicol. Appl. Pharmacol. 2005, 206, 43–53. [Google Scholar] [CrossRef]
- Müller, G.; Burkert, B.; Rosner, H.; Köhler, H. Effects of the mycotoxin ochratoxin A and some of its metabolites on human kidney cell lines. Toxicol. In Vitro 2003, 17, 441–448. [Google Scholar] [CrossRef]
- Heussner, A.H.; Bingle, L.E. Comparative ochratoxin toxicity: A review of the available data. Toxins 2015, 7, 4253–4282. [Google Scholar] [CrossRef] [Green Version]
- Köhler, H.; Heller, M.; Erler, W.; Müller, G.; Rosner, H.; Gräfe, U. Effect of ochratoxin A and ochratoxin C on the monocyte and lymphocyte function. Mycotoxin Res. 2002, 18, 169–172. [Google Scholar] [CrossRef]
- Pinelli, E.; El Adlouni, C.; Pipy, B.; Quartulli, F.; Pfohl-Leszkowicz, A. Roles of cyclooxygenase and lipoxygenases in ochratoxin A genotoxicity in human epithelial lung cells. Environ. Toxicol. Pharmacol. 1999, 7, 95–107. [Google Scholar] [CrossRef]
- El Adlouni, C.; Pinelli, E.; Azémar, B.; Zaoui, D.; Beaune, P.; Pfohl-Leszkowicz, A. Phenobarbital increases DNA adduct and metabolites formed by ochratoxin A: Role of CYP 2C9 and microsomal glutathione-S-transferase. Environ. Mol. Mutagenesis 2000, 35, 123–131. [Google Scholar] [CrossRef]
- Commission, E. Commission Regulation (EC) No 123/2005 of 26 January 2005 amending regulation (EC) No 466/2001 as regards ochratoxin A. Off. J. Eur. Union 2005, 25, 3–5. [Google Scholar]
- EFSA.,(Eurpean Food Safety Authority). Scientific Opinion on the Risks to Public Health Related to the Presence of Ochratoxin A in Food. Available online: http://www.efsa.europa.eu/en/consultations/call/public-consultation-scientific-opinion-risks-public-health-related (accessed on 1 March 2021).
- Pena, A.; Cerejo, F.; Silva, L.; Lino, C. Ochratoxin A survey in Portuguese wine by LC–FD with direct injection. Talanta 2010, 82, 1556–1561. [Google Scholar] [CrossRef] [PubMed]
- Quintela, S.; Villarán, M.C.; de Armentia, I.L.; Elejalde, E. Occurrence of ochratoxin A in Rioja Alavesa wines. Food Chem. 2011, 126, 302–305. [Google Scholar] [CrossRef]
- Markaki, P.; Delpont-Binet, C.; Grosso, F.; Dragacci, S. Determination of ochratoxin A in red wine and vinegar by immunoaffinity high-pressure liquid chromatography. J. Food Prot. 2001, 64, 533–537. [Google Scholar] [CrossRef]
- Stefanaki, I.; Foufa, E.; Tsatsou-Dritsa, A.; Dais, P. Ochratoxin A concentrations in Greek domestic wines and dried vine fruits. Food Addit. Contam. 2003, 20, 74–83. [Google Scholar] [CrossRef]
- Brera, C.; Soriano, J.; Debegnach, F.; Miraglia, M. Exposure assessment to ochratoxin A from the consumption of Italian and Hungarian wines. Microchem. J. 2005, 79, 109–113. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Technical Support Document EPA’s 2014 National Air Toxics Assessment. Available online: https://www.epa.gov/sites/production/files/2018-09/documents/2014_nata_technical_support_document.pdf (accessed on 1 March 2021).
- Freire, L.; Sant’Ana, A.S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem. Toxicol. 2018, 111, 189–205. [Google Scholar] [CrossRef]
- Davis, J.A.; Gift, J.S.; Zhao, Q.J. Introduction to benchmark dose methods and U.S. EPA’s benchmark dose software (BMDS) version 2.1.1. Toxicol. Appl. Pharmacol. 2011, 254, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Authority EFS. EFSA/WHO International Conference with support of ILSI Europe on Risk Assessment of Compounds that are both Genotoxic and Carcinogenic. EFSA Supporting Publ. 2006, 3, 92E. [Google Scholar]
Sampling Location | Wines | Positive/Total Samples | OTA Range (µg L−1) | Method | LOD | Ref. |
---|---|---|---|---|---|---|
Portugal | Red, white | 5/100 | <LOD–1.2 | HPLC-FLD | 0.08 | [34] |
Serbia | Red, white, rose | 59/113 | <LOD–0.13 | HPLC-FLD | 0.001 | [35] |
Spain | Red | 51/51 | 0.0005–0.014 | HPLC-FLD | 0.00032 | [36] |
Holland | Red | 6/280 | 0.2–0.6 | UPL-MS | NR* | [37] |
Czech Republic | Red, white | 8/24 | 0.0–0.7 | HPLC-FLD | NR* | [38] |
Italy | Sweet | 29/30 | <LOD–1.6 | HPLC-FLD | 0.01 | [39] |
Italy | Red, white | 55/55 | 0.08–0.7 | UPLC-FLD | 0.01 | [40] |
Poland | - | 8/32 | 0.1–0.5 | HPLC-FLD | 0.05 | [41] |
Portugal | Red | 4/6 | <LOD–0.17 | HPLC-FLD | 0.017 | [42] |
Croatia | Red | 102/110 | <LOD–0.16 | HPLC-FLD | 0.006 | [43] |
Greece | - | 10/23 | 3.4–15.6 | ELISA | 1.0 | [44] |
Chile | Red, white | 34/1188 | <LOD–0.4 | HPLC-FLD | 0.01 | [45] |
United States of America | Red, white | 12/143 | 0.1– 0.4 | UHPLC-MS/MS | 0.1 | [46] |
United States of America | - | 6/343 | <LOD–0.4 | LC-MS/MS | 0.1 | [47] |
Argentina | Red | 136/136 | <LOD–1 | UHPLC-MS/MS | 0.02 | [48] |
United States of America | Red, white, dry, sweet | 35/41 | 0.3–8.6 | HPLC-FLD | 0.1 | [49] |
Paraguay | Red | 1/4 | 2.4 | ELISA | 2.0 | [50] |
Japan | Red, white | 5/27 | <0.2–0.4 | UHPLC-MS/MS | 0.06 | [51] |
China | Red, white | 223/223 | <LOD–1 | HPLC-FLD | 0.01 | [52] |
Thailand | Red | 10/100 | 0.3–1.7 | LC-MS/MS | 0.06 | [53] |
China | - | 2/42 | 1.3 | UHPLC-MS/MS | 0.1 | [54] |
Tunisia | Red, white, rose | 29/34 | 0.1–1.5 | HPLC-FLD | 0.03 | [55] |
Italy | Red | 2/30 | 2.0 | HPLC-FLD | NR* | [56] |
Italy | Red | 41/57 | <LOD–0.7 | HPLC-FLD | 0.02 | [57] |
Italy | Red, and white | 37/58 | <LOD–0.3 | HPLC-MS/MS | 0.012 | [58] |
Hungary | Sweet wines (Tokaj) | 7/53 | <LOD–0.3 | HPLC-FLD | 0.03 | [59] |
Wines | Ochratoxin | Positive Wines | Range (µg L−1) | Method | LOD (µg L−1) | Ref. |
---|---|---|---|---|---|---|
Red wines; | OTA | 100% | 0.001–0.1 | HPLC-FLD | 0.00016 | [9] |
n = 20 | OTB | 100% | 0.003–0.02 | 0.00032 | ||
MeOTA | 50% | <LOD–0.001 | 0.00027 | |||
OTC | 70% | <LOD–0.004 | 0.00017 | |||
White, rose, | OTA | 92.4% | <LOD–0.4 | HPLC-FLD | 0.003 | [33] |
and red wines; | OTC | 10% | - | NR * | ||
n = 133 | OTA + OTC | 10% | - | |||
Red wines; | OTA | 100% | 0.001–0.01 | HPLC-FLD | 0.00032 | [36] |
n = 51 | OTB | 100% | 0.003–0.1 | 0.00016 | ||
OTC | 70.6% | 0.0002–0.01 | 0.00017 | |||
MeOTA | 41.2% | 0.0002–0.004 | 0.00021 | |||
MeOTB | 92.2% | NR*–0.01 | NR * | |||
EtOTB | 43.1% | NR*–0.001 | NR * | |||
Sweet wines; | OTA | 96.6% | <LOD–1.6 | HPLC-FLD | 0.01 | [38] |
n = 30 | OTB | 83.3% | <LOD–1.2 | 0.02 | ||
Red wines | OTA | 99% | <LOD–0.5 | HPLC-FLD | 0.00032 | [60] |
n = 96 | OTB | 100% | 0.002–0.1 | 0.00016 | ||
MeOTA | 62.5% | <LOD–0.1 | 0.00021 | |||
OTC | 89.6% | <LOD–0.03 | 0.00017 |
Country | EDI (ng kg−1 bw day−1) | Ref. |
---|---|---|
Switzerland | 0.7 | [33] |
Portugal | 0.01 | [34] |
Serbia | 0.004 | [35] |
Spain | 0.01 | [36] |
Czech Republic | 0.01–0.03 | [38] |
Italy | 4.1 | [40] |
Poland | 0.0002 | [41] |
USA | 0.01 | [47] |
China | 0.1–0.2 | [52] |
Thailand | 0.3 | [53] |
Portugal | 2.9–5.4 | [87] |
Spain | 0.01 | [88] |
France | 2 | [89] |
Greece | 3.7 | [90] |
Italy | 0.9–1.4 | [91] |
Parameters | Interpretation of Results | |
---|---|---|
EDI | <17 ng kg−1 | The estimated daily intake of OTA should never be greater than the tolerable daily intake that corresponds to 17 ng kg−1 |
HQ | <1 | Suggests that carcinogenic effects are unlikely |
>1 | Is indicative that the OTA present in the matrix are potential agents that cause adverse health effects | |
MOE | ≥200 | Non-neoplastic effects |
≥10,000 | Suggests neoplastic effects |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Villeda, B.; Lobos, O.; Aguilar-Zuniga, K.; Carrasco-Sánchez, V. Ochratoxins in Wines: A Review of Their Occurrence in the Last Decade, Toxicity, and Exposure Risk in Humans. Toxins 2021, 13, 478. https://doi.org/10.3390/toxins13070478
Ortiz-Villeda B, Lobos O, Aguilar-Zuniga K, Carrasco-Sánchez V. Ochratoxins in Wines: A Review of Their Occurrence in the Last Decade, Toxicity, and Exposure Risk in Humans. Toxins. 2021; 13(7):478. https://doi.org/10.3390/toxins13070478
Chicago/Turabian StyleOrtiz-Villeda, Bryan, Olga Lobos, Kateryn Aguilar-Zuniga, and Verónica Carrasco-Sánchez. 2021. "Ochratoxins in Wines: A Review of Their Occurrence in the Last Decade, Toxicity, and Exposure Risk in Humans" Toxins 13, no. 7: 478. https://doi.org/10.3390/toxins13070478
APA StyleOrtiz-Villeda, B., Lobos, O., Aguilar-Zuniga, K., & Carrasco-Sánchez, V. (2021). Ochratoxins in Wines: A Review of Their Occurrence in the Last Decade, Toxicity, and Exposure Risk in Humans. Toxins, 13(7), 478. https://doi.org/10.3390/toxins13070478