The Toxicity of Eichhornia crassipes Fractionated Extracts against Aphis craccivora and Its Safety in Albino Rats
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of AcF and EtF Extracts of E. crassipes
2.2. Insecticidal Activity of AcF and EtF Extracts against Aphis craccivora
2.3. Efficacy of AcF and EtF Extracts against Aphis craccivora
2.4. Effect of AcF and EtF Extracts on the Number of Offspring of Aphis craccivora
2.5. Effects of Exposure to LC50 of AcF and EtF Extracts of E. crassipes on Body Weight
2.6. Effects of Exposure to LC50 of AcF and EtF Extracts of E. crassipes on Hematological Indices
2.6.1. Effect of LC50 of AcF and EtF Extracts on Differential WBC Count
2.6.2. Effect of LC50 of AcF and EtF Extracts on RBC Count and Indices
2.7. Effects of Exposure to LC50 of AcF and EtF Extracts of E. crassipes on Biochemical Indices
2.7.1. Effect of LC50 of AcF and EtF Extracts on Liver and Kidneys Functions
2.7.2. Effect of LC50 of AcF and EtF Extracts on Total Cholesterol and Triglycerides
2.8. Histopathological Findings and Lesion Scoring
3. Discussion
4. Conclusions and Future Perspectives
5. Materials and Methods
5.1. Plant Sample and Extraction
5.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
5.3. Aphis craccivora Rearing
5.4. Efficacy/Bioassay of AcF and EtF Extracts of E. crassipes against A. craccivora
5.5. Animals
5.6. Body Weight and Blood Sampling
5.7. Hematological and Biochemical Indices Determination
5.8. Histopathological Examination
5.9. Grading of Histopathological Alterations
5.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Togola, A.; Boukar, O.; Belko, N.; Chamarthi, S.K.; Fatokun, C.; Tamo, M.; Oigiangbe, N. Host plant resistance to insect pests of cowpea (Vigna unguiculata L. Walp.): Achievements and future prospects. Euphytica 2017, 213, 239. [Google Scholar] [CrossRef]
- Sayed, S.M.; Alotaibi, S.S.; Gaber, N.; Elarrnaouty, S.-A. Evaluation of five medicinal plant extracts on Aphis craccivora (Hemiptera: Aphididae) and its predator, Chrysoperla Carnea (Neuroptera: Chrysopidae) under laboratory conditions. Insects 2020, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Das, B.C. Ecology and diversity of agricultural crop infesting aphids (Homoptera: Aphididae) in Bangladesh. J. Aphidol. 2002, 16, 51–57. [Google Scholar]
- Van Emden, H.F.; Harrington, R. Aphids as Crop Pests; Cabi: Wallingford, UK; Boston, MA, USA, 2017; ISBN 1780647093. [Google Scholar]
- Li, F.; Han, Z. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochem. Mol. Biol. 2004, 34, 397–405. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 2005, 5, 497–526. [Google Scholar] [CrossRef]
- Rosell, G.; Quero, C.; Coll, J.; Guerrero, A. Biorational insecticides in pest management. J. Pestic. Sci. 2008, 33, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Lefrancq, M.; Imfeld, G.; Payraudeau, S.; Millet, M. Kresoxim methyl deposition, drift and runoff in a vineyard catchment. Sci. Total Environ. 2013, 442, 503–508. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Isikber, A.A.; Alma, M.H.; Kanat, M.; Karci, A. Fumigant toxicity of essential oils from Laurus nobilis and Rosmarinus officinalis against all life stages of Tribolium confusum. Phytoparasitica 2006, 34, 167–177. [Google Scholar] [CrossRef]
- Okonkwo, C.O.; Ohaeri, O.C.; Atangwho, I.J. Haematological changes in rats exposed to insecticidal oils from the leaves of Cassia occidentalis and Euphorbia milii. Heliyon 2019, 5, e01746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelkhalek, S.T.; Mostafa, Z.K.; Hassan, H.A.E.-W.; Wang, M.-Q.; El-Bar, A.; Mohammad, M. The potential use of Eichhornia crassipes (Mart.) Solms against Agrotis ipsilon (Hufn.) (Lepidotera: Noctuidae), its efficacy as an insecticide on vital biological activities and assessment on its safety. Int. J. Trop. Insect Sci. 2022, 42, 741–753. [Google Scholar] [CrossRef]
- Okonkwo, C.O.; Onyeji, C.M. Insecticidal potentials and chemical composition of essential oils from the leaves of Phyllanthus amarus and Stachytarpheta cayennensis in Nigeria. Int. J. Biochem. Res. Rev. 2018, 22, 1–16. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Lalitha, P.; Sripathi, S.K.; Jayanthi, P. Acute toxicity study of extracts of Eichhornia crassipes (Mart.) Solms. Asian J. Pharm. Clin. Res. 2012, 5, 59–61. [Google Scholar]
- Shanab, S.M.M.; Shalaby, E.A.; Lightfoot, D.A.; El-Shemy, H.A. Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS ONE 2010, 5, e13200. [Google Scholar] [CrossRef]
- Devanand, P.; Rani, P.U. Biological potency of certain plant extracts in management of two lepidopteran pests of Ricinus communis L. J. Biopestic. 2008, 1, 170–176. [Google Scholar]
- Thorat, L.J.; Nath, B.B. Effects of water hyacinth Eichhornia crassipes root extracts on midge Chironomus ramosus larvae: A preliminary note. Physiol. Entomol. 2010, 35, 391–393. [Google Scholar] [CrossRef]
- Jayanthi, P.; Lalitha, P.; Aarthi, N. Larvicidal and pupicidal activity of extracts and fractionates of Eichhornia crassipes (Mart.) Solms against the filarial vector Culex quinquefasciatus Say. Parasitol. Res. 2012, 111, 2129–2135. [Google Scholar] [CrossRef]
- Boas, G.R.V.; de Araújo, F.H.S.; Marcelino, J.M.; Castro, L.H.A.; da Silveira, A.P.S.; Nacer, R.S.; de Souza, F.R.; Cardoso, C.A.L.; de Lacerda, R.B.; da Rosa Guterres, Z. Preclinical safety evaluation of the ethanolic extract from Campomanesia pubescens (Mart. ex DC.) O. BERG (guavira) fruits: Analysis of genotoxicity and clastogenic effects. Food Funct. 2018, 9, 3707–3717. [Google Scholar] [CrossRef]
- da Costa Araldi, I.C.; de Souza, T.P.; de Souza Vencato, M.; de Andrade Fortes, T.; Mello, C.B.E.; de Oliveira, J.S.; Dornelles, G.L.; de Andrade, C.M.; Maciel, R.M.; Danesi, C.C. Preclinical safety assessment of the crude extract from Sida rhombifolia L. aerial parts in experimental models of acute and repeated-dose 28 days toxicity in rats. Regul. Toxicol. Pharmacol. 2021, 124, 104974. [Google Scholar] [CrossRef] [PubMed]
- Tulika, T.; Mala, A. Pharmaceutical potential of aquatic plant Pistia stratiotes (L.) and Eichhornia crassipes. J. Plant Sci. Spec. Issue Med. Plants 2015, 3, 10–18. [Google Scholar]
- Tyagi, T.; Agarwal, M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem. 2017, 6, 195–206. [Google Scholar]
- Jegadeeswari, P.; Nishanthini, A.; Muthukumarasamy, S.; Mohan, V.R. GC-MS analysis of bioactive components of aristolochia bracteata retz (aristolochiaceae). J. Curr. Chem. Pharm. Sci. Pharm. Sci. 2012, 2, 226–236. [Google Scholar]
- Upgade, A.; Bhaskar, A. Characterization and medicinal importance of phytoconstituents of C. papaya from down south Indian region using gas chromatography and mass spectroscopy. Asian J. Pharm. Clin. Res. 2013, 6, 101–106. [Google Scholar]
- Dr, Duke’s Phytochemical and Ethnobotanical Databases. Artemisia Annu. 2005. [CrossRef]
- Wu, L.-Y.; Gao, H.-Z.; Wang, X.-L.; Ye, J.-H.; Lu, J.-L.; Liang, Y.-R. Analysis of chemical composition of Chrysanthemum indicum flowers by GC/MS and HPLC. J. Med. Plants Res. 2010, 4, 421–426. [Google Scholar]
- Vohra, A.; Kaur, H. Chemical investigation of medicinal plant Ajuga bracteosa. J. Nat. Prod. Plant Resour. 2011, 1, 37–45. [Google Scholar]
- Sangeetha, J.; Vijayalakshmi, K. Determination of bioactive components of ethyl acetate fraction of Punica granatum rind extract. Int. J. Pharm. Sci. Drug Res. 2011, 3, 116–122. [Google Scholar]
- US National Library of Medicine. Bis(2-ethylhexyl) Phthalate|C24H38O4; PubChem: Bethesda, MD, USA, 2019.
- Bontemps, N.; Bry, D.; López-Legentil, S.; Simon-Levert, A.; Long, C.; Banaigs, B. Structures and antimicrobial activities of pyridoacridine alkaloids isolated from different chromotypes of the ascidian Cystodytes dellechiajei. J. Nat. Prod. 2010, 73, 1044–1048. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Quisenberry, S.S.; Moellenbeck, D.J. 6, 10, 14-Trimethylpentadecan-2-one: A Bermuda grass phagostimulant to fall armyworm (lepidoptera: Noctuidae). J. Chem. Ecol. 1992, 18, 673–682. [Google Scholar] [CrossRef]
- Razavi, S.M.; Nejad-Ebrahimi, S. Phytochemical analysis and allelopathic activity of essential oils of Ecballium elaterium A. Richard growing in Iran. Nat. Prod. Res. 2010, 24, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Hada, T.; Shiraishi, A.; Hirose, K.; Hamashima, H.; Kobayashi, S. Biphasic effects of geranylgeraniol, teprenone, and phytol on the growth of Staphylococcus aureus. Antimicrob. Agents Chemother. 2005, 49, 1770–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Felício, R.; de Albuquerque, S.; Young, M.C.M.; Yokoya, N.S.; Debonsi, H.M. Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J. Pharm. Biomed. Anal. 2010, 52, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-C.; Wang, R.-L.; Yang, L.-N.; Lai, P.-X.; Xing, X. Chemical Composition and Biological Activity of the Essential Oil of Viola diffusa. Chem. Nat. Compd. 2020, 56, 1151–1153. [Google Scholar] [CrossRef]
- Muthunarayanan, V.; Santhiya, M.; Swabna, V.; Geetha, A. Phytodegradation of textile dyes by water hyacinth (Eichhornia crassipes) from aqueous dye solutions. Int. J. Environ. Sci. 2011, 1, 1702–1717. [Google Scholar]
- Mackled, M.I.; EL-Hefny, M.; Bin-Jumah, M.; Wahba, T.F.; Allam, A.A. Assessment of the toxicity of natural oils from Mentha piperita, Pinus roxburghii, and Rosa spp. against three stored product insects. Processes 2019, 7, 861. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Wei, C.; Zhang, C.; Han, C.; Kuchkarova, N.; Shao, H. Chemical composition, phytotoxic, antimicrobial and insecticidal activity of the essential oils of Dracocephalum integrifolium. Toxins 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Dolma, S.K.; Suresh, P.S.; Singh, P.P.; Sharma, U.; Reddy, S.G.E. Insecticidal activity of the extract, fractions, and pure steroidal saponins of Trillium govanianum W all. ex D. D on for the control of diamondback moth (Plutella xylostella L.) and aphid (Aphis craccivora K och). Pest Manag. Sci. 2021, 77, 956–962. [Google Scholar] [CrossRef]
- Reddy, S.G.E.; Dolma, S.K.; Verma, P.K.; Singh, B. Insecticidal activities of Parthenium hysterophorus L. extract and parthenin against diamondback moth, Plutella xylostella (L.) and aphid, Aphis craccivora Koch. Toxin Rev. 2018, 37, 161–165. [Google Scholar] [CrossRef]
- Thakshila, W.; Dammini Premachandra, W.T.S.; Borgemeister, C. Potential toxic effects of aqueous leaf extracts of Calotropis gigantea and Croton laccifera against Aphis craccivora. Int. J. Trop. Insect Sci. 2022, 42, 1165–1173. [Google Scholar] [CrossRef]
- Soliman, M.H.A.; El Assar, M.R.; Samia, M.A. The Toxicological Effects of Nerium oleander and Yucca glauca as Crude Leaf Extracts by Different Methods against Cowpea Aphid, Aphis craccivora (Koch) and Their Chemical Components. Egypt. Acad. J. Biol. Sci. A Entomol. 2015, 8, 165–174. [Google Scholar]
- Komalamisra, N.; Trongtokit, Y.; Rongsriyam, Y.; Apiwathnasorn, C. Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J. Trop. Med. Public Health 2005, 36, 1412. [Google Scholar] [PubMed]
- Imai, T.; Tsuchiya, S.; Morita, K.; Fujimori, T. Fatty Acid Insecticide and Insecticidal Method Using the Same. European Patent Application EP0663147-A1, 2 February 1995. [Google Scholar]
- Yousef, H.; EL-lakwah, S.F.; EL Sayed, Y.A. Insecticidal activity of linoleic acid against Spodoptera littoralis (Boisd.). Egypt. J. Agric. Res. 2013, 91, 573–580. [Google Scholar] [CrossRef]
- Moustafa, H.Z.; Yousef, H.; EL-lakwah, S.F. Toxicological and biochemical activities of fatty acids against earias insulana (boisd.) (lepidoptera: Noctuidae). Egypt. J. Agric. Res. 2018, 96, 503–515. [Google Scholar] [CrossRef]
- Dias, C.N.; Alves, L.P.L.; Rodrigues, K.A.d.F.; Brito, M.C.A.; Rosa, C.d.S.; do Amaral, F.M.M.; Monteiro, O.d.S.; Andrade, E.H.d.A.; Maia, J.G.S.; Moraes, D.F.C. Chemical composition and larvicidal activity of essential oils extracted from Brazilian Legal Amazon Plants against Aedes aegypti L.(Diptera: Culicidae). Evid. Based Complement. Altern. Med. 2015, 2015, 490765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Zarog, A. Oral Administrated Pesticides Residual Activity on Rat Kidney Function. J. Sebha Univ. Appl. Sci. 2008, 7, 5–13. [Google Scholar]
- Association, A.P. Revision of Ethical Standard 3.04 of the “Ethical Principles of Psychologists and Code of Conduct” (2002, as amended 2010). Am. Psychol. 2016, 71, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huma, A.; Meha, P.; Ganesh, N.; Janak, A. The world’s worst aquatic plant as a safe cancer medicine antitumor activity on melanoma induced mouse by Eichornia crassipes: In vivo studies. J. Pharm. Res. 2009, 2, 1365–1366. [Google Scholar]
- Mirza, A.C.; Panchal, S.S. Safety assessment of Vanillic acid: Subacute Oral toxicity studies in Wistar rats. Turk. J. Pharm. Sci. 2020, 17, 432–439. [Google Scholar] [CrossRef]
- Ahmad, M.A.A.A.S.; Al-Salmi, A.A.; Kamel, F.O.; Khan, L.M. Evaluation of the Toxicological Profile of Commiphora opobalsamum in Wister Rats for Its Safety and Rational Use. Evaluation 2021, 33, 31–42. [Google Scholar] [CrossRef]
- Mukinda, J.T.; Syce, J.A. Acute and chronic toxicity of the aqueous extract of Artemisia afra in rodents. J. Ethnopharmacol. 2007, 112, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Akintimehin, E.S.; Karigidi, K.O.; Omogunwa, T.S.; Adetuyi, F.O. Safety assessment of oral administration of ethanol extract of Justicia carnea leaf in healthy wistar rats: Hematology, antioxidative and histology studies. Clin. Phytosci. 2021, 7, 2. [Google Scholar] [CrossRef]
- Hadi, M.A.; Almamoori, A.M.J.; Al-Hassnawi, A.T.S.; Hameedi, E.H. Oxidative response associated with treatment of male Albino rats with Eruca sativa Mill leaves extract and correlations with complete blood picture. J. Pharm. Sci. Res. 2017, 9, 2278–2285. [Google Scholar]
- Sharma, A.; Sharma, M.K.; Kumar, M. Protective effect of Mentha piperita against arsenic-induced toxicity in liver of Swiss Albino mice. Basic Clin. Pharmacol. Toxicol. 2007, 100, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, O.T.; Osilesi, O.; Adebawo, O.O.; Onajobi, F.D.; Oyedemi, S.O.; Afolayan, A.J. Alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) Activities in selected tissues of rats fed on processed atlantic horse mackerel (Trachurus trachurus). Adv. Biosci. Biotechnol. 2015, 6, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Nwosu, L.C.; Adedire, C.O.; Ogunwolu, E.O.; Ashamo, M.O. Toxicological and histopathological effects of Dennettia tripetala seed used as grain protectant, food, and medicine. Food Qual. Saf. 2017, 1, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Saki, N.; Saki, G.; Rahim, F.; Nikakhlagh, S. Modulating effect of soy protein on serum cardiac enzymes in cholesterol-fed rats. Int. J. Med. Med. Sci. 2011, 3, 390–395. [Google Scholar]
- Derbalah, A.S.; Hamza, A.M.; Gazzy, A.A. Efficacy and safety of some plant extracts as alternatives for Sitophilus oryzae control in rice grains. J. Entomol. 2012, 9, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.M.; Khan, Z.A.; Shah, A.H. Toxicity studies in mice of Commiphora molmol oleo–gum–resin. J. Ethnopharmacol. 2001, 76, 151–154. [Google Scholar] [CrossRef]
- Edelstein, C.L. Biomarkers in acute kidney injury. Biomark. Kidney Dis. 2017, 241–315. [Google Scholar] [CrossRef] [Green Version]
- Odeyemi, O.O.; Masika, P.; Afolayan, A.J. A review of the use of phytochemicals for insect pest control. Afr. Plant Prot. 2008, 14, 1–7. [Google Scholar]
- Adebo, C.T.; Adeyemi, J.A.; Adedire, C.O. Biochemical and histopathological effects of a bioinsecticide, Anchomanes difformis (Blume) Engler rhizome powder on Wistar rats. Comp. Clin. Path. 2018, 27, 1545–1550. [Google Scholar] [CrossRef]
- Kanu, K.C.; Ijioma, S.N.; Atiata, O. Haematological, biochemical and antioxidant changes in Wistar rats exposed to dichlorvos based insecticide formulation used in Southeast Nigeria. Toxics 2016, 4, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thangavelu, L.; Balusamy, S.R.; Shanmugam, R.; Sivanesan, S.; Devaraj, E.; Rajagopalan, V.; Veeraiyan, D.N.; Chellappan, D.K.; Dua, K.; Kim, Y.-J. Evaluation of the sub-acute toxicity of Acacia catechu Willd seed extract in a Wistar albino rat model. Regul. Toxicol. Pharmacol. 2020, 113, 104640. [Google Scholar] [CrossRef]
- Arowora, K.A.; Imo, C.; Ezeonu, C.S.; Muhammad, Z.I. Effects of ethanolic extracts of Datura metel on blood lipid profile of male albino rats. Int. J. 2016, 2, 248. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Xiao, M.; Zha, Z.; Olatunji, O.J. UHPLC-ESI-QTOF-MS2 analysis of Acacia pennata extract and its effects on glycemic indices, lipid profile, pancreatic and hepatorenal alterations in nicotinamide/streptozotocin-induced diabetic rats. Food Sci. Nutr. 2022, 10, 1058–1069. [Google Scholar] [CrossRef]
- Ileke, K.D.; Odeyemi, O.O.; Ashamo, M.O.; Oboh, G. Toxicological and histopathological effects of cheese wood, alstonia boonei de wild stem bark powder used as cowpea protectant against cowpea bruchid, callosobruchus maculatu (fab.) [coleoptera: Chrysomelidae] on albino rats. Ife J. Sci. 2014, 16, 23–33. [Google Scholar]
- Ugagu, G.M.; Nwoke, B.E.B.; Iwuala, M.O.E.; MU, C.; Ajero, A.A.A.; Opara, N.K.; Onwubuche, B.C.; Isiaka, P.I.; Nwosu, L.C.; Okereke, V.C. Monitoring mortality, seed viability tolerance, toxicological and histopathological effects of powder of Syzygium aromaticum dried flower bud used for postharvest control of Sitophilus zeamais Motschulsky infestation of maize grains. J. Entomol. Zool. Stud. 2021, 9, 86–92. [Google Scholar] [CrossRef]
- Maxwell, L.P.; John, C.; Noel, N.; Steven, S. The histopathologic effects of Securidaca longepedunculata on heart, liver, kidney and lungs of rats. Afr. J. Biotechnol. 2007, 6, 591–595. [Google Scholar]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008; ISBN 0443102791. [Google Scholar]
- Arsad, S.S.; Esa, N.M.; Hamzah, H. Histopathologic changes in liver and kidney tissues from male Sprague Dawley rats treated with Rhaphidophora decursiva (Roxb.) Schott extract. J. Cytol. Histol. S 2014, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971. [Google Scholar]
RT (min.) | Compound Name | RP Area (%) | MWt. | MF |
---|---|---|---|---|
Acetone Fraction Extract | ||||
27.01 | 12,15-Octadecadiynoic acid, methyl ester | 2.21 | 290 | C19H30O2 |
27.64 | 6-phenylundecane | 1.08 | 232 | C17H28 |
27.73 | 5-phenylundecane | 1.14 | 232 | C17H28 |
27.97 | 4-phenylundecane | 1.13 | 232 | C17H28 |
28.48 | 3-phenylundecane | 1.55 | 232 | C17H28 |
29.37 | 2-phenylundecane | 2.83 | 232 | C17H28 |
29.85 | 6-Phenyldodecane | 2.08 | 246 | C18H30 |
29.95 | 5-Phenyldodecane | 1.51 | 246 | C18H30 |
30.23 | 4-Phenyldodecane | 1.40 | 246 | C18H30 |
30.73 | 3-Phenyldodecane | 1.86 | 246 | C18H30 |
31.23 | Myristic acid | 1.24 | 228 | C14H28O2 |
31.60 | 2-Phenyldodecane | 2.75 | 246 | C18H30 |
31.96 | 6-phenyltridecane | 1.93 | 260 | C19H32 |
32.10 | 5-phenyltridecane | 1.18 | 260 | C19H32 |
32.15 | Neophytadiene | 2.39 | 278 | C20H38 |
32.39 | Hexahydrofarnesyl acetone | 9.03 | 268 | C18H36O |
32.66 | 3,7,11,15-Tetramethyl-2 hexadecen-1-ol | 1.00 | 296 | C20H40O |
32.90 | 3-phenyltridecane | 1.82 | 260 | C19H32 |
33.72 | 2-Phenyltridecane | 2.24 | 260 | C19H32 |
33.92 | Hexa-hydro-farnesol | 2.60 | 228 | C15H32O |
34.82 | Cyclopropanenonanoic acid,2-[(2-butylcyclopropyl) methyl]-, methyl ester | 1.18 | 322 | C21H38O2 |
35.41 | Hexadecanoic acid | 9.35 | 256 | C16H32O2 |
35.62 | n-Hexadecanoic acid | 16.72 | 256 | C16H32O2 |
37.28 | Linolelaidic acid, methyl ester | 1.34 | 294 | C19H34O2 |
37.40 | 8-Octadecenoic acid, methyl ester | 2.16 | 296 | C19H36O2 |
37.65 | Phytol | 3.79 | 296 | C20H40O |
38.69 | Linolenic acid | 11.13 | 278 | C18H30O2 |
38.95 | Octadecanoic acid | 1.89 | 284 | C18H36O2 |
44.71 | Phthalic acid, bis (2 ethylhexyl) ester | 2.04 | 390 | C24H38O4 |
48.45 | Phthalic acid, dinonyl ester | 1.12 | 418 | C26H42O4 |
Ethanol Fraction Extract | ||||
26.99 | Lauric acid | 1.17 | 200 | C12H24O2 |
27.62 | Undecane, 6-phenyl- | 1.06 | 232 | C17H28 |
27.71 | Undecane, 5-phenyl- | 1.05 | 232 | C17H28 |
27.96 | Undecane, 4-phenyl- | 1.26 | 232 | C17H28 |
28.47 | Undecane, 3-phenyl | 1.59 | 232 | C17H28 |
29.36 | Undecane, 2-phenyl- | 3.37 | 232 | C17H28 |
29.85 | Dodecane, 6-phenyl- | 3.01 | 246 | C18H30 |
29.95 | Dodecane, 5-phenyl- | 2.54 | 246 | C18H30 |
30.23 | Dodecane, 4-phenyl- | 2.59 | 246 | C18H30 |
30.74 | Dodecane, 3-phenyl- | 3.49 | 246 | C18H30 |
31.25 | Tetradecanoic acid | 1.15 | 228 | C14H28O2 |
31.62 | 2-Phenyldodecane | 6.22 | 246 | C18H30 |
31.99 | 6-Phenyltridecane | 4.99 | 260 | C19H32 |
32.13 | 5-Phenyltridecane | 3.66 | 260 | C19H32 |
32.40 | 4-Phenyltridecane | 3.56 | 260 | C19H32 |
32.91 | 3-Phenyltridecane | 4.47 | 260 | C19H32 |
33.76 | Tridecane, 2-phenyl- | 6.30 | 260 | C19H32 |
34.05 | Hexadecanoic acid, methyl ester | 3.04 | 270 | C17H34O2 |
35.38 | Hexadecanoic acid, ethyl ester | 7.86 | 284 | C18H36O2 |
35.56 | Hexadecanoic acid | 5.51 | 256 | C16H32O2 |
37.40 | 9-Octadecenoic acid (Z)-, methyl ester | 2.76 | 296 | C19H36O2 |
38.46 | Ethyl linoleate | 1.27 | 308 | C20H36O2 |
38.57 | Oleic acid | 3.39 | 282 | C18H34O2 |
44.72 | Diisooctyl phthalate | 2.48 | 390 | C24H38O4 |
47.07 | 11-Hydroxyascididemin | 1.17 | 299 | C18H9N3O2 |
47.19 | Dodecyl cis-9,10-epoxyoctadecanoate | 1.09 | 466 | C30H58O3 |
47.46 | 1,2-Cyclohexanedicarboxylicacid, nonyl 4-octyl ester | 1.39 | 410 | C25H46O4 |
47.54 | 1,2-Cyclohexane dicarboxylic acid diisononyl ester | 1.19 | 424 | C26H48O4 |
47.78 | 1,2-Cyclohexanedicarboxylicacid, cyclohexylmethyl nonylester | 1.05 | 394 | C24H42O4 |
47.90 | 1,2-Cyclohexanedicarboxylicacid, nonyl 4-octyl ester | 1.41 | 410 | C25H46O4 |
Treatment | LC50 (mg/L) | Upper Limit | Lower Limit | Slope ± SE |
---|---|---|---|---|
AcF (24 h) | 64 | 76 | 55 | 3.14 ± 0.28 |
AcF (48 h) | 52 | 57 | 48 | 4.67 ± 0.50 |
AcF (72 h) | 39 | 42 | 36 | 3.66 ± 0.21 |
EtF (24 h) | 140 | 210 | 94 | 1.86 ± 0.21 |
EtF (48 h) | 86 | 110 | 66 | 1.88 ± 0.10 |
EtF (72 h) | 42 | 48 | 36 | 2.03 ± 0.09 |
Blood Parameters | Treatment Samples | ||
---|---|---|---|
Control | Acetone Fraction | Ethanol Fraction | |
WBC (×103/µL) | 12.83 ± 2.02 a | 14 ± 2 a | 11.17 ± 1.9 a |
Lymphocytes (×103/µL) | 7453 ± 1348.51 a | 9360 ± 1440 a | 6555 ± 1262.71 a |
Monocytes (×103/µL) | 1006 ± 255.60 a | 1260 ± 180 a | 612 ± 159.80 b |
Neutrophils (×103/µL) | 3989 ± 369.75 a | 3000 ± 301.10 a | 3577.7 ± 536.17 a |
Eosinophils (×103/µL) | 385 ± 60.56 a | 380 ± 87.18 a | 422 ± 67.30 a |
Segmented (×103/µL) | 3860.7 ± 349.62 a | 2860 ± 282.13 a | 3466 ± 517.03 a |
Blood Parameters | Treatment Samples | ||
---|---|---|---|
Control | Acetone Fraction | Ethanol Fraction | |
RBC (×106/µL) | 5.80 ± 0.47 a | 5.57 ± 0.35 a | 5.40 ± 0.35 a |
Hemoglobin (g/Dl) | 13.87 ± 0.49 a | 14.13 ± 0.52 a | 13.43 ± 0.24 a |
Hematocrit (%) | 41 ± 1 a | 41.90 ± 1.63 a | 40 ± 1 a |
MCV (fL) | 71.60 ± 5.80 a | 75.60 ± 3.19 a | 74.80 ± 5.86 a |
MCH (ρg) | 24.29 ± 2.42 a | 25.52 ± 1.34 a | 25.1 ± 1.76 a |
MCHC (g/dL) | 33.83 ± 0.69 a | 33.73 ± 0.37 a | 33.60 ± 0.29 a |
Platelets (×103/µL) | 246.67 ± 4.81 a | 298 ± 4.58 a | 296.67 ± 6.36 a |
Treatment Samples | ACP (U/L) | ALP (IU/L) | ALT (IU/L) | Urea (g/dL) | Creatinine (mg/dL) |
---|---|---|---|---|---|
Control | 2.25 ± 0.29 a | 329.33 ± 2.40 a | 25.04 ± 1.99 a | 30.9 ± 0.53 a | 27.37 ± 0.40 a |
Acetone fraction | 3.18 ± 0.52 a | 342.67 ± 4.63 a | 36.73 ± 1.44 b | 33.4 ± 1.07 a | 29.05 ± 0.52 a |
Ethanol fraction | 2.65 ± 0.56 a | 329 ± 2.08 a | 35.13 ± 4.19 a | 34.10 ± 1.31 a | 28.67 ± 1.91 a |
Organs | Grades of the Lesions | ||||
---|---|---|---|---|---|
0 (Negative) | + (Mild) | ++ (Moderate) | +++ (Sever) | ||
Control group | Heart | √ | |||
Lungs | √ | ||||
Liver | √ | ||||
Kidneys | √ | ||||
AcF group | Heart | √ | |||
Lungs | √ | ||||
Liver | √ | ||||
Kidneys | √ | ||||
EtF group | Heart | √ | |||
Lungs | √ | ||||
Liver | √ | ||||
Kidneys | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelkhalek, S.T.; Abdelgayed, S.S.; Jiang, H.; Wang, M.-Q. The Toxicity of Eichhornia crassipes Fractionated Extracts against Aphis craccivora and Its Safety in Albino Rats. Toxins 2022, 14, 327. https://doi.org/10.3390/toxins14050327
Abdelkhalek ST, Abdelgayed SS, Jiang H, Wang M-Q. The Toxicity of Eichhornia crassipes Fractionated Extracts against Aphis craccivora and Its Safety in Albino Rats. Toxins. 2022; 14(5):327. https://doi.org/10.3390/toxins14050327
Chicago/Turabian StyleAbdelkhalek, Sara Taha, Sherein Saied Abdelgayed, Hong Jiang, and Man-Qun Wang. 2022. "The Toxicity of Eichhornia crassipes Fractionated Extracts against Aphis craccivora and Its Safety in Albino Rats" Toxins 14, no. 5: 327. https://doi.org/10.3390/toxins14050327
APA StyleAbdelkhalek, S. T., Abdelgayed, S. S., Jiang, H., & Wang, M. -Q. (2022). The Toxicity of Eichhornia crassipes Fractionated Extracts against Aphis craccivora and Its Safety in Albino Rats. Toxins, 14(5), 327. https://doi.org/10.3390/toxins14050327