Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Plant Material
4.3. Extraction and Purification of Alkaloids
4.4. Conversion of Haemanthidine in the Corresponding 6,11-O,O′-di-p-Bromobenzoyl Esters (11 and 12)
4.5. Biological Assays
4.5.1. Antiviral Assays
4.5.2. Cell Culture and Reagents
4.5.3. MTT Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nair, J.J.; Bastida, J.; Codina, C.; Viladomat, F.; van Staden, J. Alkaloids of the South African Amaryllidaceae: A review. Nat. Prod. Commun. 2013, 8, 1335–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christenhusz, M.J.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 26, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Meerow, A.W.; Snijman, D.A. Amaryllidaceae. In The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 3, pp. 83–110. [Google Scholar]
- Evidente, A.; Kornienko, A. Anticancer evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives. Phytochem. Rev. 2009, 8, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Nair, J.J.; van Staden, J. Pharmacological and toxicological insight to the South Africa Amaryllidaceae. Food. Chem. Toxicol. 2013, 62, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Yao, G. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2019, 36, 1462–1488. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, J.L. Plants used against cancer. A survey. Lloydia 1967, 30, 379–436. [Google Scholar]
- Kornienko, A.; Evidente, A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008, 108, 1982–2014. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Amaryllidaceae alkaloids: Absolute configuration and biological activity. Chirality 2017, 29, 486–499. [Google Scholar] [CrossRef]
- Bastida, J.; Viladomat, F.; Codina, C. Narcissus alkaloids. In Studies in Natural Products Chemistry; Rhahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 323–405. [Google Scholar]
- He, M.; Qu, C.; Gao, O.; Hu, X.; Hong, X. Biological and pharmacological activities of Amaryllidaceae alkaloids. RSC Adv. 2015, 5, 16562–16574. [Google Scholar] [CrossRef]
- Lamoral-Theys, D.; Decaestecker, C.; Mathieu, V.; Dubois, J.; Kornienko, A.; Kiss, R.; Evidente, A.; Pottier, L. Lycorine and its derivatives for anticancer drug design. Mini-Rev. Med. Chem. 2010, 10, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Lamoral-Theys, D.; Andolfi, A.; Van Goietsenoven, G.; Cimmino, A.; Le Calvé, B.; Wauthoz, N.; Mégalizzi, V.; Gras, T.; Bruyère, C.; Dubois, J.; et al. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: An investigation of structure-activity relationship and mechanistic insight. J. Med. Chem. 2009, 52, 6244–6256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evdokimov, N.M.; Lamoral-Theys, D.; Mathieu, V.; Andolfi, A.; Frolova, L.V.; Pelly, S.C.; van Otterlo, W.A.; Magedov, I.V.; Kiss, R.; Evidente, A.; et al. In search of a cytostatic agent derived from the alkaloid lycorine: Synthesis and growth inhibitory properties of lycorine derivatives. Bioorg. Med. Chem. 2011, 19, 7252–7261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Goietsenoven, G.; Hutton, J.; Becker, J.P.; Lallemand, B.; Robert, F.; Lefranc, F.; Pirker, C.; Vandenbussche, G.; Van Antwerpen, P.; Evidente, A.; et al. Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas. FASEB J. 2010, 24, 4575–4584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Goietsenoven, G.; Andolfi, A.; Lallemand, B.; Cimmino, A.; Lamoral-Theys, D.; Gras, T.; Abou-Donia, A.; Dubois, J.; Lefranc, F.; Mathieu, V.; et al. Amaryllidaceae alkaloids belonging to different structural subgroups display activity against apoptosis-resistant cancer cells. J. Nat. Prod. 2010, 73, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A.; Kireev, A.S.; Jenkins, A.R.; Romero, A.E.; Steelant, W.F.; Van Slambrouck, S.; Kornienko, A. Biological evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives: Discovery of novel leads for anticancer drug design. Planta Med. 2009, 75, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Van Goietsenoven, G.; Mathieu, V.; Lefranc, F.; Kornienko, A.; Evidente, A.; Kiss, R. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers. Med. Res. Rev. 2013, 33, 439–455. [Google Scholar] [CrossRef]
- Luchetti, G.; Johnston, R.; Mathieu, V.; Lefranc, F.; Hayden, K.; Andolfi, A.; Lamoral-Theys, D.; Reisenauer, M.R.; Champion, C.; Pelly, S.C.; et al. Bulbispermine: A crinine-type amaryllidaceae alkaloid exhibiting cytostatic activity toward apoptosis-resistant glioma cells. ChemMedChem 2012, 7, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Govindaraju, K.; Masi, M.; Colin, M.; Mathieu, V.; Evidente, A.; Hudnall, T.; Kornienko, A. Novel topologically complex scaffold derived from alkaloid haemanthamine. Molecules 2018, 23, 255. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, S.; Meyer, M.; Zorbas, C.; Bouchta, S.A.; Saraf, K.; Pelly, S.C.; Yusupova, G.; Evidente, A.; Mathieu, V.; Kornienko, A.; et al. The Amaryllidaceae alkaloid haemanthamine binds the eukaryotic ribosome to repress cancer cell growth. Structure 2018, 26, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Masi, M.; Frolova, L.V.; Yu, X.; Mathieu, V.; Cimmino, A.; De Carvalho, A.; Kiss, R.; Rogelj, S.; Pertsemlidis, A.; Kornienko, A.; et al. Jonquailine, a new pretazettine-type alkaloid isolated from Narcissus jonquilla quail, with activity against drug-resistant cancer. Fitoterapia 2015, 102, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Govindaraju, K.; Ingels, A.; Hasan, M.N.; Sun, D.; Mathieu, V.; Masi, M.; Evidente, A.; Kornienko, A. Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorg. Med. Chem. Lett. 2018, 28, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Ka, S.; Masi, M.; Merindol, N.; Di Lecce, R.; Plourde, M.B.; Seck, M.; Górecki, M.; Pescitelli, G.; Desgagne-Penix, I.; Evidente, A. Gigantelline, gigantellinine and gigancrinine, cherylline-and crinine-type alkaloids isolated from Crinum jagus with anti-acetylcholinesterase activity. Phytochemistry 2020, 175, 112390. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Ren, Y.; Howes, M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006, 23, 181–199. [Google Scholar] [CrossRef]
- Martinez-Peinado, N.; Cortes-Serra, N.; Torras-Claveria, L.; Pinazo, M.-J.; Gascon, J.; Bastida, J.; Alonso-Padilla, J. Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity. Parasites Vectors 2020, 13, 299. [Google Scholar] [CrossRef]
- Masi, M.; Cala, A.; Tabanca, N.; Cimmino, A.; Green, I.; Bloomquist, J.; van Otterlo, W.; Macias, F.; Evidente, A. Alkaloids with activity against the Zika virus vector Aedes aegypti (L.)-crinsarnine and sarniensinol, two new crinine and mesembrine type alkaloids isolated from the south african plant Nerine sarniensis. Molecules 2016, 21, 1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masi, M.; van der Westhuyzen, A.E.; Tabanca, N.; Evidente, M.; Cimmino, A.; Green, I.R.; Bernier, U.R.; Becnel, J.J.; Bloomquist, J.R.; van Otterlo, W.A.; et al. Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. Fitoterapia 2017, 116, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Qi, W.B.; Wang, L.; Tian, J.; Jiao, P.R.; Liu, G.Q.; Ye, W.C.; Liao, M. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respir. Viruses 2013, 7, 922–931. [Google Scholar] [CrossRef] [Green Version]
- Szlávik, L.; Gyuris, A.; Minárovits, J.; Forgo, P.; Molnár, J.; Hohmann, J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med. 2004, 70, 871–873. [Google Scholar] [CrossRef]
- Ka, S.; Merindol, N.; Sow, A.A.; Singh, A.; Landelouci, K.; Plourde, M.B.; Pépin, G.; Masi, M.; Di Lecce, R.; Evidente, A.; et al. Amaryllidaceae alkaloid cherylline inhibits the replication of dengue and Zika viruses. Antimicrob. Agents Chemother. 2021, 65, e0039821. [Google Scholar] [CrossRef]
- Du Merac, M.L. Systematics and biochemistry of the Amaryllidaceae—Alkaloid content of Pancratium maritimum. Compt. Rend. 1954, 239, 300–302. [Google Scholar]
- Cedrón, J.C.; Del Arco-Aguilar, M.; Estévez-Braun, A.; Ravelo, Á.G. Chemistry and Biology of Pancratium Alkaloids. In The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Elesevier: Amsterdam, The Netherlands, 2010; Volume 68, pp. 1–37. [Google Scholar]
- Berkov, S.; Evstatieva, L.; Popov, S. Alkaloids in Bulgarian Pancratium maritimum L. Z. Nat. C 2004, 59, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.R.; Mohamed, G.A.; Shaala, L.A.; Youssef, D.T.; El Sayed, K.A. New alkaloids from Pancratium maritimum. Planta Med. 2013, 79, 1480–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Donia, A.H.; Abib, A.A.; El Din, A.S.; Evidente, A.; Gaber, M.; Scopa, A. Two betaine-type alkaloids from Egyptian Pancratium maritimum. Phytochemistry 1992, 31, 2139–2141. [Google Scholar] [CrossRef]
- Abou-Donia, A.H.; De Giulio, A.; Evidente, A.; Gaber, M.; Habib, A.A.; Lanzetta, R.; El Din, A.A.S. Narciclasine-4-O-β-D-glucopyranoside, a glucosyloxy amidic phenanthridone derivative from Pancratium maritimum. Phytochemistry 1991, 30, 3445–3448. [Google Scholar] [CrossRef]
- Schrader, K.K.; Avolio, F.; Andolfi, A.; Cimmino, A.; Evidente, A. Ungeremine and its hemisynthesized analogues as bactericides against Flavobacterium columnare. J. Agric. Food Chem. 2013, 61, 1179–1183. [Google Scholar] [CrossRef] [Green Version]
- Moeini, A.; Cimmino, A.; Dal Poggetto, G.; Di Biase, M.; Evidente, A.; Masi, M.; Lavermicocca, P.; Valerio, F.; Leone, A.; Malinconico, M. Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-Ungeremine microbeads. Carbohydr. Polym. 2018, 195, 631–641. [Google Scholar] [CrossRef]
- Moeini, A.; Mallardo, S.; Cimmino, A.; Dal Poggetto, G.; Masi, M.; Di Biase, M.; van Reenen, A.; Lavermicocca, P.; Valerio, F.; Evidente, A.; et al. Thermoplastic starch and bioactive chitosan sub-microparticle biocomposites: Antifungal and chemico-physical properties of the films. Carbohydr. Polym. 2020, 230, 115627. [Google Scholar] [CrossRef]
- Antoun, M.D.; Mendoza, N.T.; Ríos, Y.R.; Proctor, G.R.; Wickramaratne, D.M.; Pezzuto, J.M.; Kinghorn, A.D. Cytotoxicity of Hymenocallis expansa alkaloids. J. Nat. Prod. 1993, 56, 1423–1425. [Google Scholar] [CrossRef]
- Boit, H.G.; Döpke, W. Alkaloide aus Hippeastrum aulicum var. robustum. Naturwissenschaften 1960, 47, 109. [Google Scholar]
- Fales, H.M.; Giuffrida, L.D.; Wildman, W.C. Alkaloids of the Amaryllidaceae. VIII. The Structures of Narcissamine, Pseudolycorine and Methylpseudolycorine. J. Am. Chem. Soc. 1956, 78, 4145–4150. [Google Scholar] [CrossRef]
- Furusawa, E.; Furusawa, S.; Tani, S.; Irie, H.; Kitamura, K.; Wildman, W.C. Isolation of pretazettine from Narcissus tazetta L. Chem. Pharm. Bull. 1976, 24, 336–338. [Google Scholar] [CrossRef] [Green Version]
- Baxendale, I.R.; Ley, S.V. Synthesis of the alkaloid natural products (+)-plicane and (−)-obliquine, using polymer-supported reagents and scavengers. Ind. Eng. Chem. Res. 2005, 44, 8588–8592. [Google Scholar] [CrossRef]
- Frahm, A.W.; Ali, A.A.; Ramadan, M.A. 13C nuclear magnetic resonance spectra of amaryllidaceae alkaloids. I alkaloids with the crinane skeleton. Magn. Reson. Chem. 1985, 23, 804–808. [Google Scholar] [CrossRef]
- Bastida, J.; Contreras, J.; Codina, C.; Wright, C.W.; Phillipson, J.D. Alkaloids from Narcissus cantabricus. Phytochemistry 1995, 40, 1549–1551. [Google Scholar] [CrossRef]
- Pabuççuoglu, V.; Richomme, P.; Gözler, T.; Kivçak, B.; Freyer, A.J.; Shamma, M. Four new crinine-type alkaloids from Sternbergia species. J. Nat. Prod. 1989, 52, 785–791. [Google Scholar] [CrossRef]
- Ghosal, S.; Saini, K.S.; Razdan, S. Crinum alkaloids: Their chemistry and biology. Phytochemistry 1985, 24, 2141–2156. [Google Scholar] [CrossRef]
- Ma, G.; Li, H.; Lu, C.; Yang, X.; Hong, S. Studies on the alkaloids of Amaryllidaceae. 9. 6-Alpha-Beta-Hydroxy-3-0-Mehylepimaritidine, 2 new alkaloids from Narcissus tazetta L. var chinensis roem. Heterocycles 1986, 24, 2089–2092. [Google Scholar] [CrossRef]
- Forgo, P.; Hohmann, J. Leucovernine and Acetylleucovernine, Alkaloids from Leucojum vernum. J. Nat. Prod. 2005, 68, 1588–1591. [Google Scholar] [CrossRef]
- Bastida, J.; Llabrés, J.M.; Viladomat, F.; Codina, C.; Rubiralta, M.; Feliz, M. Narcissus alkaloids, III. 9-O-demethylhomolycorine from Narcissus confusus. J. Nat. Prod. 1987, 50, 199–202. [Google Scholar] [CrossRef]
- Evidente, A.; Lanzetta, R.; Abou-Donia, A.H.; Amer, M.E.; Kassem, F.F. 9-O-Demethylhomolycornine from Egyptian Narcissus tazetta. Archiv. Pharm. 1994, 327, 595–596. [Google Scholar] [CrossRef]
- Evidente, A. Identification of 11-hydroxyvittatine in Sternbergia lutea. J. Nat. Prod. 1986, 49, 168–169. [Google Scholar] [CrossRef]
- Ali, A.A.; Mesbah, M.K.; Frahm, A.W. Phytochemical investigation of Hippeastrum vittatum. Planta Med. 1984, 50, 188–189. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza-Puchol, D.; Ortiz, J.E.; Orden, A.A.; Sanchez, M.; Palermo, J.; Tapia, A.; Bastida, J.; Feresin, G.E. Alkaloids analysis of Habranthus cardenasianus (Amaryllidaceae), anti-cholinesterase activity and biomass production by propagation strategies. Molecules 2021, 26, 192. [Google Scholar] [CrossRef] [PubMed]
- King, R.W.; Murphy, C.F.; Wildman, W.C. 6-Hydroxycrinamine and haemanthidine. J. Am. Chem. Soc. 1965, 87, 4912–4917. [Google Scholar] [CrossRef]
- Wagner, J.; Pham, H.L.; Döpke, W. Alkaloids from Hippeastrum equestre Herb.—5. Circular dichroism studies. Tetrahedron 1996, 52, 6591–6600. [Google Scholar] [CrossRef]
- Bulger, P.; Bagal, S.; Marquez, R. Recent advances in biomimetic natural product synthesis. Nat. Prod. Rep. 2008, 25, 254–297. [Google Scholar] [CrossRef]
- Habartová, K.; Cahlíková, L.; Rezáčová, M.; Havelek, R. The biological activity of alkaloids from the amaryllidaceae: From cholinesterases inhibition to anticancer activity. Nat. Prod. Commun. 2016, 11, 1577–1594. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Braun, S. 200 and More Basic NMR Experiments: A Practical Course; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Pham, L.H.; Döpke, W.; Wagner, J.; Mügge, C. Alkaloids from Crinum amabile. Phytochemistry 1998, 48, 371–376. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Farzan, M.; Choe, H.; Ohagen, A.; Gartner, S.; Busciglio, J.; Yang, X.; Hofmann, W.; Newman, W.; et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 1997, 385, 645–649. [Google Scholar] [CrossRef]
- Fischl, W.; Bartenschlager, R. High-throughput Screening Using Dengue Virus Reporter Genomes. In Antiviral Methods and Protocols; Gong, E.Y., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 205–219. [Google Scholar]
11 | 12 | |
---|---|---|
No. | δH (J in Hz) | δH (J in Hz) |
1 | 6.40 d (10.4) | 6.39 d (10.1) |
2 | 6.15 dd (10.4; 4.8) | 6.13 dd (10.1, 5.0) |
3 | 3.84 m | 3.84 m |
4 | 2.05 m (2H) | 2.18 m (2H) |
4a | 3.80 dd (13.0, 5.1) | 3.75 dd (12.7, 5.0) |
6 | 6.38 s | 6.93 s |
7 | 6.99 s | 6.97 s |
10 | 6.71 s | 6.66 s |
11 12 | 5.18 dd (7.0, 3.6) | 5.20 dd (6.9, 2.7) |
3.70 dd (14.9, 7.0) 3.53 dd (14.9, 3.6) | 4.12 dd (14.8, 6.9) 3.21 dd (14.8, 2.7) | |
OCH2O | 5.96 s | 5.96 s |
5.95 s | 5.95 s | |
OMe | 3.34 s (3H) | 3.33 s (3H) |
2′,6′ | 7.93 d (8.2) (2H) | 8.00 d (8.4) (2H) |
3′,5′ | 7.60 d (8.2) (2H) | 7.62 d (8.4) (2H) |
2″,6″ | 7.77 d (8.6) (2H) | 7.77 d (8.7) (2H) |
3″,5″ | 7.58 d (8.6) (2H) | 7.59 d (8.7) (2H) |
11 | 12 | ||
---|---|---|---|
Irradiated | Observed | Irradiated | Observed |
H-1 | H-10, H-2 | H-1 | H-10, H-2 |
H-2 | H-3 | H-2 | H-3 |
H-6 | H-12A | H-6 | H-4a, H-12A |
H-3 | H2-4, MeO | H-3 | H2-4, MeO |
H-11 | H-12A | H-11 | H-12A |
H-12A | H-12B | H-12A | H-12B |
IC50 | Hacat | A431 | AGS |
---|---|---|---|
Lycorine | 0.5 µM | 0.5 µM | <0.5 µM |
Haemanthamine | - | - | IC50 = 7.5 µM |
Haemanthidine | - | - | IC50 = 5.0 µM |
EC50 (µM) | CC50 (µM) | ||
---|---|---|---|
Alkaloids | DENVGFP | HIVGFP | THP-1 |
Lycorine | 0.39 | 10.90 | 4.61 |
9-O-Demethylhomolycorine | 34.49 | nd | nd |
Homolycorine | 65.03 | nd | nd |
Tazettine | 12.50 | 120.30 * | 136.90 |
Vittatine | 15.53 | nd | nd |
11-Hydroxyvittatine | 3.92 | 65.10 * | 113.06 |
Haemanthamine | 0.34 | 25.27 | 22.19 |
Haemanthidine | 0.48 | 12.74 | 16.80 |
Pancracine | 0.36 | 18.51 | 25.93 |
Obliquine | 73.59 | 152.86 * | 127.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masi, M.; Di Lecce, R.; Mérindol, N.; Girard, M.-P.; Berthoux, L.; Desgagné-Penix, I.; Calabrò, V.; Evidente, A. Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum. Toxins 2022, 14, 262. https://doi.org/10.3390/toxins14040262
Masi M, Di Lecce R, Mérindol N, Girard M-P, Berthoux L, Desgagné-Penix I, Calabrò V, Evidente A. Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum. Toxins. 2022; 14(4):262. https://doi.org/10.3390/toxins14040262
Chicago/Turabian StyleMasi, Marco, Roberta Di Lecce, Natacha Mérindol, Marie-Pierre Girard, Lionel Berthoux, Isabel Desgagné-Penix, Viola Calabrò, and Antonio Evidente. 2022. "Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum" Toxins 14, no. 4: 262. https://doi.org/10.3390/toxins14040262
APA StyleMasi, M., Di Lecce, R., Mérindol, N., Girard, M. -P., Berthoux, L., Desgagné-Penix, I., Calabrò, V., & Evidente, A. (2022). Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum. Toxins, 14(4), 262. https://doi.org/10.3390/toxins14040262