Secretion of Pertussis Toxin from Bordetella pertussis
Abstract
:1. Introduction
2. Type IV Transporters
3. Sequence of Events in the Assembly and Secretion of PT
4. Conclusions and Future Questions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Locht, C.; Keith, J.M. Pertussis toxin gene: Nucleotide sequence and genetic organization. Science 1986, 232, 1258–1264. [Google Scholar] [CrossRef] [Green Version]
- Nicosia, A.; Perugini, M.; Franzini, C.; Casagli, M.C.; Borri, M.G.; Antoni, G.; Almoni, M.; Neri, P.; Ratti, G.; Rappuoli, R. Cloning and sequencing of the pertussis toxin genes: Operon structure and gene duplication. Proc. Natl. Acad. Sci. USA 1986, 83, 4631–4635. [Google Scholar] [CrossRef] [Green Version]
- Farizo, K.M.; Cafarella, T.G.; Burns, D.L. Evidence for a ninth gene, ptlI, in the locus encoding the pertussis toxin secretion system of Bordetella pertussis and formation of a PtlI-PtlF complex. J. Biol. Chem. 1996, 271, 31643–31649. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A.A.; Johnson, F.D.; Burns, D.L. Molecular characterization of an operon required for pertussis toxin secretion. Proc. Natl. Acad. Sci. USA 1993, 90, 2970–2974. [Google Scholar] [CrossRef] [Green Version]
- Craig-Mylius, K.A.; Weiss, A.A. Mutants in the ptlA-H genes of Bordetella pertussis are deficient for pertussis toxin secretion. FEMS Microbiol. Lett. 1999, 179, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Burns, D.L. Biochemistry of type IV secretion. Curr. Opin. Microbiol. 1999, 2, 25–29. [Google Scholar] [CrossRef]
- Burns, D.L. Type IV transporters of pathogenic bacteria. Curr. Opin. Microbiol. 2003, 6, 29–34. [Google Scholar] [CrossRef]
- Alvarez, C.E.; Christie, P.J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 2009, 73, 775–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trokter, M.; Felisberto-Rodrigues, C.; Christie, P.J.; Waksman, G. Recent advances in the structural and molecular biology of type IV secretion systems. Curr. Opin. Struct. Biol. 2014, 27, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Souza, D.P.; Oka, G.U.; Alvarez-Martinez, C.E.; Bisson-Filho, A.W.; Dunger, G.; Hobeika, L.; Cavalcante, N.S.; Alegria, M.C.; Barbosa, L.R.S.; Salinas, R.K.; et al. Bacterial killing via a type IV secretion system. Nat. Commun. 2015, 6, 6453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatty, M.; Laverde Gomez, J.A.; Christie, P.J. The expanding bacterial type IV secretion lexicon. Res. Microbiol. 2013, 164, 620–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.M.; Sheedlo, M.J.; Campbell, A.M.; Sawhney, N.; Frick-Cheng, A.E.; Lacy, D.B.; Cover, T.L.; Ohi, M.D. Structure of the Helicobacter pylori Cag type IV secretion system. eLife 2019, 8, e47644. [Google Scholar] [CrossRef] [PubMed]
- de Jong, M.F.; Tsolis, R.M. Brucellosis and type IV secretion. Future Microbiol 2012, 7, 47–58. [Google Scholar] [CrossRef]
- Li, Y.G.; Christie, P.J. The Agrobacterium VirB/VirD4 T4SS: Mechanism and architecture defined through in vivo mutagenesis and chimeric systems. Curr. Top. Microbiol. Immunol. 2018, 418, 233–260. [Google Scholar]
- Schroeder, G. The toolbox for uncovering the functions of Legionella Dot/Icm type IVb secretion system effectors: Current state and future directions. Front. Cell. Infect. Microbiol. 2018, 7, 528. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, G.; Dehio, C. Virulence-associated type IV secretion systems of Bartonella. Trends Microbiol. 2005, 13, 336–342. [Google Scholar] [CrossRef]
- Backert, S.; Ziska, E.; Brinkmann, V.; Zimny-Arndt, U.; Fauconnier, A.; Jungblut, P.R.; Naumann, M.; Meyer, T.F. Translocation of the Helicobacter pylori CagA protein in gastric epipthelial cells by a type IV secretion apparatus. Cell Microbiol. 2000, 2, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Odenbreit, S.; Puls, J.; Sedlmaier, B.; Gerland, E.; Fischer, W.; Haas, R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000, 287, 1497–1500. [Google Scholar] [CrossRef]
- Low, H.H.; Gubellini, F.; Rivera-Calzada, A.; Braun, N.; Connery, S.; Dujeancourt, A.; Lu, F.; Redzej, A.; Fronzes, R.; Orlova, E.V.; et al. Structure of a type IV secretion system. Nature 2014, 508, 550–553. [Google Scholar] [CrossRef]
- Winans, S.C.; Burns, D.L.; Christie, P.J. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol. 1996, 4, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.G.; Hu, B.; Christie, P.J. Biological and structural diversity of type IV secretion systems. Microbiol. Spectr. 2019, 7, 277–289. [Google Scholar] [CrossRef]
- Chandran, V.; Fronzes, R.; Duquerroy, S.; Cronin, N.; Navaza, J.; Waksman, G. Structure of the outer membrane core complex of a type IV secretion system. Nature 2009, 462, 1011–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fronzes, R.; Schaefer, E.; Wang, L.; Saibil, H.R.; Orlova, E.V.; Waksman, G. Structure of a type IV secretion system complex. Science 2009, 323, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Calzada, A.; Fronzes, R.; Savva, C.G.; Chandran, V.; Lian, P.W.; Laeremans, T.; Pardon, E.; Steyaert, J.; Remaut, H.; Waksman, G.; et al. Structure of a type IV secretion core complex at subnanometre resolution. EMBO J. 2013, 32, 1195–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fullner, K.J.; Lara, J.C.; Nester, E.W. Pilus assembly by Agrobacterium T-DNA transfer genes. Science 1996, 273, 1107–1109. [Google Scholar] [CrossRef]
- Lai, E.-M.; Kado, C.I. Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J. Bacteriol. 1998, 180, 2711–2727. [Google Scholar] [CrossRef] [Green Version]
- Eisenbrandt, R.; Kalkum, M.; Lai, E.-M.; Lurz, R.; Kado, C.I.; Lanka, E. Conjugative pili of IncP plasmids, and the Ti plasmid pilus are composed of cyclic subunits. J. Biol. Chem. 1999, 274, 22548–22555. [Google Scholar] [CrossRef] [Green Version]
- Lai, E.-M.; Eisenbrandt, R.; Kalkum, M.; Lanka, E.; Kado, C.I. Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and clyclization. J. Bacteriol. 2002, 184, 327–330. [Google Scholar] [CrossRef] [Green Version]
- Aly, K.A.; Baron, C. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 2007, 153, 3766–3775. [Google Scholar] [CrossRef] [Green Version]
- Yeo, H.-J.; Savvides, S.N.; Herr, A.B.; Lanka, E.; Waksman, G. Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol. Cell 2000, 6, 1461–1472. [Google Scholar] [CrossRef]
- Berger, B.R.; Christie, P.J. The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain. J. Bacteriol. 1993, 175, 1723–1734. [Google Scholar] [CrossRef] [Green Version]
- Savvides, S.N.; Yeo, H.-J.; Beck, M.R.; Blaesing, F.; Lurz, R.; Lanka, E.; Buhrdorf, R.; Fischer, W.; Haas, R.; Waksman, G. VirB11 ATPases are dynamic hexameric assemblies: New insights into bacterial type IV secretion. EMBO J. 2003, 22, 1969–1980. [Google Scholar] [CrossRef] [Green Version]
- Walden, K.; Williams, R.; Yan, J.; Lian, P.W.; Wang, L.; Thalassinos, K.; Orlova, E.V.; Waksman, G. Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc. Natl. Acad. Sci. USA 2012, 109, 11348–11353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushegian, A.R.; Fullner, K.J.; Koonin, E.V.; Nester, E.W. A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc. Natl. Acad. Sci. USA 1996, 93, 7321–7326. [Google Scholar] [CrossRef] [Green Version]
- Zahrl, D.; Wagner, M.; Bischof, K.; Bayer, M.; Zavecz, B.; Beranek, A.; Ruckenstuhl, C.; Zarfel, G.E.; Koraimann, G. Peptidoglycan degradation by specialized lytic tranglycosylases associated with type III and type IV secretion systems. Microbiology 2005, 151, 3455–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, J.E.; Costa, T.R.D.; Patel, R.S.; Gonzolez-Rivera, C.; Sarkar, M.K.; Orlova, E.V.; Waksman, G.; Christie, P.J. Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol. Microbiol. 2017, 105, 273–293. [Google Scholar] [CrossRef] [PubMed]
- Banta, L.M.; Kerr, J.E.; Casales, E.; Giuliano, M.E.; Bailey, M.E.; McKay, C.; Chandran, V.; Waksman, G.; Christie, P.J. An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J. Bacteriol. 2011, 193, 2566–2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubowski, S.; Kerr, J.E.; Garza, I.; Krishnamoorthy, V.; Bayliss, R.; Waksman, G.; Christie, P.J. Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol. Microbiol. 2009, 71, 779–794. [Google Scholar] [CrossRef] [Green Version]
- Berger, B.R.; Christie, P.J. Genetic complementation analysis of the Agrobacterium tumefaciens virB2 through virB11 are essential virulence genes. J. Bacteriol. 1994, 176, 3646–3660. [Google Scholar] [CrossRef] [Green Version]
- Rambow-Larsen, A.A.; Weiss, A.A. The PtlE Protein of Bordetella pertussis has peptidoglycanase activity required for Ptl-mediated pertussis toxin secretion. J. Bacteriol. 2002, 184, 2863–2869. [Google Scholar] [CrossRef] [Green Version]
- Cascales, E.; Christie, P.J. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 2004, 304, 1170–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Li, C.M.; Nester, E.W. Transferred DNA (T-DNA)-associated proteins of Agrobacterium tumefaciens are exported independently of virB. Proc. Natl. Acad. Sci. USA 2000, 97, 7545–7550. [Google Scholar] [CrossRef] [Green Version]
- Farizo, K.M.; Huang, T.; Burns, D.L. Importance of holotoxin assembly in Ptl-mediated secretion of pertussis toxin from Bordetella pertussis. Infect. Immun. 2000, 68, 4049–4054. [Google Scholar] [CrossRef] [Green Version]
- Pizza, M.; Bugnoli, M.; Manetti, R.; Covacci, A.; Rappuoli, R. The subunit S1 is important for pertussis toxin secretion. J. Biol. Chem. 1990, 265, 17759–17763. [Google Scholar] [CrossRef]
- Antoine, R.; Locht, C. Roles of the disulfide bond and the carboxy-terminal region of the S1 subunit in the assembly and biosynthesis of pertussis toxin. Infect. Immun. 1990, 58, 1518–1526. [Google Scholar] [CrossRef] [Green Version]
- Farizo, K.M.; Fiddner, S.; Cheung, A.M.; Burns, D.L. Membrane localization of the S1 subunit of pertussis toxin in Bordetella pertussis and implications for pertussis toxin secretion. Infect. Immun. 2002, 70, 1193–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, P.E.; Boodhoo, A.; Armstrong, G.D.; Cockle, S.A.; Klein, M.H.; Read, R.J. The crystal structure of pertussis toxin. Structure 1994, 2, 45–57. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burns, D.L. Secretion of Pertussis Toxin from Bordetella pertussis. Toxins 2021, 13, 574. https://doi.org/10.3390/toxins13080574
Burns DL. Secretion of Pertussis Toxin from Bordetella pertussis. Toxins. 2021; 13(8):574. https://doi.org/10.3390/toxins13080574
Chicago/Turabian StyleBurns, Drusilla L. 2021. "Secretion of Pertussis Toxin from Bordetella pertussis" Toxins 13, no. 8: 574. https://doi.org/10.3390/toxins13080574
APA StyleBurns, D. L. (2021). Secretion of Pertussis Toxin from Bordetella pertussis. Toxins, 13(8), 574. https://doi.org/10.3390/toxins13080574