Comparative Venom Proteomics of Iranian, Macrovipera lebetina cernovi, and Cypriot, Macrovipera lebetina lebetina, Giant Vipers
Abstract
:1. Introduction
2. Results
2.1. An Overview of Proteomic Strategies for Profiling Venoms of M. l. cernovi and M. l. lebetina
2.2. The Venom Proteome of Cypriot M. l. lebetina
2.3. The Venom Proteome of Iranian M. l. cernovi
2.4. Comparison between Venom Proteomes of M. lebetina Subspecies
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Venoms
5.2. Chemicals
5.3. Protein Concentration Estimation
5.4. HPLC and SDS-PAGE Separation
5.5. LC-MS/MS Analysis
5.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Prim. 2017, 3, 17063–17079. [Google Scholar] [CrossRef] [PubMed]
- The Reptile Database. Available online: http://www.reptile-database.org (accessed on 15 March 2022).
- Oraie, H.; Rastegar-Pouyani, E.; Khosravani, A.; Moradi, N.; Akbari, A.; Sehhatisabet, M.E.; Shafiei, S.; Stümpel, N.; Joger, U. Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra 2018, 54, 233–248. [Google Scholar]
- Safaei-Mahroo, B.; Ghaffari, H.; Fahimi, H.; Broomand, S.; Yazdanian, M.; Najafi-Majd, E.; Hosseinian Yousefkani, S.S.; Rezazadeh, E.; Hosseinzadeh, M.S.; Nasrabadi, R.; et al. The herpetofauna of Iran: Checklist of taxonomy, distribution and conservation status. Asian Herpetol. Res. 2015, 6, 257–290. [Google Scholar]
- Phelps, T. Old World Vipers, A Natural History of the Azemiopinae, and Viperinae, 1st ed.; Edition Chimaira: Frankfurt, Germany, 2010; p. 557. [Google Scholar]
- Kazemi, S.M.; Al-Sabi, A.; Long, C.; Shoulkamy, M.I.; Abd El-Aziz, T.M. Case report: Recent case reports of levant blunt-nosed viper Macrovipera lebetina obtusa snakebites in Iran. Am. J. Trop. Med. Hyg. 2021, 104, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Bennacef-Heffar, N.; Laraba-Djebari, F. Beneficial effects of heparin and l arginine on dermonecrosis effect induced by Vipera lebetina venom: Involvement of NO in skin regeneration. Acta Trop. 2017, 171, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Fatehi-Hassanabad, Z.; Fatehi, M. Characterisation of some pharmacological effects of the venom from Vipera lebetina. Toxicon 2004, 43, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Siigur, J.; Aaspõllu, A.; Tõnismägi, K.; Trummal, K.; Samel, M.; Vija, H.; Subbi, J.; Siigur, E. Proteases from Vipera lebetina venom affecting coagulation and fibrinolysis. Pathophysiol. Haemost. Thromb. 2001, 31, 123–132. [Google Scholar] [CrossRef]
- Chowdhury, A.; Zdenek, C.N.; Dobson, J.S.; Bourke, L.A.; Soria, R.; Fry, B.G. Clinical implications of differential procoagulant toxicity of the palearctic viperid genus Macrovipera, and the relative neutralization efficacy of antivenoms and enzyme inhibitors. Toxicol. Lett. 2021, 340, 77–88. [Google Scholar] [CrossRef]
- Bazaa, A.; Marrakchi, N.; El Ayeb, M.; Sanz, L.; Calvete, J.J. Snake venomics: Comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina. Proteomics 2005, 5, 4223–4235. [Google Scholar] [CrossRef]
- Sanz, L.; Ayvazyan, N.; Calvete, J.J. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J. Proteom. 2008, 71, 198–209. [Google Scholar] [CrossRef]
- Pla, D.; Quesada-Bernat, S.; Rodríguez, Y.; Sánchez, A.; Vargas, M.; Villalta, M.; Mesén, S.; Segura, Á.; Mustafin, D.O.; Fomina, Y.A.; et al. Dagestan blunt-nosed viper, Macrovipera lebetina obtusa (Dwigubsky, 1832), venom, venomics, antivenomics, and neutralization assays of the lethal and toxic venom activities by anti-Macrovipera lebetina turanica and anti-Vipera berus berus antivenoms. Toxicon X 2020, 6, 100035. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Oluoch, G.O.; Ainsworth, S.; Alsolaiss, J.; Bolton, F.; Arias, A.S.; Gutiérrez, J.M.; Rowley, P.; Kalya, S.; Ozwara, H.; et al. Preclinical antivenom-efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa. PLoS Negl. Trop. Dis. 2017, 11, e0008698. [Google Scholar] [CrossRef] [PubMed]
- Casewell, N.R.; Wagstaff, S.C.; Wuster, W.; Cook, D.A.N.; Bolton, F.M.S.; King, S.I.; Pla, D.; Sanz, L.; Calvete, J.J.; Harrison, R.A. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl. Acad. Sci. USA 2014, 111, 9205–9210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvete, J.J.; Sanz, L.; Pla, D.; Lomonte, B.; Gutiérrez, J.M. Omics meets biology: Application to the design and preclinical assessment of antivenoms. Toxins 2014, 6, 3388–3405. [Google Scholar] [CrossRef] [Green Version]
- Jestrzemski, D.; Kuzyakova, I. Morphometric characteristics and seasonal proximity to water of the Cypriot blunt-nosed viper Macrovipera lebetina lebetina (Linnaeus, 1758). J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 42. [Google Scholar] [CrossRef] [Green Version]
- Nalbantsoy, A.; Karabay-Yavasoglu, N.U.; Sayim, F.; Deliloglu-Gurhan, I.; Gocmen, B.; Arikan, H.; Yildiz, M.Z. Determination of in vivo toxicity and in vitro cytotoxicity of venom from the Cypriot blunt-nosed viper Macrovipera lebetina lebetina and antivenom production. J. Venom. Anim Toxins Incl Trop Dis 2012, 18, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Göçmen, B.; Arikan, H.; Ozbel, Y.; Mermer, A.; Çiçek, K. Clinical, physiological and serological observations of a human following a venomous bite by Macrovipera lebetina (Reptilia: Serpentes). Turkiye Parazitol. Derg. 2006, 30, 158–162. [Google Scholar]
- Leonidou, L. Snakes alive. Cyprus Mail, 25 April 2006; 8. [Google Scholar]
- Fraser, L. A case of snake-bite in Cyprus. Trans. R. Soc. Trop. Med. Hyg. 1929, 8, 315. [Google Scholar] [CrossRef]
- Hopkins, G.O. Snake bites in Cyprus. J. R. Army Med. Corps. 1974, 120, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Göçmen, B.; Arıkan, H.; Mermer, A.; Langerwerf, B.; Bahar, H. Morphological, hemipenial and venom electrophoresis comparisons of the levantine viper, Macrovipera lebetina (Linnaeus, 1758) from Cyprus and Southern Anatolia. Turk. J. Zool. 2006, 30, 22534. [Google Scholar]
- Afroosheh, M.; Kazemi, S.M. Macrovipera lebetina cernovi (Ophidia: Viperidae), a newcomer to Iran. In Proceedings of the SEH European Congress of Herpetology and DGHT Deutscher Herpetologentag, Luxembourg, 25–29 September 2011. [Google Scholar]
- Monzavi, S.M.; Afshari, R.; Khoshdel, A.R.; Salarian, A.A.; Khosrojerdi, H.; Mihandoust, A. Interspecies variations in clinical envenoming effects of viper snakes evolutionized in a common habitat: A comparative study on Echis carinatus sochureki and Macrovipera lebetina obtusa victims in Iran. Asia Pac. J. Med. Toxicol. 2019, 8, 107–114. [Google Scholar]
- LeafletR. Available online: https://cran.r-project.org/src/contrib/Archive/leafletR/ (accessed on 1 July 2022).
- Takeya, H.; Nishida, S.; Nishino, N.; Makinose, Y.; Omori-Satoh, T.; Nikai, T.; Sugihara, H.; Iwanaga, S. Primary structures of platelet aggregation inhibitors (disintegrins) autoproteolytically released from snake venom hemorrhagic metalloproteinases and new fluorogenic peptide substrates for these enzymes. J. Biochem. 1993, 113, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Okuda, D.; Koike, H.; Morita, T. A new gene structure of the disintegrin family: A subunit of dimeric disintegrin has a short coding region. J. Biochem. 2002, 41, 14248–14254. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.; Evans, H.J. Structural domains in venom proteins: Evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon 1992, 30, 265–293. [Google Scholar] [CrossRef]
- Fox, J.W.; Serrano, S.M.T. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008, 275, 3016–3030. [Google Scholar] [CrossRef]
- Igci, N.; Demiralp, D.O. A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky, 1832) from Southeastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Arch. Toxicol. 2012, 86, 441–451. [Google Scholar]
- Herrera, C.; Voisin, M.B.; Escalante, T.; Rucavado, A.; Nourshargh, S.; Gutiérrez, J.M. Effects of PI and PIII snake venom haemorrhagic metalloproteinases on the microvasculature: A confocal microscopy study on the mouse cremaster muscle. PLoS ONE 2016, 11, e0168643. [Google Scholar] [CrossRef] [Green Version]
- Serrano, S.M.T.; Maroun, R.C. Snake venom serine proteinases: Sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 2005, 45, 1115–1132. [Google Scholar] [CrossRef]
- Ferreira, I.G.; Pucca, M.B.; de Oliveira, I.S.; Cerni, F.A.; Jacob, B.C.S.; Arantes, E.C. Snake venom vascular endothelial growth factors (SvVEGFs): Unravelling their molecular structure, functions, and research potential. Cytokine Growth Factor Rev. 2021, 60, 133–143. [Google Scholar] [CrossRef]
- Munawar, A.; Ali, S.A.; Akrem, A.; Betzel, C. Snake venom peptides: Tools of biodiscovery. Toxins 2018, 10, 474. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Rucavado, A.; Chaves, F.; Díaz, C.; Escalante, T. Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon 2009, 54, 958–975. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, K.; Amar, L. Blood hemoglobin, lactate dehydrogenase and yotal creatine kinase combinely as markers of hemolysis and rhabdomyolysis associated with snake bite. Int. J. Toxicol. Pharmacol. 2013, 5, 5–8. [Google Scholar]
- Tasoulis, T.; Pukala, T.L.; Isbister, G.K. Investigating toxin diversity and abundance in snake venom proteomes. Front. Pharmacol. 2022, 12, 768015. [Google Scholar] [CrossRef] [PubMed]
- Özbulat, M.; Açıkalın, A.; Akday, U.; Taşkın, Ö.; Dişel, N.R.; Sebe, A. Factors affecting prognosis in patients with snakebite. Eurasian J. Emerg. Med. 2021, 20, 6–11. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Albulescu, L.-O.; Clare, R.H.; Casewell, N.R.; Abd El-Aziz, T.M.; Escalante, T.; Rucavado, A. The search for natural and synthetic inhibitors that would complement antivenoms as therapeutics for snakebite envenoming. Toxins 2021, 13, 451. [Google Scholar] [CrossRef]
- Eble, J.A. Structurally robust and functionally highly versatile—C-type lectin (-related) proteins in snake venoms. Toxins 2019, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Rucavado, A.; Escalante, T.; Arni, R. Thrombocytopenia and platelet hypoaggregation induced by Bothrops asper snake venom hemorrhage. Thromb. Haemost. 2005, 91, 123–131. [Google Scholar]
- Oliveira, S.S.; Alves, E.C.; Santos, A.S.; Pereira, J.P.T.; Sarraff, L.K.S.; Nascimento, E.F.; De-Brito-sousa, J.D.; Sampaio, V.S.; Lacerda, M.V.G.; Sachett, J.A.G.; et al. Factors associated with systemic bleeding in Bothrops envenomation in a tertiary hospital in the Brazilian Amazon. Toxins 2019, 11, 22. [Google Scholar] [CrossRef]
- Calvete, J.J.; Juarez, P.; Sanz, L. Snake venomics. Strategy and applications. J. Mass Spectrom. 2007, 42, 1405–1414. [Google Scholar] [CrossRef]
- Fox, J.W.; Serrano, S.M. Exploring snake venom proteomes: Multifaceted analyses for complex toxin mixtures. Proteomics 2008, 8, 909–920. [Google Scholar] [CrossRef]
- Markland, F.S.; Swenson, S. Snake venom metalloproteinases. Toxicon 2013, 62, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.F.; Mellows, B.A.; Mitchell, R.; Sfyri, P.; Layfield, H.J.; Salamah, M.; Vaiyapuri, R.; Collins-Hooper, H.; Bicknell, A.B.; Matsakas, A.; et al. Mechanisms underpinning the permanent muscle damage induced by snake venom metalloprotease. PLoS Negl. Trop. Dis. 2019, 13, e0007041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamza, L.; Girardi, T.; Castelli, S.; Gargioli, C.; Cannata, S.; Patamia, M.; Luly, P.; Laraba-Djebari, F.; Petruzzelli, R.; Rufini, S. Isolation and characterization of a myotoxin from the venom of Macrovipera lebetina transmediterranea. Toxicon 2010, 56, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Siigur, J.; Samel, M.; Tonismagi, K.; Subbi, J.; Siigur, E.; Tu, A.T. Biochemical characterization of lebetase, a direct-acting fibrinolytic enzyme from Vipera lebetina snake venom. Thromb. Res. 1998, 90, 39–49. [Google Scholar] [CrossRef]
- Ramos, O.H.; Carmona, A.K.; Selistre-de-Araujo, H.S. Expression, refolding, and in vitro activation of a recombinant snake venom prometalloprotease. Protein Expr. Purif. 2003, 28, 34–41. [Google Scholar] [CrossRef]
- Okamoto, D.N.; Kondo, M.Y.; Oliveira, L.C.G.; Honorato, R.V.; Zanphorlin, L.M.; Coronado, M.A.; Araújo, M.S.; Da Motta, G.; Veronez, C.L.; Andrade, S.S.; et al. P-I class metalloproteinase from Bothrops moojeni venom is a post-proline cleaving peptidase with kininogenase activity: Insights into substrate selectivity and kinetic behavior. Biochim. Biophys. Acta Proteins Proteom. 2014, 1844, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Rucavado, A. Snake venom metalloproteinases: Their role in the pathogenesis of local tissue damage. Biochemie 2000, 82, 841–850. [Google Scholar] [CrossRef]
- Boumaiza, S.; Oussedik-Oumehdi, H.; Laraba-Djebari, F. Pathophysiological effects of Cerastes cerastes and Vipera lebetina venoms: Immunoneutralization using anti-native and anti-60Co irradiated venoms. Biologicals 2016, 44, 1–11. [Google Scholar] [CrossRef]
- Sebia-Amrane, F.; Laraba-Djebari, F. Pharmaco-modulations of induced edema and vascular permeability changes by Vipera lebetina venom: Inflammatory mechanisms. Inflammation 2013, 36, 434–443. [Google Scholar] [CrossRef]
- Munich AntiVenom INdex (MAVIN). Available online: http://www.antivenoms.toxinfo.med.tum.de/ (accessed on 10 July 2022).
- García-Arredondo, A.; Martínez, M.; Calderón, A.; Saldívar, A.; Soria, R. Preclinical assessment of a new polyvalent antivenom (Inoserp Europe) against several species of the Subfamily Viperinae. Toxins 2019, 11, 149. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.F.; Hung, C.C.; Wu, S.H.; Chiou, S.H. Characterization of three endogenous peptide inhibitors for multiple metalloproteinases with fibrinogenolytic activity from the venom of Taiwan habu (Trimeresurus mucrosquamatus). Biochem. Biophys. Res. Commun. 1998, 248, 562–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, B.; Kaiser, I.I. Inhibition of metalloproteinases in Bothrops asper venom by endogenous peptides. Toxicon 1993, 31, 889–899. [Google Scholar] [CrossRef]
- Ghezellou, P.; Heiles, S.; Kadesch, P.; Ghassempour, A.; Spengler, B. Venom gland mass spectrometry imaging of Saw-scaled viper, Echis carinatus sochureki, at high lateral rResolution. J. Am. Soc. Mass Spectrom. 2021, 32, 1105–1115. [Google Scholar] [CrossRef]
- Wagstaff, S.C.; Favreau, P.; Cheneval, O.; Laing, G.D.; Wilkinson, M.C.; Miller, R.L.; Stocklin, R.; Harrison, R.A. Molecular characterisation of endogenous snake venom metalloproteinase inhibitors. Biochem. Biophys. Res. Commun. 2008, 365, 650–656. [Google Scholar] [CrossRef]
- Ding, B.; Xu, Z.; Qian, C.; Jiang, F.; Ding, X.; Ruan, Y.; Ding, Z.; Fan, Y. Antiplatelet aggregation and antithrombosis efficiency of peptides in the snake venom of Deinagkistrodon acutus: Isolation, identification, and evaluation. Evid. Based Complement. Alternat. Med. 2015, 2015, 412841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hempel, B.-F.; Damm, M.; Göçmen, B.; Karis, M.; Oguz, M.A.; Nalbantsoy, A.; Süssmuth, R.D. Comparative venomics of the Vipera ammodytes transcaucasiana and Vipera ammodytes montandoni from Turkey provides insights into kinship. Toxins 2018, 10, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munekiyo, S.M.; Mackessy, S.P. Presence of peptide inhibitors in rattlesnake venoms and their effects on endogenous metalloproteases. Toxicon 2005, 45, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.T.; Pitts, M.; Tongyoo, P.; Rojnuckarin, P.; Wilkinson, M.C. Snake venom metalloproteinases and their peptide inhibitors from Myanmar russell’s viper venom. Toxins 2017, 9, 15. [Google Scholar] [CrossRef]
- Lewis, R.J.; Garcia, M.L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar] [CrossRef]
- King, G.F. Venoms as a platform for human drugs: Translating toxins into therapeutics. Expert Opin. Biol. Ther. 2011, 11, 1469–1484. [Google Scholar] [CrossRef]
- Siigur, J.; Aaspõllu, A.; Siigur, E. Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon 2019, 158, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Kou, Q.; Xun, L.; Liu, X. TopPIC: A software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics 2016, 32, 3495–3497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zybailov, B.; Mosley, A.L.; Sardiu, M.E.; Coleman, M.K.; Florens, L.; Washburn, M.P. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 2006, 5, 2339–2347. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, A.C.; Parmely, T.J.; Tomomori-Sato, C.; Sato, S.; Zhu, D.; Conaway, R.C.; Conaway, J.W.; Florens, L.; Washburn, M.P. Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc. Natl. Acad. Sci. USA 2006, 103, 18928–18933. [Google Scholar] [CrossRef] [PubMed]
Protein Family | % Of Total Venom Proteins | ||||
---|---|---|---|---|---|
M. l. lebetina (Cyprus) | M. l. cernovi (Iran) | M. l. obtusa (Armenia) | M. l. obtusa (Dagestan) | M. l. transmediterranea (Tunisia) | |
P-I snake venom Zn2+-metalloproteinase | 3.56 | 19.67 | 27.8 | 14.6 | - |
P-III snake venom Zn2+-metalloproteinase | 24.52 | 15.57 | 4.3 | 9.4 | 67 |
Dimeric disintegrin | 13.29 | 13.6 | 8.5 | 5.5 | 6 |
Medium disintegrin | - | - | - | <1 | - |
Short disintegrin | 2.24 | - | 2.8 | 7.4 | <1 |
Disintegrin/cysteine-rich fragment | 2.82 | 3.22 | 1.7 | 0.6 | 1 |
Serine proteinase | 17.16 | 16 | 14.9 | 23.4 | 9 |
Phospholipase A2 | 8.62 | 8.87 | 14.6 | 13.6 | 4 |
C-type lectin-like | 4.43 | 8.21 | 14.8 | 8.7 | 10 |
L-amino acid oxidase | 7.55 | 7.54 | 1.7 | 2 | - |
Cysteine-rich secretory protein | 1.82 | <1 | 2.6 | 1.1 | - |
Bradykinin-potentiating peptides/natriuretic peptide | 1.83 | 1.14 | 5.3 | 5.6 | <1 |
Hyaluronidase | <1 | - | - | <1 | - |
Phosphodiesterase | 1.43 | <1 | - | <1 | - |
5′-nucleotidase | 1.47 | 1.43 | - | <1 | - |
Snake venom Zn2+-metalloproteinase inhibitor | 6.32 | 3.54 | - | 4.8 | - |
Phospholipase B | - | <1 | - | - | - |
Nerve growth factor | 2.32 | <1 | - | - | - |
Vascular endothelial growth factor | <1 | <1 | - | - | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezellou, P.; Dillenberger, M.; Kazemi, S.M.; Jestrzemski, D.; Hellmann, B.; Spengler, B. Comparative Venom Proteomics of Iranian, Macrovipera lebetina cernovi, and Cypriot, Macrovipera lebetina lebetina, Giant Vipers. Toxins 2022, 14, 716. https://doi.org/10.3390/toxins14100716
Ghezellou P, Dillenberger M, Kazemi SM, Jestrzemski D, Hellmann B, Spengler B. Comparative Venom Proteomics of Iranian, Macrovipera lebetina cernovi, and Cypriot, Macrovipera lebetina lebetina, Giant Vipers. Toxins. 2022; 14(10):716. https://doi.org/10.3390/toxins14100716
Chicago/Turabian StyleGhezellou, Parviz, Melissa Dillenberger, Seyed Mahdi Kazemi, Daniel Jestrzemski, Bernhard Hellmann, and Bernhard Spengler. 2022. "Comparative Venom Proteomics of Iranian, Macrovipera lebetina cernovi, and Cypriot, Macrovipera lebetina lebetina, Giant Vipers" Toxins 14, no. 10: 716. https://doi.org/10.3390/toxins14100716