Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Collection
5.2. Revitalization of F. graminearum Isolates
5.3. Spring Wheat Grain Inoculation under Laboratory Conditions
5.4. Storage Conditions
5.5. Sample Preparation for Mycotoxin Analyses
5.6. Method of Analysis
5.7. Method Validation
5.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Crop Prospects and Food Situation—Quarterly Global Report No. 1; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Gil, J.D.B.; Reidsma, P.; Giller, K.; Todman, L.; Whitmore, A.; van Ittersum, M. Sustainable development goal 2: Improved targets and indicators for agriculture and food security. Ambio 2019, 48, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, C.; Berglund, M.; Kurnik, B.; Dworak, T.; Marras, S.; Mereu, V.; Michetti, M. Climate Change Adaptation in the Agriculture Sector in Europe (No. 4/2019); European Environment Agency (EEA): Copenhagen, Denmark, 2019; Available online: https://www.eea.europa.eu/publications/cc-adaptation-agriculture (accessed on 14 January 2022).
- Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takáč, J.; Ruget, F.; Ferrise, R. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. USA 2019, 116, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Field, C.B. Global scale climate—Crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Rasiukevičiūtė, N.; Supronienė, S.; Kelpšienė, J.; Švėgžda, P.; Kadžienė, G.; Šneideris, D.; Ivanauskas, A.; Treikale, O. Susceptibility of non-cereal crops to Fusarium graminearum complex and their role within cereal crop rotation as a source of inoculum for Fusarium head blight. Span. J. Agric. Res. 2018, 16, 1–12. [Google Scholar] [CrossRef]
- Suproniene, S.; Kadziene, G.; Irzykowski, W.; Sneideris, D.; Ivanauskas, A.; Sakalauskas, S.; Serbiak, P.; Svegzda, P.; Auskalniene, O.; Jedryczka, M. Weed species within cereal crop rotations can serve as alternative hosts for Fusarium graminearum causing Fusarium head blight of wheat. Fungal Ecol. 2019, 37, 30–37. [Google Scholar] [CrossRef]
- Fulcher, M.R.; Winans, J.B.; Quan, M.; Oladipo, E.D.; Bergstrom, G.C. Population Genetics of Fusarium graminearum at the Interface of Wheat and Wild Grass Communities in New York. Phytopathology 2019, 109, 2124–2131. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019, 60, 2773–2789. [Google Scholar] [CrossRef]
- Burlakoti, R.R.; Neate, S.M.; Adhikari, T.B.; Gyawali, S.; Salas, B.; Steffenson, B.J.; Schwarz, P.B. Trichothecene profiling and population genetic analysis of Gibberella zeae from barley in North Dakota and Minnesota. Phytopathology 2011, 101, 687–695. [Google Scholar] [CrossRef]
- van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef]
- Pinstrup-Andersen, P. Case Studies in Food Policy for Developing Countries: Policies for Health, Nutrition, Food Consumption, and Poverty; Cornell University Press: Ithaca, NY, USA, 2018; Volume 1, p. 132. [Google Scholar]
- Mankevičienė, A.; Butkutė, B.; Gaurilčikienė, I.; Dabkevičius, Z.; Supronienė, S. Risk assessment of Fusarium mycotoxins in Lithuanian small cereal grains. Food Control 2011, 22, 970–976. [Google Scholar] [CrossRef]
- Janaviciene, S.; Mankeviciene, A.; Suproniene, S.; Kochiieru, Y.; Keriene, I. The prevalence of deoxynivalenol and its derivatives in the spring wheat grain from different agricultural production systems in Lithuania. Food Addit. Contam. Part A 2018, 35, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Kochiieru, Y.; Mankeviciene, A.; Janaviciene, S.; Jonaviciene, A.; Ceseviciene, J. The influence of milling and sifting processes on deoxynivalenol distribution in whole-wheat flour and its products. World Mycotoxin J. 2019, 12, 133–140. [Google Scholar] [CrossRef]
- Burlakoti, R.R.; Ali, S.; Secor, G.A.; Neate, S.M.; McMullen, M.P.; Adhikari, T.B. Genetic relationships among populations of Gibberella zeae from barley, wheat, potato, and sugar beet in the upper Midwest of the United States. Phytopathology 2008, 98, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.J.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.E.; Nowicki, T.W. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473–484. [Google Scholar] [CrossRef] [PubMed]
- EFSA. EFSA panel on food additives and nutrient sources added to food. Scientific Opinion on the re-evaluation of aspartame (E 951) as a food additive. EFSA J. 2013, 11, 3496. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, e04718. [Google Scholar] [CrossRef]
- Waskiewicz, A.; Gromadzka, K.; Wisniewska, H.; Golinski, P. Accumulation of zearalenone in genotypes of spring wheat after inoculation with Fusarium culmorum. Cereal Res. Commun. 2008, 36, 401–403. Available online: https://www.jstor.org/stable/90003249 (accessed on 10 January 2022).
- Golinski, P.; Waskiewicz, A.; Wisniewska, H.; Kiecana, I.; Mielniczuk, E.; Gromadzka, K.; Rymaniak, E. Reaction of winter wheat (Triticum aestivum L.) cultivars to infection with Fusarium spp.: Mycotoxin contamination in grain and chaff. Food Addit. Contam. 2010, 27, 1015–1024. [Google Scholar] [CrossRef]
- Döll, S.; Dänicke, S. The Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) in animal feeding. Prev. Vet. Med. 2011, 102, 132–145. [Google Scholar] [CrossRef]
- Covarelli, L.; Beccari, G.; Prodi, A.; Generotti, S.; Etruschi, F.; Juan, C.; Ferrer, E.; Mañes, J. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. J. Sci. Food Agric. 2015, 95, 540–551. [Google Scholar] [CrossRef]
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Haber, S. Overview of some recent research developments in Fusarium head blight of wheat. Can. J. Plant Pathol. 2013, 35, 149–174. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Liu, C.; Battilani, P. Modelling climate change impacts on mycotoxin contamination. World Mycotoxin J. 2016, 9, 717–726. [Google Scholar] [CrossRef]
- Osborne, L.E.; Stein, J.M. Epidemiology of Fusarium head blight on small-grain cereals. Int. J. Food Microbiol. 2007, 119, 103–108. [Google Scholar] [CrossRef]
- Suproniene, S.; Sakalauskas, S.; Stumbriene, K.; Zvirdauskiene, R.; Svegzda, P. Variances in trichothecene chemotype distribution in Lithuanian wheat grain and within pure culture Fusarium graminearum isolated from the same grain samples. Eur. J. Plant Pathol. 2016, 144, 371–381. [Google Scholar] [CrossRef]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 2007, 44, 1191–1204. [Google Scholar] [CrossRef]
- Pasquali, M.; Migheli, Q. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int. J. Food Microbiol. 2014, 189, 164–182. [Google Scholar] [CrossRef]
- Bryła, M.; Waśkiewicz, A.; Podolska, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef]
- Przemieniecki, S.W.; Kurowski, T.P.; Korzekwa, K. Chemotypes and geographic distribution of the Fusarium graminearum species complex. Environ. Biotechnol. 2014, 10, 45–59. [Google Scholar] [CrossRef]
- Amarasinghe, C.; Sharanowski, B.; Fernando, W.G. Molecular phylogenetic relationships, trichothecene chemotype diversity and aggressiveness of strains in a global collection of Fusarium graminearum species. Toxins 2019, 11, 263. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Sun, H.Y.; Li, W.; Xia, Y.L.; Deng, Y.Y.; Zhang, A.X.; Chen, H.G. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. PLoS ONE 2017, 12, e0174040. [Google Scholar] [CrossRef]
- Spolti, P.; Del Ponte, E.M.; Cummings, J.A.; Dong, Y.; Bergstrom, G.C. Fitness attributes of Fusarium graminearum isolates from wheat in New York possessing a 3-ADON or 15-ADON trichothecene genotype. Phytopathology 2014, 104, 513–519. [Google Scholar] [CrossRef]
- Maier, F.J.; Miedaner, T.; Hadeler, B.; Felk, A.; Salomon, S.; Lemmens, M.; Kassner, H.; Schäfer, W. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol. Plant Pathol. 2006, 7, 449–461. [Google Scholar] [CrossRef]
- von der Ohe, C.; Gauthier, V.; Tamburic-Ilincic, L.; Brule-Babel, A.; Fernando, W.G.; Clear, R.; Ward, T.J.; Miedaner, T. A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyldeoxynivalenol chemotypes in field-grown spring wheat. Eur. J. Plant Pathol. 2010, 127, 407–417. [Google Scholar] [CrossRef]
- Goswami, R.S.; Kistler, H.C. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 2005, 95, 1397–1404. [Google Scholar] [CrossRef]
- Ward, T.J.; Bielawski, J.P.; Kistler, H.C.; Sullivan, E.; O’Donnell, K. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 2002, 99, 9278–9283. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, M.; Lim, J.Y.; Choi, G.J.; Seo, J.A. Characterization of Fusarium asiaticum and F. graminearum isolates from gramineous weeds in the proximity of rice fields in Korea. Plant Pathol. 2022, 71, 1164–1173. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Sawada, H.; Matsuyama, H.; Matsunaka, H.; Fujita, M.; Okamura, N.; Seki, M.; Kojima, H.; Kiribuchi-Otobe, C.; Takayama, T.; Oda, S.; et al. Evaluation of dry matter production and yield in early-sown wheat using near-isogenic lines for the vernalization locus Vrn-D1. Plant Prod. Sci. 2019, 22, 275–284. [Google Scholar] [CrossRef]
- Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium ear blight (scab) in small grain cereals—A review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Jenkinson, P.; Parry, D.W. Splash dispersal of conidia of Fusarium culmorum and Fusarium avenaceum. Mycol. Res. 1994, 98, 506–510. [Google Scholar] [CrossRef]
- Mirjami Hörberg, H. Patterns of splash dispersed conidia of Fusarium poae and Fusarium culmorum. Eur. J. Plant Pathol. 2002, 108, 73–80. [Google Scholar] [CrossRef]
- Mylona, K.; Sulyok, M.; Magan, N. Relationship between environmental factors, dry matter loss and mycotoxin levels in stored wheat and maize infected with Fusarium species. Food Addit. Contam. Part A 2012, 29, 1118–1128. [Google Scholar] [CrossRef]
- Leplat, J.; Friberg, H.; Abid, M.; Steinberg, C. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 2013, 33, 97–111. [Google Scholar] [CrossRef]
- Kokkonen, M.; Ojala, L.; Parikka, P.; Jestoi, M. Mycotoxin production of selected Fusarium species at different culture conditions. Int. J. Food Microbiol. 2010, 143, 17–25. [Google Scholar] [CrossRef]
25 °C | 29 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mycotoxin | Strain Genotype | Positive, % | Min, µg kg−1 | Max, µg kg−1 | Average | Positive, % | Min, µg kg−1 | Max, µg kg−1 | Average |
DON | 3-ADON | 100 | 6804 | 101,100 | 37,013 | 100 | 286 | 15,473 | 3721 |
15-ADON | 100 | 8305 | 223,532 | 56,605 | 100 | 169 | 63,754 | 6577 | |
NIV | 3-ADON | 43 | <100 | 3015 | 866 | 14 | <100 | 352 | 270 |
15-ADON | 19 | <100 | 573 | 377 | 14 | <100 | 162 | 129 | |
D3G | 3-ADON | 28 | <10 | 78 | 32 | 0 | <10 | <10 | <10 |
15-ADON | 43 | <10 | 187 | 51 | 5 | <10 | 16 | 16 | |
FUS-X | 3-ADON | 90 | <10 | 160 | 60 | 28 | <10 | 136 | 109 |
15-ADON | 100 | 11 | 152 | 39 | 33 | <10 | 220 | 154 | |
3-ADON | 3-ADON | 86 | <50 | 33,344 | 13,954 | 86 | <50 | 1150 | 407 |
15-ADON | 76 | <50 | 11,899 | 3159 | 67 | <50 | 1217 | 187 | |
15-ADON | 3-ADON | 71 | <50 | 2829 | 1133 | 57 | <50 | 4739 | 1195 |
15-ADON | 95 | <50 | 27,498 | 6815 | 67 | <50 | 6658 | 1610 | |
ZEA | 3-ADON | 100 | 10,995 | 52,763 | 25,805 | 100 | 219 | 43,150 | 9803 |
15-ADON | 100 | 15,290 | 46,686 | 29,771 | 100 | 2950 | 52,728 | 13,464 |
DON | 3-ADON | 15-ADON | NIV | D3G | FUS-X | ZEA | ||
---|---|---|---|---|---|---|---|---|
Factor A | F | 4.632 | 8.012 | 7.295 | 1.643 | 0.989 | 1.050 | 8.575 |
p | 0.0124 * | 0.000654 *** | 0.00120 ** | 0.1996 | 0.3761 | 0.355 | 0.000409 *** | |
Factor B | F | 37.681 | 26.306 | 9.408 | 3.864 | 5.939 | 0.000 | 42.816 |
p | 0.0000 *** | 0.000000 *** | 0.00291 ** | 0.0526 | 0.0169 * | 0.994 | 0.00000 *** | |
Factor A x B | F | 2.990 | 7.320 | 4.946 | 1.224 | 0.905 | 1.179 | 1.249 |
p | 0.0556 | 0.001174 ** | 0.00932 ** | 0.2992 | 0.4084 | 0.313 | 0.291984 |
DON | NIV | D3G | FUS-X | 3-ADON | 15-ADON | ZEA | |||
---|---|---|---|---|---|---|---|---|---|
15-ADON genotype | DON | 0.696 | 0.791 | 0.416 | 0.603 | 0.071 | −0.266 | 3-ADON genotype | |
NIV | 0.099 | 0.970 | 0.741 | 0.171 | −0.122 | −0.306 | |||
D3G | 0.018 | 0.974 | 0.678 | 0.229 | −0.125 | −0.456 | |||
FUS-X | 0.078 | 0.991 | 0.981 | 0.481 | −0.062 | −0.028 | |||
3-ADON | 0.230 | 0.087 | 0.022 | 0.093 | 0.210 | 0.157 | |||
15-ADON | 0.556 | 0.002 | −0.103 | −0.020 | 0.912 | 0.538 | |||
ZEA | 0.042 | −0.863 | −0.787 | −0.882 | −0.182 | −0.038 |
DON | NIV | D3G | FUS-X | 3-ADON | 15-ADON | ZEA | |||
---|---|---|---|---|---|---|---|---|---|
15-ADON genotype | DON | 0.048 | - | −0.261 | 0.834 | −0.203 | 0.582 | 3-ADON genotype | |
NIV | −0.157 | - | 0.473 | −0.154 | −0.119 | −0.299 | |||
D3G | - | −0.202 | - | - | - | - | |||
FUS-X | −0.294 | −0.317 | −0.262 | −0.089 | 0.381 | −0.390 | |||
3-ADON | 0.984 | −0.095 | 0.976 | −0.373 | −0.147 | 0.715 | |||
15-ADON | −0.164 | −0.294 | −0.137 | 0.967 | −0.237 | −0.116 | |||
ZEA | 0.924 | −0.277 | 0.934 | −0.403 | 0.911 | −0.274 |
Treatment No. | Host Plant | Strain Code | TRI Genotypes |
---|---|---|---|
1 | Control | ||
2 | Fallopia convolvulus (L.) Löve | 144š | 3-ADON |
3 | Fallopia convolvulus (L.) Löve | 283š | 15-ADON |
4 | Viola arvensis Murray | 153l | 15-ADON |
5 | Viola arvensis Murray | 541s | 3-ADON |
6 | Triticum aestivum | 6K4V1 | 15-ADON |
7 | Triticum aestivum | B 45.4.1 | 3-ADON |
8 | Brassica napus L. | 98p | 3-ADON |
9 | Brassica napus L. | 425l | 15-ADON |
10 | Euphorbia helioscopia L. | 762l | 3-ADON |
11 | Euphorbia helioscopia L. | 678v | 15-ADON |
12 | Tripleurospermum inodorum (L.) Sch. | 1120p | 15-ADON |
13 | Tripleurospermum inodorum (L.) Sch. | 1422p | 3-ADON |
14 | Poa annua L. | 787v | 15-ADON |
15 | Poa annua L. | 1350s | 3-ADON |
Validation Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mycotoxin | LOD, µg kg−1 | LOQ, µg kg−1 | Linear Range, µg kg−1 | R2 | Accuracy (Deviation from the Theoretical Value, %) | Precision (RSD, %) | ||||
Level of Spiked Samples, µg kg−1 | ||||||||||
10 | 50 | 100 | 10 | 50 | 100 | |||||
NIV | 14 | 42 | 42–500 | 0.9983 | x | −9 | −18 | x | 9 | 3 |
D3G | 4.5 | 13 | 13–500 | 0.9972 | 12 | −3 | −1 | 12 | 5 | 8 |
DON | 4.0 | 12 | 12–500 | 0.9991 | 23 | 5 | 4 | 10 | 6 | 3 |
FUS-X | 1.2 | 3.5 | 3.5–500 | 0.9988 | 6 | 7 | 0 | 3 | 6 | 8 |
15-ADON | 14 | 42 | 42–500 | 0.9988 | x | 4 | 2 | x | 8 | 2 |
3-ADON | 3.6 | 11 | 11–500 | 0.9991 | −24 | −11 | −9 | 14 | 14 | 11 |
ZEA | 2.4 | 7.1 | 7.1–500 | 0.9993 | 25 | −10 | −8 | 6 | 7 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janaviciene, S.; Suproniene, S.; Kadziene, G.; Pavlenko, R.; Berzina, Z.; Bartkevics, V. Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions. Toxins 2022, 14, 541. https://doi.org/10.3390/toxins14080541
Janaviciene S, Suproniene S, Kadziene G, Pavlenko R, Berzina Z, Bartkevics V. Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions. Toxins. 2022; 14(8):541. https://doi.org/10.3390/toxins14080541
Chicago/Turabian StyleJanaviciene, Sigita, Skaidre Suproniene, Grazina Kadziene, Romans Pavlenko, Zane Berzina, and Vadims Bartkevics. 2022. "Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions" Toxins 14, no. 8: 541. https://doi.org/10.3390/toxins14080541
APA StyleJanaviciene, S., Suproniene, S., Kadziene, G., Pavlenko, R., Berzina, Z., & Bartkevics, V. (2022). Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions. Toxins, 14(8), 541. https://doi.org/10.3390/toxins14080541