Effectiveness of Botulinum Toxin on Pain in Stroke Patients Suffering from Upper Limb Spastic Dystonia
Abstract
:1. Introduction
2. Results
2.1. T0 Clinical Assessment and BoNT-A Treatment
2.2. T1 Clinical Assessment
3. Discussion
4. Study Limitations and Strength
5. Materials and Methods
5.1. Patients’ Selection
5.2. Patients’ Assessment
5.3. BoNT-A Treatment
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franceschini, M.; Iocco, M.; Molteni, F.; Santamato, A.; Smania, N. Italian Spasticity Study Group Management of Stroke Patients Submitted to Botulinum Toxin Type A Therapy: A Delphi Survey of an Italian Expert Panel of Specialist Injectors. Eur. J. Phys. Rehabil. Med. 2014, 50, 525–533. [Google Scholar]
- Lance, J.W. Symposium Synopsis. In Spasticity: Disordered Motor Control; Feldman, R.G., Young, R.R., Koella, W.P., Eds.; Year Book Medical Publishers: Miami, FL, USA, 1980; pp. 485–494. [Google Scholar]
- Marinelli, L.; Currà, A.; Trompetto, C.; Capello, E.; Serrati, C.; Fattapposta, F.; Pelosin, E.; Phadke, C.; Aymard, C.; Puce, L.; et al. Spasticity and spastic dystonia: The two faces of velocity-dependent hypertonia. J. Electromyogr. Kinesiol. 2017, 37, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Trompetto, C.; Currà, A.; Puce, L.; Mori, L.; Serrati, C.; Fattapposta, F.; Abbruzzese, G.; Marinelli, L. Spastic dystonia in stroke subjects: Prevalence and features of the neglected phenomenon of the upper motor neuron syndrome. Clin. Neurophysiol. 2019, 130, 521–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puce, L.; Currà, A.; Marinelli, L.; Mori, L.; Capello, E.; Di Giovanni, R.; Bodrero, M.; Solaro, C.; Cotellessa, F.; Fattapposta, F.; et al. Spasticity, spastic dystonia, and static stretch reflex in hypertonic muscles of patients with multiple sclerosis. Clin. Neurophysiol. Pr. 2021, 6, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Thilmann, A.F.; Fellows, S.J.; Garms, E. The mechanism of spastic muscle hypertonus. Variation in reflex gain over the time course of spasticity. Brain 1991, 114, 233–244. [Google Scholar]
- Lorentzen, J.; Pradines, M.; Gracies, J.-M.; Nielsen, J.B. On Denny-Brown’s ‘spastic dystonia’—What is it and what causes it? Clin. Neurophysiol. 2018, 129, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Trompetto, C.; Marinelli, L.; Puce, L.; Mori, L.; Serrati, C.; Fattapposta, F.; Currà, A. “Spastic dystonia” or “Inability to voluntary silence EMG activity”? Time for clarifying the nomenclature. Clin. Neurophysiol. 2019, 130, 1076–1077. [Google Scholar] [CrossRef]
- Gracies, J.-M. Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle Nerve 2005, 31, 552–571. [Google Scholar] [CrossRef]
- Trompetto, C.; Marinelli, L.; Mori, L.; Pelosin, E.; Currà, A.; Molfetta, L.; Abbruzzese, G. Pathophysiology of Spasticity: Implications for Neurorehabilitation. BioMed Res. Int. 2014, 2014, 354906. [Google Scholar] [CrossRef] [PubMed]
- Naess, H.; Lunde, L.; Brogger, J. The effects of fatigue, pain, and depression on quality of life in ischemic stroke patients: The Bergen Stroke Study. Vasc. Health Risk Manag. 2012, 8, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Klit, H.; Finnerup, N.B.; Andersen, G.; Jensen, T.S. Central poststroke pain: A population-based study. Pain 2011, 152, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Field, T.S. Post Stroke Pain: Identification, Assessment, and Therapy. Cerebrovasc. Dis. 2015, 39, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Wissel, J.; Schelosky, L.D.; Scott, J.; Christe, W.; Faiss, J.H.; Mueller, J. Early development of spasticity following stroke: A prospective, observational trial. J. Neurol. 2010, 257, 1067–1072. [Google Scholar] [CrossRef] [Green Version]
- Wissel, J.; Ganapathy, V.; Ward, A.B.; Borg, J.; Ertzgaard, P.; Herrmann, C.; Haggstrom, A.; Sakel, M.; Ma, J.; Dimitrova, R.; et al. OnabotulinumtoxinA Improves Pain in Patients with Post-Stroke Spasticity: Findings From a Randomized, Double-Blind, Placebo-Controlled Trial. J. Pain Symptom Manag. 2016, 52, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Plecash, A.R.; Chebini, A.; Ip, A.; Lai, J.J.; Mattar, A.A.; Randhawa, J.; Field, T.S. Updates in the Treatment of Post-Stroke Pain. Curr. Neurol. Neurosci. Rep. 2019, 19, 86. [Google Scholar] [CrossRef]
- Unruh, A.M. Gender variations in clinical pain experience. Pain 1996, 65, 123–167. [Google Scholar] [CrossRef]
- Chen, T.C.; Huang, G.-L.; Hsieh, C.-C.; Tseng, K.-W.; Tseng, W.-C.; Chou, T.-Y.; Nosaka, K. Comparison among three different intensities of eccentric contractions of the elbow flexors resulting in the same strength loss at one day post-exercise for changes in indirect muscle damage markers. Eur. J. Appl. Physiol. 2020, 120, 267–279. [Google Scholar] [CrossRef]
- Sheean, G. Is spasticity painful? Eur. J. Neurol. 2009, 16, 157–158. [Google Scholar] [CrossRef]
- Pavone, F.; Luvisetto, S. Botulinum Neurotoxin for Pain Management: Insights from Animal Models. Toxins 2010, 2, 2890–2913. [Google Scholar] [CrossRef] [Green Version]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; DeRuyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- Rudd, A.G.; Bowen, A.; Young, G.R.; James, M.A. The latest national clinical guideline for stroke. Clin. Med. 2017, 17, 154–155. [Google Scholar] [CrossRef] [Green Version]
- Currà, A.; Berardelli, A. Do the unintended actions of botulinum toxin at distant sites have clinical implications? Neurology 2009, 72, 1095–1099. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Hefter, H.; Jost, W.H.; Reissig, A.; Zakine, B.; Bakheit, A.M.; Wissel, J. Classification of Posture in Poststroke Upper Limb Spasticity: A Potential Decision Tool for Botulinum Toxin A Treatment? Int. J. Rehabil. Res. 2012, 35, 227–233. [Google Scholar] [CrossRef]
- Trompetto, C.; Mori, L.; Marinelli, L.; Maggi, G.; Cotellessa, F.; Puce, L.; Vestito, L.; Molteni, F.; Gasperini, G.; Bissolotti, L.; et al. What We Really, Really Treat with Botulinum Toxin in the Upper Limb of Post-Stroke Patients. Front. Rehabil. Sci. in press.
- Brashear, A.; Gordon, M.F.; Elovic, E.; Kassicieh, V.D.; Marciniak, C.; Do, M.; Lee, C.-H.; Jenkins, S.; Turkel, C.; Botox Post-Stroke Spasticity Study Group. Intramuscular Injection of Botulinum Toxin for the Treatment of Wrist and Finger Spasticity after a Stroke. N. Engl. J. Med. 2002, 347, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Price, D.; Bush, F.M.; Long, S.; Harkins, S.W. A comparison of pain measurement characteristics of mechanical visual analogue and simple numerical rating scales. Pain 1994, 56, 217–226. [Google Scholar] [CrossRef]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A.; et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef] [PubMed]
Patient | Gender | Age | Stroke Lesion Type | Affected Side | Time Since Stroke (Months) | Previous BoNT-A Injections | Last BoNT-A Injection (Months) |
---|---|---|---|---|---|---|---|
1 | M | 59 | ischemic | R | 45 | 7 | 9 |
2 | F | 47 | ischemic | L | 10 | 0 | |
3 | M | 84 | ischemic | L | 198 | 13 | 4 |
4 | F | 59 | ischemic | R | 100 | 10 | 4 |
5 | M | 65 | ischemic | L | 52 | 6 | 4 |
6 | M | 71 | ischemic | L | 216 | 21 | 3 |
7 | F | 63 | haemorragic | L | 29 | 3 | 10 |
8 | F | 52 | ischemic | R | 158 | 0 | |
9 | M | 73 | haemorragic | R | 68 | 11 | 3 |
10 | M | 84 | ischemic | R | 171 | 18 | 7 |
11 | F | 84 | haemorragic | R | 255 | 11 | 7 |
12 | F | 59 | haemorragic | L | 30 | 3 | 7 |
13 | M | 81 | ischemic | L | 18 | 0 | |
14 | F | 85 | ischemic | R | 61 | 5 | 7 |
15 | F | 51 | haemorragic | R | 111 | 0 | |
16 | F | 63 | haemorragic | R | 28 | 1 | 6 |
17 | M | 70 | haemorragic | R | 134 | 8 | 15 |
18 | M | 75 | haemorragic | L | 133 | 9 | 7 |
19 | F | 54 | haemorragic | L | 30 | 2 | 6 |
20 | M | 73 | ischemic | L | 99 | 15 | 5 |
21 | M | 64 | ischemic | L | 85 | 17 | 6 |
22 | F | 76 | ischemic | L | 39 | 4 | 4 |
23 | M | 71 | ischemic | R | 158 | 0 | |
24 | F | 72 | haemorragic | R | 60 | 11 | 3 |
25 | M | 41 | ischemic | R | 15 | 1 | 4 |
26 | M | 70 | haemorragic | L | 60 | 12 | 6 |
27 | M | 72 | haemorragic | R | 26 | 4 | 3 |
28 | M | 50 | haemorragic | L | 83 | 7 | 7 |
29 | F | 75 | ischemic | L | 46 | 7 | 6 |
30 | M | 65 | ischemic | L | 170 | 7 | 6 |
31 | F | 62 | ischemic | L | 52 | 8 | 5 |
32 | M | 64 | ischemic | R | 72 | 15 | 6 |
33 | M | 60 | ischemic | L | 65 | 12 | 5 |
34 | M | 48 | ischemic | R | 106 | 10 | 6 |
35 | M | 61 | ischemic | R | 76 | 18 | 3 |
36 | M | 58 | ischemic | R | 20 | 0 | |
37 | M | 57 | haemorragic | L | 74 | 7 | 4 |
38 | M | 56 | ischemic | L | 56 | 5 | 3 |
39 | F | 75 | ischemic | R | 246 | 0 | |
40 | M | 73 | ischemic | R | 87 | 14 | 3 |
41 | M | 48 | haemorragic | L | 71 | 3 | 7 |
Shoulder-Pain Dominant | Elbow-Pain Dominant | Wrist-Hand-Pain Dominant | No Pain | |
---|---|---|---|---|
(n = 5) | (n = 5) | (n = 12) | (n = 19) | |
MAS scores | ||||
ShA | 0 (0–2) | 1 (0−3) | 0 (0−3) | 0 (0−2) |
FoF | 2 (1−3) | 3 (1−4) | 2 (1−4) | 1 (0−4) |
FoP | 2 (2−3) | 3 (1−4) | 0.5 (0−3) | 2 (0−4) |
WrF | 3 (2−4) | 4 (2−4) | 3 (0−4) | 2 (0−4) |
FiF | 3 (0−3) | 3 (3−4) | 4 (0−4) | 3 (2−4) |
Hefter’ s pattern (n. patients) | ||||
No Pattern | 1 | 0 | 1 | 2 |
Pattern I | 0 | 0 | 1 | 2 |
Pattern II | 0 | 0 | 0 | 0 |
Pattern III | 3 | 0 | 7 | 13 |
Pattern IV | 1 | 4 | 3 | 2 |
Pattern V | 0 | 1 | 0 | 0 |
Finger pattern (n. patients) | ||||
No Pattern | 1 | 0 | 3 | 0 |
Pattern I | 2 | 1 | 5 | 10 |
Pattern II | 0 | 2 | 2 | 6 |
Pattern III | 2 | 2 | 2 | 3 |
Thumb pattern (n. patients) | ||||
No Pattern | 0 | 1 | 7 | 4 |
Pattern I | 2 | 1 | 4 | 7 |
Pattern II | 1 | 3 | 1 | 3 |
Pattern III | 2 | 0 | 0 | 5 |
PNRS scores | ||||
PNRS-rest | 2 (0−6) | 2 (0−6) | 0 (0−9) | 0 (0−0) |
PNRS-mobilization | 7 (5−8) | 8 (4−9) | 6 (2−10) | 0 (0−0) |
Shoulder-Pain Dominant | Elbow-Pain Dominant | Wrist–Hand-Pain Dominant | No Pain | |
---|---|---|---|---|
(n = 5) | (n = 5) | (n = 12) | (n = 19) | |
MAS scores | ||||
ShA | 0 (0−1) | 1 (0−3) | 0 (0−2) | 0 (0−2) |
FoF | 1 (1−1) | 3 (0−4) | 1 (0−3) | 1 (0−3 |
FoP | 2 (0−3) | 2 (0−4) | 0 (0−2) | 0 (0−3) |
WrF | 0 (0−3) | 2 (0−3) | 2 (0−4) | 0 (0−3) |
FiF | 0 (0−3) | 3 (1−3) | 3 (0−4) | 2 (0−3) |
Hefter’ s pattern (n. patients) | ||||
No Pattern | 3 | 0 | 5 | 6 |
Pattern I | 0 | 0 | 1 | 2 |
Pattern II | 1 | 0 | 0 | 0 |
Pattern III | 0 | 1 | 3 | 9 |
Pattern IV | 1 | 3 | 3 | 2 |
Pattern V | 0 | 1 | 0 | 0 |
Finger pattern (n. patients) | ||||
No Pattern | 4 | 1 | 4 | 10 |
Pattern I | 0 | 0 | 2 | 0 |
Pattern II | 1 | 2 | 5 | 7 |
Pattern III | 0 | 2 | 1 | 2 |
Thumb pattern (n. patients) | ||||
No Pattern | 3 | 1 | 12 | 14 |
Pattern I | 0 | 1 | 0 | 0 |
Pattern II | 1 | 3 | 0 | 5 |
Pattern III | 1 | 0 | 0 | 0 |
PNRS scores | ||||
PNRS-rest | 0 (0−1) | 0 (0−1) | 0 (0−0) | 0 (0−0) |
PNRS-mobilization | 5 (3−5) | 8 (0−9) | 3 (0−7) | 0 (0−0) |
Shoulder-Pain Dominant | Elbow-Pain Dominant | Wrist–Hand-Pain Dominant | No Pain | |
---|---|---|---|---|
(n = 5) | (n = 5) | (n = 12) | (n = 19) | |
Toxin doses (UI) mean ± DS | ||||
ShA | 100 (n = 1) | 200 (n = 1) | 100 (n = 1) | 100 ± 0 (n = 2) |
FoF | 250 ± 0 (n = 2) | 200 ± 41 (n = 4) | 170 ± 71 (n = 10) | 155 ± 44 (n = 14) |
FoP | 60 ± 22 (n = 5) | 50 ± 0 (n = 5) | 50 ± 0 (n = 6) | 48 ± 7 (n = 14) |
WrF | 145 ± 62 (n = 5) | 150 ± 41 (n = 4) | 137 ± 62 (n = 10) | 110 ± 35 (n = 13) |
FiF | 200 ± 121 (n = 5) | 195 ± 99 (n = 5) | 213 ± 72 (n = 10) | 254 ± 107 (n = 19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trompetto, C.; Marinelli, L.; Mori, L.; Puce, L.; Avanti, C.; Saretti, E.; Biasotti, G.; Amella, R.; Cotellessa, F.; Restivo, D.A.; et al. Effectiveness of Botulinum Toxin on Pain in Stroke Patients Suffering from Upper Limb Spastic Dystonia. Toxins 2022, 14, 39. https://doi.org/10.3390/toxins14010039
Trompetto C, Marinelli L, Mori L, Puce L, Avanti C, Saretti E, Biasotti G, Amella R, Cotellessa F, Restivo DA, et al. Effectiveness of Botulinum Toxin on Pain in Stroke Patients Suffering from Upper Limb Spastic Dystonia. Toxins. 2022; 14(1):39. https://doi.org/10.3390/toxins14010039
Chicago/Turabian StyleTrompetto, Carlo, Lucio Marinelli, Laura Mori, Luca Puce, Chiara Avanti, Elena Saretti, Giulia Biasotti, Roberta Amella, Filippo Cotellessa, Domenico A. Restivo, and et al. 2022. "Effectiveness of Botulinum Toxin on Pain in Stroke Patients Suffering from Upper Limb Spastic Dystonia" Toxins 14, no. 1: 39. https://doi.org/10.3390/toxins14010039
APA StyleTrompetto, C., Marinelli, L., Mori, L., Puce, L., Avanti, C., Saretti, E., Biasotti, G., Amella, R., Cotellessa, F., Restivo, D. A., & Currà, A. (2022). Effectiveness of Botulinum Toxin on Pain in Stroke Patients Suffering from Upper Limb Spastic Dystonia. Toxins, 14(1), 39. https://doi.org/10.3390/toxins14010039