Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Distribution of Multi-Mycotoxins in Foods
2.1.1. Aflatoxins
2.1.2. Fumonisins
2.1.3. Other Mycotoxins
2.2. Seasonal Distribution of Multi-Mycotoxins in Foods
2.3. Occurrence of Major Mycotoxins in Foods in Two North-Central Nigerian States
2.4. Levels of Regulated Mycotoxins Exceeding Legislated Thresholds in the Foods
2.5. Estimated Dietary Exposures and Health Risks in Average Consumers of the Foods
2.6. Consumers’ Characteristics, Grain Handling and Awareness of Mycotoxins in Foods
2.6.1. Consumers’ Characteristics and Grain Handling
2.6.2. Mycotoxin Awareness among Grain Consumer Households
3. Conclusions
4. Materials and Methods
4.1. Food Sampling
4.2. Questionnaire Administration to Households
4.3. Determination of Multi-Mycotoxins in Food
4.4. Estimation of Dietary Mycotoxin Exposure and Risk Assessment
4.4.1. Point Estimates of Exposure
4.4.2. Risk Characterization of Dietary Exposures by Margin of Exposure and Health-Based Guidance Value Approaches
4.4.3. Health Risk Assessment by Liver Cancer Burden Estimation
4.5. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ezekiel, C.; Ortega-Beltran, A.; Bandyopadhyay, R. The Need for Integrated Approaches to Address Food Safety Risk: The Case of Mycotoxins in Africa. In Proceedings of the First FAO/WHO/AU International Food Safety Conference, Addis Ababa, Ethiopia, 12–13 February 2019. [Google Scholar]
- Ezekiel, C.N.; Sulyok, M.; Babalola, D.A.; Warth, B.; Ezekiel, V.C.; Krska, R. Incidence and consumer awareness of toxigenic Aspergillus section Flavi and aflatoxin B1 in peanut cake from Nigeria. Food Control. 2013, 30, 596–601. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Mycotoxin control in low-and middle-income countries. In IARC Working 394 Group Report No. 9; Wild, C.P., Miller, J.D., Groopman, J.D., Eds.; IARC: Lyon, France, 2015. [Google Scholar]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging mycotoxins: Beyond traditionally determined food contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [Google Scholar] [CrossRef] [PubMed]
- Jestoi, M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef] [PubMed]
- Kamala, A.; Shirima, C.; Jani, B.; Bakari, M.; Sillo, H.; Rusibamayila, N.; De Saeger, S.; Kimanya, M.; Gong, Y.Y.; Simba, A.; et al. Outbreak of an acute aflatoxicosis in Tanzania during 2016. World Mycotoxin J. 2018, 11, 311–320. [Google Scholar] [CrossRef]
- Adetunji, M.C.; Atanda, O.; Ezekiel, C.N.; Sulyok, M.; Warth, B.; Beltrán, E.; Krska, R. Fungal and bacterial metabolites of stored maize maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Res. 2014, 30, 89–102. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Warth, B.; Ogara, I.M.; Abia, W.A.; Ezekiel, V.C.; Atehnkeng, J.; Sulyok, M.; Turner, P.C.; Tayo, G.O.; Krska, R.; et al. Mycotoxin exposure in rural residents in northern Nigeria: A pilot study using multi-urinary biomarkers. Environ. Int. 2014, 66, 138–145. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Sulyok, M.; Ogara, I.M.; Abia, W.A.; Warth, B.; Šarkanj, B.; Turner, P.C.; Krska, R. Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food Chem. Toxicol. 2019, 128, 171–179. [Google Scholar] [CrossRef]
- Makun, H.A.; Dutton, M.F.; Njobeh, P.B.; Mwanza, M.; Kabiru, A.Y. Natural multi-occurrence of mycotoxins in rice from Niger State, Nigeria. Mycotoxin Res. 2011, 27, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Makun, H.A.; Adeniran, A.L.; Mailafiya, S.C.; Ayanda, I.S.; Mudashiru, A.T.; Ojukwu, U.J.; Jagaba, A.S.; Usman, Z.; Salihu, D.A. Natural occurrence of ochratoxin A in some marketed Nigerian foods. Food Control. 2013, 31, 566–571. [Google Scholar] [CrossRef]
- Ogara, I.; Zarafi, B.; Alabi, O.; Banwo, O.; Ezekiel, C.N.; Warth, B.; Sulyok, M.; Krska, R. Mycotoxin patterns in ear rot infected maize: A comprehensive case study in Nigeria. Food Control. 2017, 73, 1159–1168. [Google Scholar] [CrossRef]
- Oyedele, O.A.; Ezekiel, C.N.; Sulyok, M.; Adetunji, M.C.; Warth, B.; Atanda, O.O.; Krska, R. Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. Int. J. Food Microbiol. 2017, 251, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Oyeka, C.; Amasiani, R.N.; Ekwealor, C.C. Mycotoxins contamination of maize in Anambra State, Nigeria. Food Addit. Contam. Part. B 2019, 12, 280–288. [Google Scholar] [CrossRef]
- Esan, A.O.; Fapohunda, S.O.; Ezekiel, C.N.; Sulyok, M.; Krska, R. Distribution of fungi and their toxic metabolites in melon and sesame seeds marketed in two major producing states in Nigeria. Mycotoxin Res. 2020, 36, 361–369. [Google Scholar] [CrossRef]
- Onyedum, S.C.; Adefolalu, F.S.; Muhammad, H.L.; Apeh, D.O.; Agada, M.S.; Imienwanrin, M.R.; Makun, H.A. Occurrence of major mycotoxins and their dietary exposure in North-Central Nigeria staples. Sci. Afr. 2020, 7, e00188. [Google Scholar] [CrossRef]
- Ojuri, O.T.; Ezekiel, C.N.; Sulyok, M.; Ezeokoli, O.T.; Oyedele, O.A.; Ayeni, K.I.; Eskola, M.K.; Bojan, Š.; Hajslova, J.; Adeleke, R.A.; et al. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem. Toxicol. 2018, 121, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, C.G.; Ezekiel, C.N.; Ogunbiyi, A.E.; Oluwadairo, O.J.; Sulyok, M.; Krska, R. Fungi and mycotoxins in cowpea (Vigna unguiculata L) on Nigerian markets. Food Addit. Contam. Part B 2019, 13, 52–58. [Google Scholar] [CrossRef]
- Abdus-Salaam, R.; Fanelli, F.; Atanda, O.; Sulyok, M.; Cozzi, G.; Bavaro, S.; Krska, R.; Logrieco, A.F.; Ezekiel, C.N. Fungal and bacterial metabolites associated with natural contamination of locally processed rice (Oryza sativa L.) in Nigeria. Food Addit. Contam. Part. A 2015, 32, 950–959. [Google Scholar] [CrossRef]
- Abia, W.A.; Warth, B.; Sulyok, M.; Krska, R.; Tchana, A.N.; Njobeh, P.B.; Dutton, M.F.; Moundipa, P.F. Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control. 2013, 31, 438–453. [Google Scholar] [CrossRef]
- Chala, A.; Taye, W.; Ayalew, A.; Krska, R.; Sulyok, M.; Logrieco, A. Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine coracana L. Garten) from Ethiopia. Food Control. 2014, 45, 29–35. [Google Scholar] [CrossRef]
- Ediage, E.N.; Hell, K.; De Saeger, S. A comprehensive study to explore differences in mycotoxin patterns from agro-ecological regions through maize, peanut, and cassava products: A case study, Cameroon. J. Agric. Food Chem. 2014, 62, 4789–4797. [Google Scholar] [CrossRef] [PubMed]
- Hanvi, D.M.; Lawson-Evi, P.; De Boevre, M.; Goto, C.E.; De Saeger, S.; Eklu-Gadegbeku, K. Natural occurrence of mycotoxins in maize and sorghum in Togo. Mycotoxin Res. 2019, 35, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Warth, B.; Parich, A.; Atehnkeng, J.; Bandyopadhyay, R.; Schuhmacher, R.; Sulyok, M.; Krska, R. Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method. J. Agric. Food Chem. 2012, 60, 9352–9363. [Google Scholar] [CrossRef] [PubMed]
- Wielogorska, E.; Mooney, M.; Eskola, M.; Ezekiel, C.N.; Stranska, M.; Krska, R.; Elliott, C. Occurrence and human-health impacts of mycotoxins in Somalia. J. Agric. Food Chem. 2019, 67, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Makun, H.A.; Gbodi, T.A.; Akanya, O.H.; Salako, E.A.; Ogbadu, G.H. Fungi and some mycotoxins in mouldy sorghum in Niger State, Nigeria. World J. Agric. Sci. 2009, 5, 5–17. [Google Scholar]
- Liu, Z.; Zhang, G.; Zhang, Y.; Jin, Q.; Zhao, J.; Li, J. Factors controlling mycotoxin contamination in maize and food in the Hebei province, China. Agron. Sustain. Dev. 2016, 36, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Majeed, S.; De Boevre, M.; De Saeger, S.; Rauf, W.; Tawab, A.; Fazal-e-Habib; Rahman, M.; Iqbal, M. Multiple mycotoxins in rice: Occurrence and health risk assessment in children and adults of Punjab, Pakistan. Toxins 2018, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Lahouar, A.; Jedidi, I.; Sanchis, V.; Saïd, S. Aflatoxin B1, ochratoxin A and zearalenone in sorghum grains marketed in Tunisia. Food Addit. Contam. Part B 2018, 11, 103–110. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.-B.; Novakova, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenar, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Kraak, B.; Sandoval-Denis, M.; Sulyok, M.; Oyedele, O.A.; Ayeni, K.I.; Makinde, O.M.; Akinyemi, O.M.; Krska, R.; Crous, P.W.; et al. Diversity and toxigenicity of fungi and description of Fusarium madaense sp. nov. from cereals, legumes and soils in north-central Nigeria. MycoKeys 2020, 67, 95–124. [Google Scholar] [CrossRef] [PubMed]
- Maringe, D.T.; Chidewe, C.; Benhura, M.A.; Mvumi, B.M.; Murashiki, T.C.; Dembedza, M.P.; Siziba, L.; Nyanga, L.K. Natural postharvest aflatoxin occurrence in food legumes in the smallholder farming sector of Zimbabwe. Food Addit. Contam. Part B 2016, 10, 21–26. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some traditional herbal medicines, some mycotoxins, naphthalene, and stryene. IARC Monogr. Evaluat. Carcinogen. Risk Chem. Hum. 2002, 82, 171–300. [Google Scholar]
- Sombie, J.I.N.; Ezekiel, C.N.; Sulyok, M.; Ayeni, K.I.; Jonsyn-Ellis, F.; Krska, R. Survey of roasted street-vended nuts in Sierra Leone for toxic metabolites of fungal origin. Food Addit. Contam. Part A 2018, 35, 1573–1580. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012, 10, 1–82. [Google Scholar] [CrossRef]
- Okeke, C.A.; Ezekiel, C.N.; Sulyok, M.; Ogunremi, O.R.; Ezeamagu, C.O.; Šarkanj, B.; Warth, B.; Krska, R. Traditional processing impacts mycotoxin levels and nutritional value of ogi—A maize-based complementary food. Food Control. 2018, 86, 224–233. [Google Scholar] [CrossRef]
- Dorner, J.W. Management and prevention of mycotoxins in peanuts. Food Addit. Contam. Part A 2008, 25, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Filbert, M.E.; Brown, D.L. Aflatoxin contamination in Haitian and Kenyan peanut butter and two solutions for reducing such contamination. J. Hunger Environ. Nutr. 2012, 7, 321–332. [Google Scholar] [CrossRef]
- Hell, K.; Cardwell, K.F.; Setamou, M.; Poehling, H.M. The Influence of storage practices on aflatoxin contamination in maize in four agroecological zones of Benin, West Africa. J. Stored Prod. Res. 2000, 34, 1–2. [Google Scholar] [CrossRef]
- Murashiki, T.C.; Chidewe, C.; Benhura, M.A.; Manema, L.R.; Mvumi, B.M.; Nyanga, L.K. Effectiveness of hermetic technologies in limiting aflatoxin B1 and fumonisin B1 contamination of stored maize grain under smallholder conditions in Zimbabwe. World Mycotoxin J. 2018, 11, 459–469. [Google Scholar] [CrossRef]
- Villers, P. Aflatoxins and safe storage. Front. Microbiol. 2014, 5, 158. [Google Scholar] [CrossRef] [Green Version]
- Ayeni, K.I.; Atanda, O.O.; Krska, R.; Ezekiel, C.N. Present status and furture perspectives oof grain drying and storage practices as a means to reduce mycotoxin exposure in Nigeria. Food Control. 2021, 126, 108074. [Google Scholar] [CrossRef]
- Ng’ang’a, J.; Mutungi, C.; Imathiu, S.; Affognon, H. Effect of triple-layer hermetic bagging on mould infection and aflatoxin contamination of maize during multi-month on-farm storage in Kenya. J. Stored Prod. Res. 2016, 69, 119–128. [Google Scholar] [CrossRef]
- Walker, S.; Jaime, R.; Kagot, V.; Probst, C. Comparative effects of hermetic and traditional storage devices on maize grain: Mycotoxin development, insect infestation and grain quality. J. Stored Prod. Res. 2018, 77, 34–44. [Google Scholar] [CrossRef]
- Carbas, B.; Simões, D.; Soares, A.; Freitas, A.; Ferreira, B.; Carvalho, A.R.F.; Silva, A.S.; Pinto, T.; Diogo, E.; Andrade, E.; et al. Occurrence of Fusarium spp. in maize grain harvested in Portugal and accumulation of related mycotoxins during storage. Foods 2021, 10, 375. [Google Scholar] [CrossRef]
- Fandohan, P.; Gnonlonfin, B.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Impact of indigenous storage systems and insect infestation on the contamination of maize with fumonisins. Afr. J. Biotechnol. 2005, 5, 546–552. [Google Scholar]
- García-Díaz, M.; Gil-Serna, J.; Vázquez, C.; Botia, M.N.; Patiño, B. A comprehensive study on the occurrence of mycotoxins and their producing fungi during the maize production cycle in Spain. Microorganisms 2020, 8, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, V.A.V.; De Oliveira Alves, G.L.; Da Conceição, R.R.P.; Guimarães, L.J.M.; Mendes, S.M.; De Aquino Ribeiro, P.E.; Da Costa, R.V. Occurrence of fumonisins and zearalenone in maize stored in family farm in Minas Gerais, Brazil. Food Control. 2012, 28, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Alberts, J.F.; Davids, I.; Moll, W.D.; Schatzmayr, G.; Burger, H.M.; Shephard, G.S.; Gelderblom, W.C.A. Enzymatic detoxification of the fumonisin mycotoxins during dry milling of maize. Food Control. 2021, 123, 107726. [Google Scholar] [CrossRef]
- Zhang, Z.; Nie, D.; Fan, K.; Yang, J.; Guo, W.; Meng, J.; Zhao, Z.; Han, Z. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism. Crit. Rev. Food Sci. Nutr. 2020, 60, 1523–1537. [Google Scholar] [CrossRef]
- Diaz, G.J.; Thompson, W.; Martos, P.A. Stability of cyclopiazonic acid in solution. World Mycotoxin J. 2010, 3, 25–33. [Google Scholar] [CrossRef]
- Kovač, T.; Borišev, I.; Kovač, M.; Lončarić, A.; Čačić Kenjerić, F.; Djordjevic, A.; Strelec, I.; Ezekiel, C.N.; Sulyok, M.; Krska, R.; et al. Impact of fullerol C60(OH)24 nanoparticles on the production of emerging toxins by Aspergillus flavus. Sci. Rep. 2020, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Atehnkeng, J.; Ojiambo, P.S.; Donner, M.; Ikotun, T.; Sikora, R.A.; Cotty, P.J.; Bandyopadhyay, R. Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int. J. Food Microbiol. 2008, 122, 74–84. [Google Scholar] [CrossRef]
- Gbashi, S.; Madala, N.E.; De Saeger, S.; De Boevre, M.; Adekoya, I.; Adebo, O.A.; Njobeh, P.B. The socio-economic impact of mycotoxin contamination in Africa. In Mycotoxins—Impact and Management Strategies; Njobeh, P.B., Stepman, F., Eds.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef] [Green Version]
- EC (European Commission). Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- Adetunji, M.C.; Atanda, O.O.; Ezekiel, C.N. Risk assessment of mycotoxins in stored maize grains consumed by infants and young children in Nigeria. Children 2017, 4, 58. [Google Scholar] [CrossRef]
- Ayeni, K.I.; Akinyemi, O.M.; Kovač, T.; Ezekiel, C.N. Aflatoxin contamination of maize vended in Ondo state, Nigeria, and health risk assessment. Croat. J. Food Sci. Technol. 2020, 12, 123–129. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Opinion of the scientific committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J. 2005, 282, 1–31. [Google Scholar]
- Liu, Y.; Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 2010, 118, 818–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musa, B.M.; Bussell, S.; Borodo, M.M.; Samaila, A.A.; Femi, O.L. Prevalence of hepatitis B virus infection in Nigeria, 2000–2013: A systematic review and meta-analysis. Niger. J. Clin. Pract. 2015, 18, 163–172. [Google Scholar] [CrossRef] [Green Version]
- IPCS (International Programme on Chemical Safety). Principles and Methods for the Risk Assessment of Chemicals in Food. A Joint Publication of the Food and Agriculture Organization of the United Nations and the World Health Organization. Environ. Health Criteria 2009, 240. Available online: http://www.who.int/foodsafety/publications/chemical-food/en/ (accessed on 21 January 2015).
- EFSA (European Food Safety Authority). Panel on contaminants in the food chain. Opinion of the scientific panel on contaminants in food chain on request from the commission related to the potential increase of consumer health risk by possible increase of existing maximum levels of aflatoxins in almonds, hazelnuts and pistachios. EFSA J. 2007, 446, 1–127. [Google Scholar]
- JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of certain mycotoxins in food: Fifty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives. In WHO Technical Report Series No 906; WHO: Geneva, Switzerland, 2002; Available online: https://apps.who.int/iris/handle/10665/42448 (accessed on 10 June 2013).
- WHO (World Health Organization). The Global Burden of Disease: 2004 Update. 2008. Available online: http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html (accessed on 22 February 2012).
- NBS (National Bureau of Statistics)/World Bank. Nigeria-General Household Survey, Panel 2015–2016, Wave 3. 2016. Available online: http://microdata.worldbank.org (accessed on 3 October 2016).
- Claro, R.M.; Levy, R.B.; Bandoni, D.H.; Mondini, L. Per capita versus adult-equivalent estimates of calorie availability in household budget surveys. Cadernos de Saúde Pública 2010, 26, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.R.; Tlustos, C.; Rose, M.; Smith, F.; Carr, M.; Panton, S. Polychlorinated naphthalenes (PCNs) in Irish foods: Occurrence and human dietary exposure. Chemosphere 2011, 85, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Villalba, P.; Diaz-Ferrero, J.; Font, G.; Yusà, V. Congener profile, occurrence and estimated dietary intake of dioxins and dioxin-like PCBs in foods marketed in the region of Valencia (Spain). Chemosphere 2011, 82, 1253–1261. [Google Scholar] [CrossRef]
- Törnkvist, A.; Glynn, A.; Aune, M.; Darnerud, P.O.; Ankarberg, E.H. PCDD/F, PCB, PBDE, HBCD and chlorinated pesticides in a Swedish market basket from 2005 levels and dietary intake estimations. Chemosphere 2011, 83, 193–199. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Statement on the applicability of the Margin of Exposure approach for the safety assessment of impurities which are both genotoxic and carcinogenic in substances added to food/feed. EFSA J. 2012, 10, 2578. [Google Scholar]
- JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Mycotoxins in Food: Eighty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. In WHO Technical Report Series No 1002; WHO: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/bitstream/handle/10665/254893/9789241210027-eng.pdf?sequence=1 (accessed on 22 February 2021).
- EFSA (European Food Safety Authority). Scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3802. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on the risks to human and animal health related to the presence of moniliformin in food and feed. EFSA J. 2018, 16, 5082. [Google Scholar] [CrossRef]
- JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants: Seventy-fourth Report of the Joint FAO/WHO Expert Committee on Food Additives. In WHO Technical Report Series No 966; WHO: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/handle/10665/44788 (accessed on 11 January 2021).
- Fuchs, R.; Peraica, M. Ochratoxin A in human kidney diseases. Food Addit. Contam. 2005, 22, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Stefanovic, V.; Toncheva, D.; Atanasova, S.; Polenakovic, M. Etiology of Balkan endemic nephropathy and associated urothelial cancer. Am. J. Nephrol. 2006, 26, 1–11. [Google Scholar] [CrossRef]
- Bouslimi, A.; Ouannes, Z.; Golli, E.; El Bouaziz, C.; Hassen, W.; Bacha, H. Cytotoxicity and oxidative damage in kidney cells exposed to the mycotoxins ochratoxin A and citrinin: Individual and combined effects. Toxicol. Mech. Meth. 2008, 18, 341–349. [Google Scholar] [CrossRef]
- Liu, B.H.; Yu, F.Y.; Wu, T.S.; Li, S.Y.; Su, M.C.; Wang, M.C.; Shih, S.M. Evaluation of genotoxic risk on oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin. Toxicol. Appl. Pharmacol. 2003, 191, 255–263. [Google Scholar] [CrossRef]
- Shephard, G.S.; Marasas, W.F.O.; Burger, H.M.; Somdyala, N.I.M.; Rheeder, J.P.; Van der Westhuizen, L.; Gatyeni, P.; Van Schalkwyk, D.J. Exposure assessment for fumonisins in the former Transkei region of South Africa. Food Addit. Contam. Part A 2007, 24, 621–629. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Cancer Country Profiles 2014. 2014. Available online: https://www.who.int/cancer/country-profiles/en/ (accessed on 15 January 2018).
- Rheeder, J.P.; Marasas, W.F.O.; Thiel, P.G.; Syndenham, E.W.; Shephard, G.S.; Van Schalkwyk, D.J. Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathol. 1992, 82, 353–357. [Google Scholar] [CrossRef]
- Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill Jr, A.H.; Rothman, K.J.; Hendricks, K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas–Mexico border. Environ. Health Perspect. 2006, 114, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Kimanya, M.E.; De Meulenaer, B.; Roberfroid, D.; Lachat, C.; Kolsteren, P. Fumonisin exposure through maize in complementary foods is inversely associated with linear growth of infants in Tanzania. Mol. Nutr. Food Res. 2010, 54, 1659–1667. [Google Scholar] [CrossRef]
- Shirima, C.P.; Kimanya, M.E.; Routledge, M.N.; Srey, C.; Kinabo, J.L. A prospective study of growth and biomarkers of exposure to aflatoxin and fumonisin during early childhood in Tanzania. Environ. Health Perspect. 2015, 123, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Mitchell, N.J.; Gratz, J.; Houpt, E.R.; Gong, Y.; Egner, P.A.; Groopman, J.D.; Riley, R.T.; Showker, J.L.; Svensen, E.; et al. Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania. Environ. Int. 2018, 115, 29–37. [Google Scholar] [CrossRef]
- Schaafsma, T.; Wakefield, J.; Hanisch, R.; Bray, F.; Schüz, J.; Joy, E.J.M.; Watts, M.J.; McCormack, V. Africa’s oesophageal cancer corridor: Geographic variations in incidence correlate with certain micronutrient deficiencies. PLoS ONE 2015, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lombard, M.J. Mycotoxin exposure and infant and young child growth in Africa: What do we know? Ann. Nutr. Metab. 2014, 64, 42–52. [Google Scholar] [CrossRef]
- Klarić, M.Š.; Želježić, D.; Rumora, L.; Peraica, M.; Pepeljnjak, S.; Domijan, A.M. A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin. Arch. Toxicol. 2012, 86, 97–107. [Google Scholar] [CrossRef]
- Klarić, M.S.; Rašić, D.; Peraica, M. Deleterious effects of mycotoxin combinations involving ochratoxin A. Toxins 2013, 5, 1965–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klarić, M.Š.; Daraboš, D.; Rozgaj, R.; Kašuba, V.; Pepeljnjak, S. Beauvericin and ochratoxin A genotoxicity evaluated using the alkaline comet assay: Single and combined genotoxic action. Arch. Toxicol. 2010, 84, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, M.; Jestoi, M.; Nathanail, A.V.; Kokkonen, U.M.; Anttila, M.; Koivisto, P.; Karhunen, P.; Peltonen, K. Application of OECD Guideline 423 in assessing the acute oral toxicity of moniliformin. Food Chem. Toxicol. 2013, 53, 27–32. [Google Scholar] [CrossRef]
- Babalola, D.A.; Babalola, Y.T.; Bassey, M.E. Determinants of consumers’ preference for information sources for food safety: Evidence from Akwa Ibom state. Int. J. Inf. Resour. Knowl. Manag. 2010, 1, 33–41. [Google Scholar]
- Gunden, C.; Bulent, M.; Ozlem, K.; Uysal, Z.; Kenanoglu, B. An Analysis of Consumer Preferences for Information Sources on Food Safety by using Fuzzy Pairwise Comparison. In Proceedings of the Southern Agricultural Economics Association Annual Meeting, Dallas, TX, USA, 2–6 February 2008. [Google Scholar]
- Jayas, D.S. Storing grains for food security and sustainability. Agric. Res. 2012, 1, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Mobolade, A.J.; Bunindro, N.; Sahoo, D.; Rajashekar, Y. Traditional methods of food grains preservation and storage in Nigeria and India. Ann. Agric. Sci. 2019, 64, 196–205. [Google Scholar] [CrossRef]
- Matumba, L.; Van Poucke, C.; Ediage, E.N.; Jacobs, B.; De Saeger, S. Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize. Food Addit. Contam. Part A 2015, 32, 960–969. [Google Scholar] [CrossRef]
- Fandohan, P.; Zoumenou, D.; Hounhouigan, D.J.; Marasas, W.F.; Wingfield, M.J.; Hell, K. Fate of aflatoxins and fumonisins during the processing of maize into food products in Benin. Int. J. Food Microbiol. 2005, 98, 249–259. [Google Scholar] [CrossRef]
- Fandohan, P.; Ahouansou, R.; Houssou, P.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Impact of mechanical shelling and dehulling on Fusarium infection and fumonisin contamination in maize. Food Addit. Contam. 2006, 23, 415–421. [Google Scholar] [CrossRef]
- Van der Westhuizen, L.; Shephard, G.S.; Rheeder, J.P.; Burger, H.-M.; Gelderblom, W.C.A.; Wild, C.P.; Gong, Y.Y. Optimising sorting and washing of home-grown maize to reduce fumonisin contamination under laboratory-controlled conditions. Food Control. 2011, 22, 396–400. [Google Scholar] [CrossRef]
- Chibuzor-Onyema, I.E.; Ezeokoli, O.T.; Sulyok, M.; Notununu, I.; Petchkongkaew, A.; Elliott, C.T.; Adeleke, R.A.; Krska, R.; Ezekiel, C.N. Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Res. Int. 2021, 143, 110241. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Occurrence of Fusarium mycotoxins in cereal crops and processed products (ogi) from Nigeria. Toxins 2016, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Ezekiel, C.N.; Abia, W.A.; Ogara, M.I.; Sulyok, M.; Warth, B.; Krska, R. Fate of mycotoxins in two popular traditional cereal-based beverages (kunu-zaki and pito) from rural Nigeria. LWT Food Sci. Technol. 2015, 60, 137–141. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Ayeni, K.I.; Ezeokoli, O.T.; Sulyok, M.; van Wyk, D.A.B.; Oyedele, O.A.; Akinyemi, O.M.; Chibuzor-Onyema, I.E.; Adeleke, R.A.; Nwangburuka, C.C.; et al. High-throughput sequence analyses of bacterial communities and multi-mycotoxin profiling during processing of different formulations of kunu, a traditional fermented beverage. Front. Microbiol. 2019, 9, 3282. [Google Scholar] [CrossRef] [PubMed]
- Okeke, C.A.; Ezekiel, C.N.; Nwangburuka, C.C.; Sulyok, M.; Ezeamagu, C.O.; Adeleke, R.A.; Dike, S.K.; Krska, R. Bacterial diversity and mycotoxin reduction during maize fermentation (steeping) for ogi production. Front. Microbiol. 2015, 6, 1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO (Food and Agricultural Organization). Drying and Chemical Treatment of Grains to Prevent Mycotoxin Contamination during Storage. Available online: http://www.fao.org/3/x5036e/x5036e0w.htm (accessed on 15 March 2020).
- Babalola, D.A.; Babalola, Y.T. Determinants of the use of food safety information for milk consumption in Akwa Ibom, Nigeria. J. Agric. Food Inf. 2016, 17, 120–128. [Google Scholar] [CrossRef]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abia, W.A.; Warth, B.; Ezekiel, C.N.; Sarkanj, B.; Turner, P.C.; Marko, D.; Krska, R.; Sulyok, M. Uncommon toxic microbial metabolite patterns in traditionally homeprocessed maize dish (fufu) consumed in rural Cameroon. Food Chem. Toxicol. 2017, 107, 10–19. [Google Scholar] [CrossRef]
- Sulyok, M.; Krska, R.; Schuhmacher, R. A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal. Bioanal. Chem. 2007, 389, 1505–1523. [Google Scholar] [CrossRef]
- EC (European Commission). Commission decision 2002/657 of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Union 2002, L221, 8–36. [Google Scholar]
- Stadler, D.; Sulyok, M.; Schuhmacher, R.; Berthiller, F.; Krska, R. The contribution of lot-to-lot variation to the measurement uncertainty of an LC-MS-based multi-mycotoxin assay. Anal. Bioanal. Chem. 2018, 410, 4409–4418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, B. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, 2nd ed. Eurachem, 2014. Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed on 31 March 2019).
- IPCS (International Programme on Chemical Safety)/GEMS. Food Euro Workshop on Reliable Evaluation of Low Level Contamination of Food, Appendix 5; WHO: Kulmbach, Germany, 1995. [Google Scholar]
- Gujarati, D.N. Essentials of Econometrics, 3rd ed.; McGraw-Hill: Singapore, 2003. [Google Scholar]
Mycotoxins | Peanut (n a = 53) | Maize (n a = 142) | Rice (n a = 23) | Sorghum (n a = 24) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (µg/kg) | Concentration (µg/kg) | Concentration (µg/kg) | Concentration (µg/kg) | |||||||||||||
% b | Range | Mean | Median | % b | Range | Mean | Median | % b | Range | Mean | Median | % b | Range | Mean | Median | |
Aflatoxin B1 (AFB1) | 64.2 | 0.36–6413 | 939 | 170 | 66.2 | 0.36–2277 | 99.4 | 10.1 | 56.5 | 0.36–416 | 44.0 | 1.61 | 45.8 | 0.36–138 | 19.4 | 3.11 |
AFB2 | 50.9 | 0.61–2007 | 289 | 53.0 | 42.3 | 0.11–189 | 14.6 | 2.23 | 26.1 | 0.22–25.3 | 5.18 | 0.65 | 29.2 | 0.11–20.3 | 3.87 | 1.55 |
AFG1 | 26.4 | 0.28–1355 | 210 | 5.22 | 33.1 | 0.27–1320 | 39.1 | 1.97 | 17.4 | 0.28–484 | 145 | 47.9 | 25.0 | 0.59–4.78 | 2.23 | 1.24 |
AFG2 | 11.3 | 2.76–519 | 151 | 68.2 | 7.7 | 0.85–77.1 | 10.9 | 2.77 | 8.7 | 6.31–30.2 | 18.3 | 18.3 | 0.0 | <LOD | <LOD | <LOD |
AFM1 | 41.5 | 0.79–534 | 80.8 | 29.2 | 25.4 | 0.22–123 | 10.4 | 1.72 | 8.7 | 3.35–25.0 | 14.2 | 14.2 | 16.7 | 0.22–4.54 | 1.60 | 0.81 |
AFM2 | 0.0 | 0.00 | <LOD | <LOD | 2.1 | 0.63–2.13 | 1.13 | 0.65 | 0.0 | <LOD | <LOD | <LOD | 0.0 | <LOD | <LOD | <LOD |
AFP1 | 0.0 | 0.00 | <LOD | <LOD | 2.8 | 0.96–13.2 | 7.52 | 7.96 | 0.0 | <LOD | <LOD | <LOD | 4.2 | 0.81 | 0.81 | 0.81 |
AFtot c | 64.2 | 0.28–8422 | 1281 | 249 | 66.9 | 0.36–3863 | 128 | 10.2 | 56.5 | 0.36–955 | 93.9 | 1.83 | 45.8 | 0.36–158 | 23.1 | 3.81 |
Beauvericin | 47.2 | 0.02–3.48 | 0.65 | 0.37 | 63.4 | 0.05–385 | 8.14 | 0.87 | 52.2 | 0.05–2.37 | 0.56 | 0.43 | 70.8 | 0.07–4.75 | 1.15 | 0.64 |
Citrinin | 3.8 | 5.09–14.5 | 9.82 | 9.82 | 57.0 | 5.64–51,195 | 2343 | 76.7 | 30.4 | 7.92–358 | 121 | 74.2 | 41.7 | 11.4–1335 | 186 | 29.6 |
Cyclopiazonic acid | 13.2 | 67.8–6939 | 2345 | 785 | 12.7 | 7.08–6939 | 701 | 189 | 0.0 | <LOD | <LOD | <LOD | 0.0 | <LOD | <LOD | <LOD |
Dihydrocitrinone | 0.0 | <LOD | <LOD | <LOD | 31.0 | 1.88–615 | 63.5 | 16.9 | 13.0 | 5.59–18.4 | 13.5 | 16.6 | 8.3 | 45.2–95.5 | 70.4 | 70.4 |
Fumonisin A1 (FA1) | 0.0 | <LOD | <LOD | <LOD | 81.7 | 1.00–453 | 13.2 | 3.54 | 13.0 | 2.73–7.25 | 5.46 | 6.40 | 8.3 | 5.37–6.71 | 6.04 | 6.04 |
FA2 | 0.0 | <LOD | <LOD | <LOD | 63.4 | 3.99–1977 | 60.0 | 12.9 | 8.7 | 4.00 | 4.00 | 4.00 | 8.3 | 3.99–4.00 | 4.00 | 4.00 |
FB1 | 0.0 | <LOD | <LOD | <LOD | 93.0 | 22.9–47,168 | 2078 | 725 | 21.7 | 80.2–413 | 244 | 245 | 54.2 | 31.5–475 | 139 | 115 |
FB2 | 0.0 | <LOD | <LOD | <LOD | 90.1 | 23.0–13,013 | 558 | 194 | 26.1 | 9.96–107 | 54.3 | 47.3 | 50.0 | 3.50–111 | 36.7 | 33.7 |
FB3 | 0.0 | <LOD | <LOD | <LOD | 89.4 | 15.7–4949 | 239 | 102 | 21.7 | 15.7–58.8 | 34.2 | 38.7 | 41.7 | 8.25–54.0 | 22.4 | 19.0 |
FB4 | 0.0 | <LOD | <LOD | <LOD | 91.5 | 4.00–3073 | 141 | 57.2 | 21.7 | 8.65–28.7 | 19.9 | 22.9 | 41.7 | 4.00–35.1 | 16.0 | 19.4 |
FB1 + FB2 d | 0.0 | <LOD | <LOD | <LOD | 93.0 | 22.9–60,181 | 2619 | 928 | 26.1 | 9.96–520 | 257 | 226 | 54.2 | 35.0–585 | 173 | 139 |
ƩFB e | 0.0 | <LOD | <LOD | <LOD | 93.0 | 43.1–68,204 | 2988 | 1090 | 26.1 | 9.96–601 | 303 | 273 | 54.2 | 35.0–674 | 203 | 156 |
Hydrolysed FB1 | 0.0 | <LOD | <LOD | <LOD | 72.5 | 0.34–299 | 16.8 | 3.45 | 21.7 | 0.34–5.68 | 2.44 | 2.20 | 12.5 | 0.34–0.97 | 0.71 | 0.83 |
Moniliformin | 3.8 | 2.50 | 2.50 | 2.50 | 64.1 | 2.50–990 | 72.1 | 23.5 | 30.4 | 2.50–37.0 | 11.1 | 6.47 | 91.7 | 2.50–199 | 60.9 | 32.7 |
Nivalenol | 9.4 | 9.09–97.1 | 32.4 | 15.1 | 10.6 | 9.35–45.9 | 20.0 | 13.8 | 0.0 | <LOD | <LOD | <LOD | 0.0 | <LOD | <LOD | <LOD |
Ochratoxin A | 3.8 | 0.65–1.34 | 1.00 | 1.00 | 3.5 | 0.76–93.6 | 26.2 | 5.13 | 4.3 | 59.0 | 59.0 | 59.0 | 12.5 | 3.64–10.1 | 6.72 | 6.45 |
Sterigmatocystin | 39.6 | 0.13–30.1 | 6.43 | 3.71 | 26.1 | 0.13–11.8 | 1.44 | 0.37 | 47.8 | 0.13–2.25 | 0.96 | 0.82 | 12.5 | 0.13–2.47 | 0.96 | 0.29 |
Zearalenone | 9.4 | 0.30–6.30 | 2.69 | 1.24 | 15.5 | 0.30–7.20 | 2.01 | 1.89 | 56.5 | 0.32–8.65 | 2.77 | 0.95 | 8.3 | 1.14–1.82 | 1.48 | 1.48 |
Season | Food | Percentage of Positive Samples (Mean Mycotoxin b Concentration (µg/kg)) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFB1 | AFG1 | AFtot | BEAU | CIT | CPA | DHC | FB1 | ƩFB | MON | NIV | OTA | ZEN | ||
Harvest (n a = 143) c | Peanut (n a = 33) | 76 (1110 *) | 42 (210) | 79 (1457 *) | 21 (1.4) | 6 (9.8) | 18 (2724) | 0 (<LOD) | 0 (<LOD) | 0 (<LOD) | 6 (2.5) | 9 (47.6) | 6 (1.0) | 15 (2.7) |
Maize (n a = 87) | 69 (61) | 26 (6.2) | 70 (68.4) | 53 (14.8) | 46 (305) | 9 (1398) | 22 (21.4) | 92 (2462 *) | 92 (3554 *) | 70 (63.2) | 13 (20.0) | 0 (<LOD) | 17 (2.0) | |
Rice (n a = 15) | 67 (15.5) | 20 (32.0) | 67 (26.3) | 33 (0.4) | 27 (111) | 0 (<LOD) | 13 (12.0) | 27 (243) | 33 (289) | 33 (6.3) | 0 (<LOD) | 0 (<LOD) | 47 (2.2) | |
Sorghum (n a = 5) | 80 (42.0) | 20 (1.2) | 80 (48.1) | 20 (2.0) | 20 (1335) | 0 (<LOD) | 20 (95.5) | 20 (475) | 20 (675) | 80 (9.0) | 0 (<LOD) | 20 (10.1) | 0 (<LOD) | |
Storage (n a = 107) d | Peanut (n a = 20) | 45 (462) | 0 (<LOD) | 45 (630) | 90 (0.4) | 0 (<LOD) | 5 (67.8) | 0 (<LOD) | 0 (<LOD) | 0 (<LOD) | 0 (<LOD) | 10 (9.6) | 0 (<LOD) | 0 (<LOD) |
Maize (n a = 55) | 62 (167 *) | 44 (70.6 *) | 62 (236 *) | 80 (1.2) | 75 (4331 *) | 18 (144) | 46 (95.5 *) | 95 (1487) | 95 (2117) | 55 (90.1) | 7 (19.9) | 9 (26.2) | 13 (2.0) | |
Rice (n a = 8) | 38 (139) | 13 (484) | 38 (319) | 88 (0.7) | 38 (133) | 0 (<LOD) | 13 (16.6) | 13 (245) | 13 (372) | 25 (23.1) | 0 (<LOD) | 13 (59.0) | 75 (3.5) | |
Sorghum (n a = 19) | 37 (6.5) | 26 (2.4) | 37 (8.8) | 84 (1.1) | 47 (58.7) | 0 (<LOD) | 5 (45.2) | 63 (111) | 63 (164) | 95 (72.4) | 0 (<LOD) | 11 (5.0) | 11 (1.5) |
Mycotoxins | Nasarawa (n a = 170) | Niger (n a = 80) | ||||||
---|---|---|---|---|---|---|---|---|
% b | Concentration (µg/kg) | % b | Concentration (µg/kg) | |||||
Range | Mean | Median | Range | Mean | Median | |||
Aflatoxin B1 (AFB1) | 68.2 | 0.36–6413 | 326 * | 15.6 | 46.3 | 0.36–2164 | 118 | 1.7 |
AFB2 | 51.8 | 0.11–2007 | 93.8 * | 3.88 | 16.3 | 0.11–327 | 37.4 | 5.94 |
AFG1 | 37.1 | 0.27–1355 | 84.6 * | 2.62 | 11.3 | 0.28–18.6 | 5.23 | 3.06 |
AFG2 | 10.6 | 0.85–519 | 58.9 | 6.52 | 1.3 | 1.74 | 1.74 | 1.74 |
AFM1 | 32.4 | 0.22–534 | 36.8 | 4 | 12.5 | 0.22–102 | 16.4 | 1.95 |
AFM2 | 1.8 | 0.63–2.13 | 1.13 | 0.65 | 0 | <LOD | <LOD | <LOD |
AFP1 | 2.9 | 0.81–13.2 | 6.18 | 5.42 | 0 | <LOD | <LOD | <LOD |
AFtot c | 68.2 | 0.28–8422 | 452 * | 19.2 | 47.5 | 0.36–2510 | 129 | 1.72 |
Beauvericin | 61.2 | 0.02–385 | 6.64 | 0.61 | 52.5 | 0.05–25.0 | 2.19 | 0.66 |
Citrinin | 41.8 | 5.1–51195 | 2104 * | 76.3 | 36.3 | 6.63–20290 | 1487 | 40.6 |
Cyclopiazonic acid | 9.4 | 7.61–6939 | 1572 * | 465 | 12.5 | 7.08–1175 | 436 | 392 |
Deoxynivalenol | 0 | <LOD | <LOD | <LOD | 1.3 | 48.8 | 48.8 | 48.8 |
Dihydrocitrinone | 22.9 | 1.88–615 | 58.4 | 17.5 | 12.5 | 1.88–330 | 69.9 | 23 |
Fumonisin A1 (FA1) | 44.7 | 1.00–453 | 14.1 | 3.94 | 56.3 | 1.00–176 | 10.9 | 2.93 |
FA2 | 32.9 | 3.99–1977 | 66.3 | 15.3 | 47.5 | 3.99–389 | 44.7 | 10.3 |
FB1 | 53.5 | 31.5–47168 | 2041 * | 681 | 73.8 | 22.9–18325 | 1552 | 645 |
FB2 | 52.4 | 3.50–13013 | 542 * | 178 | 71.3 | 23.0–4380 | 421 | 156 |
FB3 | 50 | 8.25–4949 | 231 * | 98.7 | 71.3 | 15.7–1494 | 195 | 89 |
FB4 | 51.2 | 4.00–3073 | 134 * | 53.7 | 72.5 | 4.00–1036 | 119 | 46.3 |
FB1 + FB2 d | 54.1 | 9.96–60181 | 2543 * | 841 | 73.8 | 22.9–22360 | 1959 | 804 |
ƩFB e | 54.1 | 9.96–68204 | 2883 * | 985 | 73.8 | 80.3–24890 | 2264 | 932 |
Hydrolysed FB1 | 40 | 0.34–299 | 18.9 | 3.43 | 55 | 0.34–159 | 10.6 | 2.94 |
Moniliformin | 48.2 | 2.50–574 | 73.8 | 34.8 | 51.3 | 2.50–990 | 53.9 | 8.79 |
Nivalenol | 10 | 9.09–97.1 | 25 | 15.6 | 5 | 11.5–12.9 | 12.3 | 12.4 |
Ochratoxin A | 6.5 | 0.65–93.6 | 19.3 | 5.13 | 0 | <LOD | <LOD | <LOD |
Zearalenone | 18.2 | 0.30–8.65 | 2.7 | 1.87 | 13.8 | 0.30–3.59 | 1.18 | 0.32 |
Foods | Percentage of Samples Exceeding Stipulated Limits | ||||
---|---|---|---|---|---|
AFB1 (2 µg/kg) b | AFtot (4 µg/kg) b | AFtot (10 µg/kg) c | FB1 + FB2 (1000 µg/kg) b | OTA (5 µg/kg) b | |
Cowpea (n a = 7) | 14.2 | 14.2 | 14.2 | - | - |
Peanut (n a = 53) | 56.6 | 50.9 | 50.9 | - | - |
Maize (n a = 142) | 50.0 | 43.7 | 34.5 | 41.5 | 2.10 |
Rice (n a = 23) | 26.1 | 21.7 | 13.0 | - | 4.30 |
Sorghum (n a = 24) | 33.3 | 20.8 | 20.8 | - | 8.33 |
Millet (n a = 1) | - | - | - | - | - |
All (n a = 250) | 46.4 | 40.0 | 34.0 | 23.6 | 2.40 |
Food | Population | Average Probable Daily Intake (ng/kg bw/day or µg/kg bw/day) a | Margin of Exposure b | Liver Cancer Risk for AFB1 (Cancer/Year/ 100,000 Population) c | Margin of Exposure d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFB1 e | AFtot e | BEAU e | CIT e | ƩFB e, g | MON e | AFB1 e | AFtot e | BEAU e | CIT e | MON e | |||
Peanut | Children | 4883 | 6661 | 0.003 | - f | - f | - f | 0.035 | 0.026 | 247 | 30,000 | - f | - f |
Adolescents | 1953 | 2664 | 0.001 | - f | - f | - f | 0.087 | 0.064 | 99 | 90,000 | - f | - f | |
Adults | 803 | 1096 | 0.001 | - f | - f | - f | 0.21 | 0.16 | 41 | 90,000 | - f | - f | |
Maize | Children | 655 | 844 | 0.05 | 15.4 | 19.7 | 0.48 | 0.26 | 0.20 | 33 | 1800 | 0.013 | 417 |
Adolescents | 262 | 337 | 0.02 | 6.18 | 7.88 | 0.19 | 0.65 | 0.51 | 13 | 4500 | 0.03 | 1053 | |
Adults | 108 | 139 | 0.009 | 2.54 | 3.24 | 0.08 | 1.58 | 1.23 | 6 | 10,000 | 0.08 | 2500 | |
Rice | Children | 194 | 414 | 0.003 | 0.53 | 1.34 | 0.05 | 0.88 | 0.41 | 10 | 30,000 | 0.4 | 4000 |
Adolescents | 77.6 | 166 | 0.001 | 0.21 | 0.54 | 0.20 | 2.19 | 1.03 | 4 | 90,000 | 1 | 1000 | |
Adults | 31.9 | 68.1 | 0.0004 | 0.08 | 0.22 | 0.008 | 5.33 | 2.50 | 2 | 225,000 | 3 | 25,000 | |
Sorghum | Children | 56.8 | 67.7 | 0.003 | 0.55 | 0.60 | 0.18 | 2.99 | 2.51 | 3 | 30,000 | 0.4 | 1111 |
Adolescents | 22.7 | 27.1 | 0.001 | 0.22 | 0.24 | 0.07 | 7.48 | 6.28 | 1 | 90,000 | 1 | 2857 | |
Adults | 9.35 | 11.1 | 0.001 | 0.09 | 0.10 | 0.03 | 18.2 | 15.3 | 1 | 90,000 | 2 | 6667 |
Variables | Nasarawa | Niger | Variables | Nasarawa | Niger |
---|---|---|---|---|---|
Age (years; mean ± SE) and Education: | n = 82 | n = 73 | Coping strategy with seed soiled by rain: | n = 34 | n = 22 |
Age | 33.9 ±13.8 | 36.9 ± 16.6 | Sun-drying | 24 (70.6%) | 20 (90.9%) |
<Secondary | 32 (39.0%) | 33 (45.2%) | None | 9 (26.5%) | 2 (9.1%) |
≥Secondary | 50 (61.0%) | 40 (54.8%) | Grain processing method: | n = 82 | n = 73 |
Sex: | n = 82 | n = 73 | Sorting | 74 (90.2%) | 69 (94.5%) |
Male | 48 (58.5%) | 35 (48.0%) | Winnowing | 65 (79.3%) | 46 (63.0%) |
Female | 34 (41.5%) | 37 (50.7%) | Hot water washing | 36 (43.9%) | 15 (20.6%) |
Seed source: | n = 82 | n = 73 | Cold water washing | 28 (34.1%) | 10 (13.7%) |
Open market | 5 (6.1%) | 14 (19.2%) | Parboiling | 10 (12.2%) | 4 (5.5%) |
Previous harvest | 77 (93.9%) | 59 (80.8%) | Fermenting | 37 (45.1%) | 17 (23.3%) |
Seed type: Local/traditional | 81 (98.8%) | 69 (94.5%) | Awareness of mycotoxins: | n = 82 | n = 73 |
Pre-storage handling practice: | n = 82 | n = 73 | Can identify mouldy food | 69 (84.1%) | 58 (79.5%) |
Sun-drying | 81 (98.8%) | 65 (89.0%) | Have heard of mycotoxins | 35 (42.7%) | 11 (15.1%) |
Shelling | 21 (25.6%) | 30 (41.1%) | Food handling practice to ameliorate mycotoxins | 21 (25.6%) | 8 (11.0%) |
Packaging | 59 (72.0%) | 35 (48.0%) | Handling practice to ameliorate mycotoxins: | n = 21 | n = 8 |
Storage systems: | n = 82 | n = 73 | Harvest grains early | 2 (9.5%) | 6 (75.0%) |
None | 2 (2.4%) | 11 (15.1%) | Use of chemicals | 4 (19.1%) | 2 (25.0%) |
Bags | 74 (90.2%) | 54 (74.0%) | Smoking/drying | 10 (47.6%) | - |
Plastic container | 2 (2.4%) | 2 (2.7%) | Adequate storage | 5 (23.8%) | - |
Rhumbu | 2 (2.4%) | 4(5.5%) | Source of awareness: | n = 35 | n = 11 |
Kitchen roof | 2 (2.4%) | 2 (2.7%) | Mass media | 9 (25.7%) | 2 (18.2%) |
Protection of stored grains from rain & water | 48 (58.5%) | 51 (69.9%) | Community campaign | 16 (45.7%) | 5 (45.5%) |
Storage period: | n = 82 | n = 73 | Extension education | 10 (28.6%) | 4 (36.4%) |
<1 month | - | 5 (6.9%) | |||
1–3 months | 19 (23.2%) | 10 (13.7%) | |||
>3 month | 63 (76.8%) | 57 (78.1%) |
Independent Variables | Beta Coefficient | ||
---|---|---|---|
Nasarawa | Niger | Pooled | |
Constant | −2.844 (1.311) * | −22.175 (11896.4) ** | −3.57 (1.14) ** |
Sex (male = 1; female = 0) | 0.816 (0.628) | −0.206 (1.146) | 0.541 (0.016) |
Age (years) | 0.017 (0.023) | 0.019 (0.032) | 0.008 (0.016) |
Education (<2° = 0; ≥2° =1) | 1.271 (0.643) * | 0.311 (0.108) ** | 0.156 (0.074) * |
Consumption of spoilt food (yes = 1; no = 0) | 0.879 (0.773) | 1.727 (1.168) | 0.841 (0.530) |
Ability to identify mouldy grains (yes = 1; no = 0) | 1.952 (1.166) | 8.016 (7.123) | 1.689 (1.064) |
Exposure to food handling practice for ameliorating food pathogens (yes = 1; no = 0) | 2.137 (0.703) ** | 1.725 (0.788) * | 2.315 (0.562) ** |
Existence of food related sickness in the family (yes = 1; no = 0) | −0.489 (−0.489) | 0.392 (1.255) | 0.092 (0.081) |
Chi-square | 25.01 ** | 93.00 ** | 61.53 ** |
Nagelkerke R Square | 0.508 | 0.533 | 0.515 |
Cox and Snell R Square | 0.456 | 0.428 | 0.337 |
−2 Log likelihood | 185.783 | 322.494 | 116.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezekiel, C.N.; Ayeni, K.I.; Akinyemi, M.O.; Sulyok, M.; Oyedele, O.A.; Babalola, D.A.; Ogara, I.M.; Krska, R. Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins 2021, 13, 635. https://doi.org/10.3390/toxins13090635
Ezekiel CN, Ayeni KI, Akinyemi MO, Sulyok M, Oyedele OA, Babalola DA, Ogara IM, Krska R. Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins. 2021; 13(9):635. https://doi.org/10.3390/toxins13090635
Chicago/Turabian StyleEzekiel, Chibundu N., Kolawole I. Ayeni, Muiz O. Akinyemi, Michael Sulyok, Oluwawapelumi A. Oyedele, Daniel A. Babalola, Isaac M. Ogara, and Rudolf Krska. 2021. "Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria" Toxins 13, no. 9: 635. https://doi.org/10.3390/toxins13090635
APA StyleEzekiel, C. N., Ayeni, K. I., Akinyemi, M. O., Sulyok, M., Oyedele, O. A., Babalola, D. A., Ogara, I. M., & Krska, R. (2021). Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins, 13(9), 635. https://doi.org/10.3390/toxins13090635