Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States
Abstract
:1. Introduction
2. Results
2.1. Establishment of 104 H. zea F2 Iso-Lines for Screening Cry1Ab and Vip3Aa20 Resistance Alleles
2.2. A Total of 87 of the 97 H. zea Iso-Lines Screened against Cry1Ab Were Identified as Potential Positive Lines Possessing Resistance Alleles to the Toxin
2.3. A Total of 10 of the 101 H. zea Iso-Lines Screened against Vip3Aa20 Were Identified as Potential Positive Lines Possessing Resistance Alleles to the Toxin
2.4. No Positive Correlations in Larval Survivorship for the Iso-Lines Screened against Cry1Ab and Vip3Aa20
2.5. Offspring of the Potential Positive Lines against Cry1Ab Exhibited Significant Resistance Levels to the Toxin
2.6. Offspring of the Potential Positive Lines against Vip3Aa20 Exhibited Low Levels of Resistance to the Toxin
2.7. Cry1Ab PPL Strains Completed Larval Development on Cry1Ab Maize Ears, While the Vip3Aa20 PPLs Could Not Survive on Vip3Aa20 Maize Ears
2.8. Resistance Allele Frequencies to Cry1Ab Were High in the H. zea Populations
2.9. Resistance Allele Frequencies to Vip3Aa20 in the H. zea Populations Were Still Low for Functional Major Alleles, but Were Not Uncommon for Functional Minor Alleles
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Insect Collections and Rearing
5.2. Establishment of F1 and F2 Iso-Lines
5.3. F2 Screening Procedures
5.4. Susceptibility of the Offspring of PPLs to Cry1Ab and Vip3Aa20 Toxins
5.5. Resistance Reconfirmation on Bt Maize Ears
5.6. Estimation of Resistance Allele Frequencies to Cry1Ab and Vip3Aa20
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISAAA. Global Status of Commercialized Biotech/GM Crops in 2019: Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier; ISAAA Brief 2019, No. 55; ISAAA: Ithaca, NY, USA, 2019. [Google Scholar]
- Romeis, J.; Naranjo, S.E.; Meissle, M.; Shelton, A.M. Genetically engineered crops help support conservation biological control. Biol. Control. 2019, 130, 136–154. [Google Scholar] [CrossRef]
- USDA; ERS. Adoption of Genetically Engineered Crops in the U.S. 2020. Available online: https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx (accessed on 5 April 2022).
- Tabashnik, B.E.; Carrière, Y. Global patterns of resistance to Bt crops highlighting pink bollworm in the United States, China, and India. J. Econ. Entomol. 2019, 112, 2513–2523. [Google Scholar] [CrossRef] [PubMed]
- Bilbo, T.R.; Reay-Jones, F.P.F.; Reisig, D.D.; Greene, J.K. Susceptibility of corn earworm (Lepidoptera: Noctuidae) to Cry1A. 105 and Cry2Ab2 in North and South Carolina. J. Econ. Entomol. 2019, 112, 1845–1857. [Google Scholar] [CrossRef] [PubMed]
- Olivi, B.M.; Gore, J.; Musser, F.M.; Catchot, A.L.; Cook, D.R. Impact of simulated corn earworm (Lepidoptera: Noctuidae) kernel feeding on field corn yield. J. Econ. Entomol. 2019, 112, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- Dively, G.P.; Venugopal, P.D.; Finkenbinder, C. Field-evolved resistance in corn earworm to Cry proteins expressed by transgenic sweet corn. PLoS ONE 2016, 11, e0169115. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Guo, J.; Brown, S.; Head, G.P.; Price, P.A.; Paula-Moraes, S.; Ni, X.; Dimase, M.; Huang, F. Field-evolved resistance of Helicoverpa zea (Boddie) to transgenic maize expressing pyramided Cry1A. 105/Cry2Ab2 proteins in northeast Louisiana, the United States. J. Invertebr. Pathol. 2019, 163, 11–20. [Google Scholar] [CrossRef]
- Reay-Jones, F.P.; Bilbo, T.R.; Reisig, D.D. Decline in sublethal effects of Bt corn on corn earworm (Lepidoptera: Noctuidae) linked to increasing levels of resistance. J. Econ. Entomol. 2020, 113, 2241–2249. [Google Scholar] [CrossRef]
- González, J.C.S.; Kerns, D.L.; Head, P.H.; Yang, F. Status of Cry1Ac and Cry2Ab2 resistance in field populations of Helicoverpa zea in Texas, USA. Ins. Sci. 2021, 29, 487–495. [Google Scholar] [CrossRef]
- Niu, Y.; Oyediran, I.; Yu, W.; Lin, S.; Dimase, M.; Brown, S.; Reay-Jones, F.P.; Cook, D.; Reisig, D.; Thrash, B.; et al. Populations of Helicoverpa zea (Boddie) in the southeastern United States are commonly resistant to Cry1Ab, but still susceptible to Vip3Aa20 expressed in MIR 162 corn. Toxins 2021, 13, 63. [Google Scholar] [CrossRef]
- Yang, F.; Williams, J.; Huang, F.; Kerns, D.L. Genetic basis and cross-resistance of Vip3Aa resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) derived from Texas, USA. Crop Protect. 2021, 147, 105702. [Google Scholar] [CrossRef]
- Yu, W.; Lin, S.; Dimase, M.; Niu, Y.; Brown, S.; Head, G.P.; Price, P.A.; Reay-Jones, F.P.; Cook, D.; Reisig, D.; et al. Extended investigation of the field-evolved resistance of the corn earworm (Lepidoptera: Noctuidae) to Bacillus thuringiensis Cry1A.105 and Cry2Ab2 proteins in the southeastern United States. J. Invertebr. Path. 2021, 183, 107560. [Google Scholar] [CrossRef] [PubMed]
- US EPA. White Paper on Resistance in Lepidopteran Pests of Bacillus thuringiensis (Bt) Plant Incorporated Protectants in the United States. 2018. Available online: https://www.epa.gov/sites/production/files/2018-07/documents/position_paper_07132018.pdf (accessed on 22 December 2020).
- Ostlie, K.R.; Hutchison, W.D.; Hellmich, R.L. Bt-Corn & European Corn Borer, Long-Term Success Through Resistance Management. North Central Region Extension Publication 602; University of Minnesota: St. Paul, MN, USA, 1997. [Google Scholar]
- Horner, T.A.; Dively, G.P.; Herbert, D.A. Development, survival and fitness performance of Helicoverpa zea (Lepidoptera: Noctuidae) in MON810 Bt field corn. J. Econ. Entomol. 2003, 96, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Buntin, D.G.; All, J.N.; Lee, R.D.; Wilson, D.M. Plant-incorporated Bacillus thuringiensis resistance for control of fall armyworm and corn earworm (Lepidoptera: Noctuidae) in corn. J. Econ. Entomol. 2004, 97, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Buntin, G.D.; Flanders, K.L.; Lynch, R.E. Assessment of experimental Bt events against fall armyworm and corn earworm in field corn. J. Econ. Entomol. 2004, 97, 259–264. [Google Scholar] [CrossRef]
- Siegfried, B.D.; Spencer, T.; Nearman, J. Baseline susceptibility of the corn earworm (Lepidoptera: Noctuidae) to the Cry1Ab toxin from Bacillus thuringiensis. J. Econ. Entomol. 2000, 93, 1265–1268. [Google Scholar] [CrossRef] [Green Version]
- Crickmore, N.; Baum, J.; Bravo, A.; Lereclus, D.; Narva, K.; Sampson, K.; Schnepf, E.; Sun, M.; Zeigler, D.R. Bacillus thuringiensis Toxin Nomenclature. 2018. Available online: http://www.btnomenclature.info/ (accessed on 5 April 2022).
- Estruch, J.J.; Warren, G.W.; Mullins, M.A.; Nye, G.J.; Craig, J.A.; Koziel, M.G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 1996, 93, 5389–5394. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.K.; Walters, F.S.; Hart, H.; Palekar, N.; Chen, J.S. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Appl. Environ. Microbiol. 2003, 69, 4648–4657. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Morsello, S.; Head, G.P.; Sansone, C.; Huang, F.; Gilreath, R.T.; Kerns, D.L. F2 screen, inheritance and cross-resistance of field-derived Vip3A resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) collected from Louisiana, USA. Pest Manag. Sci. 2018, 74, 1769–1778. [Google Scholar] [CrossRef]
- Guo, J.; Oyediran, I.; Rice, M.E.; Brown, S.; Dimase, M.; Lin, S.; Walker, W.; Yu, W.; Niu, Y.; Huang, F. Seed blends of pyramided Cry/Vip maize reduce Helicoverpa zea populations from refuge ears. J. Pest Sci. 2021, 94, 959–968. [Google Scholar] [CrossRef]
- Yang, F.; González, J.C.; Williams, J.; Cook, D.C.; Gilreath, R.T.; Kerns, D.L. Occurrence and ear damage of Helicoverpa zea on transgenic Bacillus thuringiensis maize in the field in Texas, US and its susceptibility to Vip3A protein. Toxins 2019, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Huang, F. Detection and monitoring of insect resistance to transgenic Bt crops. Ins. Sci. 2006, 13, 73–84. [Google Scholar] [CrossRef]
- Andow, D.A.; Olson, D.M.; Hellmich, R.L.; Alstad, D.N.; Hutchison, W.D. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 2000, 93, 26–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farinós, G.P.; Poza, M.; Hernández-Crespo, P.; Ortego, F.; Castañera, P. Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol. Exp. Appl. 2004, 110, 23–30. [Google Scholar] [CrossRef]
- Stodola, T.J.; Andow, D.A.; Hyden, A.R.; Hinton, J.L.; Roark, J.J.; Buschman, L.L.; Porter, P.; Cronholm, G.B. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in southern US corn belt population of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 2006, 99, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.N.; Leonard, B.R.; Andow, D.A. F2 screen for resistance to a Bacillus thuringiensis-maize hybrid in the sugarcane borer (Lepidoptera: Crambidae). Bull. Entomol. Res. 2007, 97, 437–444. [Google Scholar] [CrossRef]
- Huang, F.; Leonard, B.R.; Cook, D.R.; Lee, D.R.; Andow, D.A.; Baldwin, J.L.; Tindall, K.V.; Wu, X. Frequency of alleles conferring resistance to Bacillus thuringiensis maize in Louisiana populations of southwestern corn borer (Lepidoptera: Crambidae). Entomol. Exp. Appl. 2007, 122, 53–58. [Google Scholar] [CrossRef]
- Huang, F.; Ghimire, M.N.; Leonard, B.R.; Daves, C.D.; Levy, R.; Baldwin, J. Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis (Lepidoptera: Crambidae). GM Crop Food: Biotech. Agri. Food Chain. 2012, 3, 245–254. [Google Scholar]
- Huang, F.; Qureshi, J.A.; Meagher, R.L., Jr.; Reisig, D.D.; Head, G.P.; Andow, D.A.; Ni, X.; Kerns, D.; Buntin, G.D.; Niu, Y.; et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 2014, 9, e112958. [Google Scholar]
- Engels, H.; Bourguet, D.; Cagáň, L.; Manachini, B.; Schuphan, I.; Stodola, T.J.; Micoud, A.; Mottet, C.; Brazier, C.; Andow, D.A. Evaluating resistance to Bt toxin Cry1Ab by F2 screen in European populations of Ostrinia nubilalis (Lepidoptera: Crambidae). J. Econ. Entomol. 2010, 103, 1803–1809. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Z.; Zhu, Y.C.; Huang, F.; Wang, Y.; Gao, C.; Zhou, W.; Shen, J. Evidence of field-evolved resistance to Cry1Ac-expressing Bt cotton in Helicoverpa armigera (Lepidoptera: Noctuidae) in Northern China. Pest Manag. Sci. 2010, 66, 155–164. [Google Scholar]
- Niu, Y.; Qureshi, J.A.; Ni, X.; Head, P.G.; Price, P.A.; Meagher, R.L., Jr.; Kerns, D.; Levy, R.; Yang, F.; Huang, F. F2 screen for resistance allele to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States. J. Invertebr. Pathol. 2016, 138, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; González, J.C.S.; Little, N.; Reisig, D.; Payne, G.; Dos Santos, R.F.; Jurat-Fuentes, J.L.; Kurtz, R.; Kerns, D.L. First documentation of major Vip3Aa resistance alleles in field populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Texas, USA. Sci. Rep. 2020, 10, 5867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andow, D.A.; Alstad, D.N. F2 screen for rare resistance alleles. J. Econ. Entomol. 1998, 91, 572–578. [Google Scholar] [CrossRef]
- Burd, A.D.; Gould, F.; Bradley, J.R.; van Duyn, J.W.; Moar, W.J. Estimated frequency of non-recessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. J. Econ. Entomol. 2003, 96, 137–142. [Google Scholar] [CrossRef]
- Andow, D.A. The risk of resistance evolution in insects to transgenic insecticidal crops. Collect. Biosaf. Rev. 2008, 4, 142–199. [Google Scholar]
- Huang, F.; Andow, D.A.; Buschman, L.L. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol. Exp. Appl. 2011, 140, 1–16. [Google Scholar] [CrossRef]
- Huang, F. Dominance and fitness costs of insect resistance to genetically modified Bacillus thuringiensis crops. GM Crop Food Biotech. Agri. Food Chain. 2021, 12, 192–211. [Google Scholar] [CrossRef]
- Andow, D.A.; Alstad, D.N. Credibility interval for rare resistance allele frequencies. J. Econ. Entomol. 1999, 92, 755–758. [Google Scholar] [CrossRef]
- Stodola, T.J.; Andow, D.A. F2 screen variations and associated statistics. J. Econ. Entomol. 2004, 97, 1756–1764. [Google Scholar] [CrossRef]
- Hendricks, D.E.; Graham, H.M.; Fernandez, A.T. Mating of female tobacco budworms and bollworms collected from light traps. J. Econ. Entomol. 1970, 63, 1228–1231. [Google Scholar] [CrossRef]
- Lamunyon, C.W. Sperm storage by females of the polyandrous noctuid moth Heliothis virescens. Ani. Behav. 2000, 59, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Reisig, D.D.; Reay-Jones, F.P. Inhibition of Helicoverpa zea growth by transgenic corn expressing Bt toxins. Environ. Entomol. 2015, 44, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, C.S.; Hernández-Martínez, P.; Van Rie, J.; Escriche, B.; Ferré, J. Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE 2013, 8, e68164. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhang, Y.; An, S. The progress in insect cross-resistance among Bacillus thuringiensis toxins. Arch. Insect Biochem. Physiol. 2019, 102, e21547. [Google Scholar] [CrossRef] [PubMed]
- Burkness, E.C.; Dively, G.; Patton, T.; Morey, A.C.; Hutchison, W.D. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions. GM. Crop. 2010, 1, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Dively, G.P.; Kuhar, T.P.; Taylor, S.; Doughty, H.B.; Holmstrom, K.; Gilrein, D.; Nault, B.A.; Ingerson-Mahar, J.; Whalen, J.; Reisig, D.; et al. Sweet corn sentinel monitoring for lepidopteran field-evolved resistance to Bt toxins. J. Econ. Entomol. 2020, 114, 207–319. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, R.W.; McCaffery, A.; O’Reilly, D. Insect resistance management for Syngenta’s VipCot™ transgenic cotton. J. Invertebr. Pathol. 2007, 95, 227–230. [Google Scholar] [CrossRef]
- Anilkumar, K.J.; Rodrigo-Simón, A.; Ferré, J.; Pusztai-Carey, M.; Sivasupramaniam, S.; Moar, W.J. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl. Environ. Microbiol. 2008, 74, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Carrière, Y.; Crickmore, N.; Tabashnik, B.E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 2015, 33, 161–168. [Google Scholar] [CrossRef]
- Pannuti, L.E.R.; Paula-Moraes, S.V.; Hunt, T.E.; Baldin, E.L.L.; Dana, L.; Malaquias, J.V. Plant-to-plant movement of Striacosta albicosta (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize (Zea mays). J. Econ. Entomol. 2016, 109, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Wangila, D.S.; Leonard, B.R.; Ghimire, M.N.; Bai, Y.; Zhang, L.; Yang, Y.; Emfinger, K.D.; Head, G.P.; Yang, F.; Niu, Y.; et al. Occurrence and larval movement of Diatraea saccharalis (Lepidoptera: Crambidae) in seed mixes of non-Bt and Bt pyramid corn. Pest Manag. Sci. 2013, 69, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Burkness, E.C.; Cira, T.M.; Moser, S.E.; Hutchison, W.D. Bt maize seed mixtures for Helicoverpa zea (Lepidoptera: Noctuidae): Larval movement, development, and survival on non-transgenic maize. J. Econ. Entomol. 2015, 108, 2761–2769. [Google Scholar] [CrossRef] [PubMed]
- Dimase, M.; Oyediran, I.; Brown, S.; Walker, W.; Guo, J.; Yu, W.; Zhang, Y.; Chen, J.; Wen, Z.; Huang, F. Larval movement and survival of Helicoverpa zea (Boddie) in seed blends of non-Bt and Bt maize containing Agrisure Viptera® trait: Implications for resistance management. Crop Prot. 2020, 138, 105339. [Google Scholar] [CrossRef]
- Davis, P.W.; Onstad, D.W. Seed mixtures as a resistance management strategy for European corn borers (Lepidoptera: Crambidae) infesting transgenic corn expressing Cry1Ab protein. J. Econ. Entomol. 2000, 93, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Buschman, L.L.; Higgins, R.A. Susceptibility of different instars of European corn borer (Lepidoptera: Crambidae), to Bacillus thuringiensis. J. Econ. Entomol. 1999, 92, 547–550. [Google Scholar] [CrossRef]
- Walker, K.A.; Hellmich, R.L.; Lewis, L.C. Late-instar European corn borer (Lepidoptera: Crambidae) tunneling and survival in transgenic corn hybrids. J. Econ. Entomol. 2000, 93, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.Z.; Li, W.J. Variability of endotoxin expression in Bt transgenic cotton. J. Agron. Crop Sci. 2007, 193, 21–29. [Google Scholar] [CrossRef]
- Bakhsh, A.; Shahzad, K.; Husnain, T. Variation in the spatio-temporal expression of insecticidal genes in cotton. Czech J. Genet. Plant Breed. 2011, 47, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bilbo, T.R.; Reay-Jones, F.P.; Reisig, D.D.; Greene, J.K.; Turnbull, M.W. Development, survival, and feeding behavior of Helicoverpa zea (Lepidoptera: Noctuidae) relative to Bt protein concentrations in corn ear tissues. PLoS ONE 2019, 14, e0221343. [Google Scholar] [CrossRef] [Green Version]
- Lemes, A.R.N.; Davolos, C.C.; Legori, P.C.B.C.; Fernandes, O.A.; Ferré, J.; Lemos, M.V.F.; Desiderio, J.A. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PLoS ONE 2014, 9, e107196. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, F.; Chen, J.; Huang, F.; Andow, D.A.; Wang, Y.; Zhu, Y.C.; Shen, J. Using an F2 screen to monitor frequency of resistance alleles to Bt cotton in field populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag. Sci. 2009, 65, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kerns, D.L.; Head, G.P.; Leonard, B.R.; Levy, R.; Niu, Y.; Huang, F. A challenge for the seed mixture refuge strategy in Bt maize: Impact of cross-pollination on an ear-feeding pest, corn earworm. PLoS ONE 2014, 9, e112962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.; Leonard, B.R.; Gable, R.H. Comparative susceptibility of European corn borer, southwestern corn borer, and sugarcane borer (Lepidoptera: Crambidae) to Cry1Ab protein in a commercial Bt-corn hybrid. J. Econ. Entomol. 2006, 99, 194–202. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- SAS Institute. SAS/STAT® 14.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
Year | State | F2 Screen Against Cry1Ab | F2 Screen Against Vip3Aa20 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total No. Lines Screened | Total Neonates Screened | Total No. Lines Survived | Total No. Larvae Survived | No. Lines Having ≥3rd Instars | No. ≥3rd Instars | Total No. Lines Screened | Total Neonates Screened | Total No. Lines Survived | Total No. Larvae Survived | No. Lines Having ≥3rd Instars | No. ≥3rd Instars | ||
2018 | Louisiana | 32 | 4096 | 31 | 1448 | 26 | 571 | 33 | 4224 | 24 | 182 | 6 | 34 |
Other states | 18 | 2304 | 18 | 691 | 16 | 334 | 19 | 2432 | 9 | 41 | 1 | 6 | |
Sub-total (2018) | 50 | 6400 | 49 | 2139 | 42 | 905 | 52 | 6656 | 33 | 223 | 7 | 40 | |
2019 | Louisiana | 47 | 5415 | 46 | 1677 | 45 | 1299 | 49 | 5492 | 6 | 33 | 3 | 12 |
Total | 97 | 11,815 | 95 | 3816 | 87 | 2204 | 101 | 12,148 | 39 | 256 | 10 | 52 |
Strains | No. Neonates Assayed | Slope ± SE | LC50 (95%CI, or Larval Mortality at the Highest Concentrations Assayed) | χ2 | p-Value | Resistance Ratio * |
---|---|---|---|---|---|---|
Cry1Ab | ||||||
SS-BZ (assayed in 2018) | 617 | 1.41 ± 0.17 | 0.29 (0.21, 0.42) | 132.4 | <0.0001 | |
PPL-Cry1Ab-2018-I | 445 | >31.6 (33.3%) | >109 | |||
PPL-Cry1Ab-2018-II | 367 | 0.75 ± 0.15 | 3.31(1.99, 6.81) | 11.3 | 0.6620 | 11 |
PPL-Cry1Ab-2018-III | 402 | 1.45 ± 0.19 | 8.6 1(6.34, 12.4) | 18.19 | 0.1099 | 30 |
SS-BZ (assayed in 2019) | 448 | 2.10 ± 0.28 | 0.14 (0.11, 0.19) | 22.72 | 0.0648 | |
PPL-Cry1Ab-2019 | 576 | 1.15 ± 0.16 | 13.76(9.68, 21.88) | 19.13 | 0.1600 | 98 |
Vip3Aa20 | ||||||
SS-BZ (assayed in 2018) | 1190 | 2.39 ± 0.56 | 0.36 (0.22, 0.52) | 78.4 | <0.0001 | |
PPL-Vip3Aa20-2018-I | 375 | 1.74 ± 0.28 | 3.96(2.20, 9.51) | 6.51 | 0.0893 | 11 |
PPL-Vip3Aa20-2018-II | 352 | 1.60 ± 0.30 | 2.51(1.54, 4.30) | 37.61 | 0.0006 | 7 |
SS-BZ (assayed in 2019) | 512 | 2.64 ± 0.44 | 0.47 (0.33–0.67) | 39.96 | 0.0007 | |
PPL-Vip3Aa20-2019 | 576 | 1.67 ± 0.16 | 1.89 (1.46, 2.41) | 16.51 | 0.5567 | 4 |
Parent Genotype | Expected Genotype Frequency (f) in F2 Populations a | Expected Number of Survivors in the F2 Screen b | ||
---|---|---|---|---|
fSS | fRS | fRR | ||
SSSS | 1 | 0 | 0 | 0 |
RSSS | 0.5625 | 0.375 | 0.0625 | 34.9 |
RRSS/RSRS | 0.25 | 0.5 | 0.25 | 66.5 |
RRRS | 0.0625 | 0.375 | 0.5625 | 94.9 |
RRRR | 0 | 0 | 1 | 120 |
Bt Toxin | Year | State | Total Iso-Lines Screened | No Resistance Alleles in a Mated Parent Female | Expected Resistance Allele Frequency (95% CI) | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | Total | |||||
Functional major resistant alleles | ||||||||||
Cry1Ab | 2018 | Louisiana | 32 | 6 | 24 | 2 | 0 | 0 | 28 | 0.223 (0.156, 0.298) |
2018 | Other states | 18 | 2 | 16 | 0 | 0 | 0 | 16 | 0.230 (0.142, 0.331) | |
Sub-total 2018 | 50 | 8 | 40 | 2 | 0 | 0 | 44 | 0.223 (0.168, 0.283) | ||
2019 | Louisiana | 47 | 2 | 37 | 6 | 2 | 0 | 55 | 0.295 (0.232, 0.361) | |
Total | All states | 97 | 10 | 77 | 8 | 2 | 0 | 99 | 0.256 (0.214, 0.301) | |
Vip3A | 2018 | Louisiana | 33 | 33 | 0 | 0 | 0 | 0 | 0 | 0 to 0.0218 |
2018 | Other states | 19 | 19 | 0 | 0 | 0 | 0 | 0 | 0 to 0.0368 | |
Sub-total 2018 | 52 | 52 | 0 | 0 | 0 | 0 | 0 | 0 to 0.0140 | ||
2019 | Louisiana | 49 | 49 | 0 | 0 | 0 | 0 | 0 | 0 to 0.0149 | |
Total | All state | 101 | 101 | 0 | 0 | 0 | 0 | 0 | 0 to 0.0073 | |
Vip3A | Functional minor resistance alleles | |||||||||
2018 | Louisiana | 33 | 27 | 6 | 0 | 0 | 0 | 6 | 0.054 (0.023, 0.100) | |
2018 | Other states | 19 | 18 | 1 | 0 | 0 | 0 | 1 | 0.025 (0.003,0.069) | |
Sub-total 2018 | 52 | 45 | 7 | 0 | 0 | 0 | 7 | 0.039 (0.017, 0.070) | ||
2019 | Louisiana | 49 | 46 | 3 | 0 | 0 | 0 | 3 | 0.020 (0.006, 0.044) | |
Total | All states | 101 | 91 | 10 | 0 | 0 | 0 | 10 | 0.028 (0.014, 0.047) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Oyediran, I.; Niu, Y.; Brown, S.; Cook, D.; Ni, X.; Zhang, Y.; Reay-Jones, F.P.F.; Chen, J.S.; Wen, Z.; et al. Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States. Toxins 2022, 14, 270. https://doi.org/10.3390/toxins14040270
Lin S, Oyediran I, Niu Y, Brown S, Cook D, Ni X, Zhang Y, Reay-Jones FPF, Chen JS, Wen Z, et al. Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States. Toxins. 2022; 14(4):270. https://doi.org/10.3390/toxins14040270
Chicago/Turabian StyleLin, Shucong, Isaac Oyediran, Ying Niu, Sebe Brown, Don Cook, Xinzhi Ni, Yan Zhang, Francis P. F. Reay-Jones, Jeng Shong Chen, Zhimou Wen, and et al. 2022. "Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States" Toxins 14, no. 4: 270. https://doi.org/10.3390/toxins14040270
APA StyleLin, S., Oyediran, I., Niu, Y., Brown, S., Cook, D., Ni, X., Zhang, Y., Reay-Jones, F. P. F., Chen, J. S., Wen, Z., Dimase, M., & Huang, F. (2022). Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States. Toxins, 14(4), 270. https://doi.org/10.3390/toxins14040270