Effect of Nitrogen, Phosphorous, and Light Colimitation on Amphidinol Production and Growth in the Marine Dinoflagellate Microalga Amphidinium carterae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Kinetics and Modeling
2.2. Amphidinol Production
3. Conclusions
4. Materials and Methods
4.1. Database
4.2. Model Variables
4.3. Analytical Measurements
4.4. Growth Model
4.5. Database Treatment
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wu, Y.H.; Li, X.; Yu, Y.; Hu, H.Y.; Zhang, T.Y.; Li, F.M. An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent. Bioresour. Technol. 2013, 144, 445–451. [Google Scholar] [CrossRef] [PubMed]
- López-Rosales, L.; López-García, P.; Benyachou, M.A.; Molina-Miras, A.; Gallardo-Rodríguez, J.J.; Cerón-García, M.C.; Sánchez-Mirón, A.; García-Camacho, F. Treatment of secondary urban wastewater with a low ammonium-tolerant marine microalga using zeolite-based adsorption. Bioresour. Technol. 2022, 359, 127490. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Rodríguez, J.; Sánchez-Mirón, A.; García-Camacho, F.; López-Rosales, L.; Chisti, Y.; Molina-Grima, E. Bioactives from microalgal dinoflagellates. Biotechnol. Adv. 2012, 30, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.C.; Molina-Miras, A.; Aguilera-Sáez, L.M.; López-Rosales, L.; Cerón-García, M.C.; Sánchez-Mirón, A.; Olmo-García, L.; Carrasco-Pancorbo, A.; García-Camacho, F.; Molina-Grima, E.; et al. Production of amphidinols and other bioproducts of interest by the marine microalga Amphidinium carterae unraveled by nuclear magnetic resonance metabolomics approach coupled to multivariate data analysis. J. Agric. Food Chem. 2019, 67, 9667–9682. [Google Scholar] [CrossRef] [PubMed]
- Assunção, J.; Guedes, A.C.; Malcata, F.X. Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar. Drugs 2017, 15, 393. [Google Scholar] [CrossRef] [PubMed]
- López-Rosales, L.; García-Camacho, F.; Sánchez-Mirón, A.; Contreras-Gómez, A.; Molina-Grima, E. An optimisation approach for culturing shear-sensitive dinoflagellate microalgae in bench-scale bubble column photobioreactors. Bioresour. Technol. 2015, 197, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, J.; Li, Z.; Wang, Y.; Fu, B.; Han, X.; Zheng, L. Cultivation of the benthic microalga Prorocentrum lima for the production of diarrhetic shellfish poisoning toxins in a vertical flat photobioreactor. Bioresour. Technol. 2015, 179, 243–248. [Google Scholar] [CrossRef]
- Fuentes-Grunewald, C.; Bayliss, C.; Fonlut, F.; Chapuli, E. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresour. Technol. 2016, 218, 533–540. [Google Scholar] [CrossRef]
- Molina-Miras, A.; Morales-Amador, A.; de Vera, C.R.; López-Rosales, L.; Sánchez-Mirón, A.; Souto, M.L.; Fernández, J.; Norte, M.; García-Camacho, F.; Molina-Grima, E. A pilot-scale bioprocess to produce amphidinols from the marine microalga Amphidinium carterae: Isolation of a novel analogue. Algal Res. 2018, 31, 87–98. [Google Scholar] [CrossRef]
- Ketheesan, B.; Nirmalakhandan, N. Modeling microalgal growth in an airlift-driven raceway reactor. Bioresour. Technol. 2013, 136, 689–696. [Google Scholar] [CrossRef]
- Pate, R.; Klise, G.; Wu, B. Resource demand implications for US algae biofuels production scale-up. Appl. Energ. 2011, 88, 3377–3388. [Google Scholar] [CrossRef]
- López-Rosales, L.; García-Camacho, F.; Sánchez-Mirón, A.; Contreras-Gómez, A.; Molina-Grima, E. An optimal culture medium for growing Karlodinium veneficum: Progress towards a microalgal dinoflagellate-based bioprocess. Algal Res. 2015, 10, 177–182. [Google Scholar] [CrossRef]
- Bougaran, G.; Bernard, O.; Sciandra, A. Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus. J. Theor. Biol. 2010, 265, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Bergström, A.K.; Jonsson, A.; Jansson, M. Phytoplankton responses to nitrogen and phosphorus enrichment in unproductive Swedish lakes along a gradient of atmospheric nitrogen deposition. Aquat. Biol. 2008, 4, 55–64. [Google Scholar] [CrossRef]
- Zohary, T.; Herut, B.; Krom, M.D.; Mantoura, R.F.C.; Pitta, P.; Psarra, S.; Rassoulzadeganf, F.; Stamblerg, N.; Tanaka, T.; Thingstad, T.F.; et al. P-limited bacteria but N and P co-limited phytoplankton in the Eastern Mediterranean—A microcosm experiment. Deep-Sea Res. Part II 2005, 52, 3011–3023. [Google Scholar] [CrossRef]
- Pahlow, M.; Oschlies, A. Chain model of phytoplankton P, N and light colimitation. Mar. Ecol. Prog. Ser. 2005, 376, 69–83. [Google Scholar] [CrossRef]
- Lee, E.; Jalalizadeh, M.; Zhang, Q. Growth kinetic models for microalgae cultivation: A review. Algal Res. 2015, 12, 497–512. [Google Scholar] [CrossRef]
- Klausmeier, C.A.; Litchman, E.; Daufresne, T.; Levin, S.A. Phytoplankton stoichiometry. Ecol. Res. 2008, 23, 479–485. [Google Scholar] [CrossRef]
- Molina-Miras, A.; López-Rosales, L.; Sánchez-Mirón, A.; Cerón-García, M.C.; Seoane-Parra, S.; García-Camacho, F.; Molina-Grima, E. Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: Production of carotenoids and fatty acids. Bioresour. Technol. 2018, 265, 257–267. [Google Scholar] [CrossRef]
- Sciandra, A. Coupling and uncoupling between nitrate uptake and growth rate in Prorocentrum minimum (Dinophyceae) under different frequencies of pulsed nitrate supply. Mar. Ecol. Prog. Ser. 1991, 72, 261–269. [Google Scholar] [CrossRef]
- Kovárová-Kovar, K.; Egli, T. Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. R. 1998, 62, 646–666. [Google Scholar] [CrossRef] [PubMed]
- López-Rosales, L.; Gallardo-Rodríguez, J.J.; Sánchez-Mirón, A.; Cerón-García, M.D.C.; Belarbi, E.H.; García-Camacho, F.; Molina-Grima, E. Simultaneous Effect of Temperature and Irradiance on Growth and Okadaic Acid Production from the Marine Dinoflagellate Prorocentrum belizeanum. Toxins 2014, 6, 229–253. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.C.-H.; Fong, F.L.-Y.; Ho, K.-C.; Lee, F.W.-F. The Mechanism of Diarrhetic Shellfish Poisoning Toxin Production in Prorocentrum spp.: Physiological and Molecular Perspectives. Toxins 2016, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Rodríguez, J.; Cerón-García, M.C.; González-López, C.V.; López-Rosales, L.; Contreras-Gómez, A.; Molina-Grima, E. Use of continuous culture to develop an economical medium for the mass production of Isochrysis galbana for aquaculture. J. Appl. Phycol. 2020, 32, 851–863. [Google Scholar] [CrossRef]
- Gallardo-Rodríguez, J.; Sánchez-Mirón, A.; Cerón-García, M.C.; Belarbi, E.H.; García-Camacho, F.; Chisti, Y.; Molina-Grima, E. Macronutrients requirements of the dinoflagellate Protoceratium reticulatum. Harmful Algae 2009, 8, 239–246. [Google Scholar] [CrossRef]
- Ruivo, M.; Amorim, A.; Cartaxana, P. Effects of growth phase and irradiance on phytoplankton pigment ratios: Implications for chemotaxonomy in coastal waters. J. Plankton Res. 2011, 33, 1012–1022. [Google Scholar] [CrossRef]
- Palabhanvi, B.; Kumar, V.; Muthuraj, M.; Das, D. Preferential utilization of intracellular nutrients supports microalgal growth under nutrient starvation: Multi-nutrient mechanistic model and experimental validation. Bioresour. Technol. 2014, 173, 245–255. [Google Scholar] [CrossRef]
- Whitton, R.; Ometto, F.; Pidou, M.; Jarvis, P.; Villa, R.; Jefferson, B. Microalgae for municipal wastewater nutrient remediation: Mechanisms, reactors and outlook for tertiary treatment. Environ. Technol. Rev. 2015, 4, 133–148. [Google Scholar] [CrossRef]
- Lee, K.H.; Jeong, H.J.; Kim, H.J.; Lim, A.S. Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: Effect of light intensity. Algae 2017, 32, 139–153. [Google Scholar] [CrossRef]
- Sciandra, A.; Gostan, J.; Collos, Y.; Descolas-Gros, C.; Leboulanger, C.; Martin-Jézéquel, V.; Denis, M.; Lefèvre, D.; Copin-Montégud, C.; Avril, B. Growth-compensating phenomena in continuous cultures of Dunaliella tertiolecta limited simultaneously by light and nitrate. Limnol. Oceanogr. 1997, 42, 1325–1339. [Google Scholar] [CrossRef] [Green Version]
- Vanucci, S.; Guerrini, F.; Milandri, A.; Pistocchi, R. Effects of different levels of N-and P-deficiency on cell yield, okadaic acid, DTX-1, protein and carbohydrate dynamics in the benthic dinoflagellate Prorocentrum lima. Harmful Algae 2010, 9, 590–599. [Google Scholar] [CrossRef]
- Brandenburg, K.; Siebers, L.; Keuskamp, J.; Jephcott, T.G.; Van de Waal, D.B. Effects of Nutrient Limitation on the Synthesis of N-Rich Phytoplankton Toxins: A Meta-Analysis. Toxins 2020, 12, 221. [Google Scholar] [CrossRef] [PubMed]
- Latasa, M.; Berdalet, E. Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. J. Plankton Res. 1994, 16, 83–94. [Google Scholar] [CrossRef]
- Bekirogullari, M.; Pittman, J.K.; Theodoropoulos, C. Multi-factor kinetic modelling of microalgal biomass cultivation for optimised lipid production. Bioresour. Technol. 2018, 269, 417–425. [Google Scholar] [CrossRef]
- Lee, E.; Zhang, Q. Integrated co-limitation kinetic model for microalgae growth in anaerobically digested municipal sludge centrate. Algal Res. 2016, 18, 15–24. [Google Scholar] [CrossRef]
- Nokkaew, A.; Pimpunchat, B.; Modchang, C.; Amornsamankul, S.; Triampo, W.; Triampo, D. Estimation of algae growth model parameters by a double layer genetic algorithm. WSEAS Trans. Comput. 2012, 11, 377–386. [Google Scholar]
- Van de Waal, D.B.; Smith, V.H.; Declerck, S.A.; Stam, E.C.; Elser, J.J. Stoichiometric regulation of phytoplankton toxins. Ecol. Lett. 2014, 17, 736–742. [Google Scholar] [CrossRef]
- Morales-Amador, A.; Molina-Miras, A.; López-Rosales, L.; Sánchez-Mirón, A.; García-Camacho, F.; Souto, M.L.; Fernández, J.J. Isolation and Structural Elucidation of New Amphidinol Analogues from Amphidinium carterae Cultivated in a Pilot-Scale Photobioreactor. Mar. Drugs 2021, 19, 432. [Google Scholar] [CrossRef]
- Bernard, O. Hurdles and challenges for modeling and control of microalgae for CO2 mitigation and biofuel production. J. Process Contr. 2011, 21, 1378–1389. [Google Scholar] [CrossRef]
- Cutignano, A.; Nuzzo, G.; Sardo, A.; Fontana, A. The Missing Piece in Biosynthesis of Amphidinols: First Evidence of Glycolate as a Starter Unit in New Polyketides from Amphidinium carterae. Mar. Drugs 2017, 15, 157. [Google Scholar] [CrossRef]
- Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Droop, M.R. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. U. K. 1968, 48, 689–733. [Google Scholar] [CrossRef]
- Flynn, K.J. The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. J. Plankton Res. 2008, 30, 423–438. [Google Scholar] [CrossRef]
- Caperon, J.; Meyer, J. Nitrogen-limited growth of marine phytoplankton-I. Changes in population characteristics with steady-state growth rate. Deep-Sea Res. 1972, 19, 601–618. [Google Scholar] [CrossRef]
- Flynn, K.J. How critical is the critical N: P ratio? J. Phycol. 2002, 38, 961–970. [Google Scholar] [CrossRef]
- Molina-Grima, E.; García-Camacho, F.; Sánchez-Pérez, J.A.; Fernández-Sevilla, J.M.; Acién-Fernández, F.; Contreras-Gómez, A. A mathematical model of microalgal growth in light-limited chemostat culture. J. Chem. Technol. Biot. 1994, 61, 167–173. [Google Scholar] [CrossRef]
- Quinn, J.; De Winter, L.; Bradley, T. Microalgae bulk growth model with application to industrial scale systems. Bioresour. Technol. 2011, 102, 5083–5092. [Google Scholar] [CrossRef]
- Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 2013, 64, 402–406. [Google Scholar] [CrossRef]
- Huang, S.; Kong, W.; Yang, Z.; Yu, H.; Li, F. Combination of Logistic and modified Monod functions to study Microcystis aeruginosa growth stimulated by fish feed. Ecotox. Environ. Safe 2019, 167, 146–160. [Google Scholar] [CrossRef]
Set | Interval (Days) | Culture Time (Days) | L/D Cycle (Hours) | Y0 (µE m−2 s−1) | [NO3−]0 (µM) | [PO43−]0 (µM) |
---|---|---|---|---|---|---|
1 | 29 | 12:12 | 286 | 882 | 181 | |
43–51 | 0–8 | |||||
51–58 | 0–7 | |||||
2 | 58 | 18:6 | 430 | 882 | 181 | |
69–73 | 0–4 | |||||
73–77 | 0–4 | |||||
3 | 77 | 18:6 | 430 | 1764 | 362 | |
85–92 | 0–7 | |||||
92–99 | 0–7 | |||||
4 | 99 | 18:6 | 430 | 2646 | 529 | |
99–110 | 0–11 | |||||
110–122 | 0–12 | |||||
5 | 127 | 24:0 | 573 | 2646 | 529 | |
149–161 | 0–12 | |||||
161–172 | 0–12 |
Parameter | Set 1 | Set 2 | Set 3 | Set 4 | Set 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
µmax (d−1) | 0.100 | ±0.004 | 0.495 | ±0.194 | 0.391 | ±0.012 | 0.198 | ±0.050 | 0.306 | ±0.036 |
n (-) | 0.235 | ±0.022 | 0.080 | ±0.020 | 0.013 | ±0.006 | 0.465 | ±0.385 | 1.005 | ±0.867 |
n1 (-) | 1.234 | ±0.086 | 1.271 | ±0.633 | 2.064 | ±1.156 | 4.175 | ±0.176 | 3.237 | ±1.114 |
KI (µE s−1 m−2) | 7.79 × 10−6 | ±3.21 × 10−6 | 1.71 × 10−4 | ±1.11 × 10−4 | 1.65 × 10−5 | ±2.50 × 10−6 | 1.13 × 10−4 | ±5.99 × 10−5 | 1.19 × 10−4 | ±4.84 × 10−5 |
KqN (-) | 0.013 | ±0.006 | 0.201 | ±0.042 | 0.070 | ±0.021 | 1.017 | ±0.331 | 1.138 | ±0.508 |
KqP (-) | 2.58 × 10−6 | ±1.23 × 10−6 | 1.02 × 10−2 | ±5.03 × 10−3 | 2.87 × 10−4 | ±1.17 × 10−4 | 4.14 × 10−5 | ±1.65 × 10−5 | 6.09 × 10−6 | ±2.23 × 10−6 |
qminN (gN gcell−1) | 0.005 | ±0.004 | 0.011 | ±0.008 | 0.152 | ±0.063 | 0.115 | ±0.018 | 0.194 | ±0.006 |
qmaxN (gN gcell−1) | 0.367 | ±0.015 | 0.312 | ±0.04 | 0.420 | ±0.013 | 0.473 | ±0.023 | 0.484 | ±0.012 |
qminP (gP gcell−1) | 0.065 | ±0.046 | 0.072 | ±0.038 | 0.038 | ±0.034 | 0.118 | ±0.082 | 0.021 | ±0.011 |
qmaxP (gP gcell−1) | 0.132 | ±0.030 | 0.124 | ±0.016 | 0.240 | ±0.033 | 0.329 | ±0.003 | 0.402 | ±0.183 |
rmaxN (gNO3− gcell−1 d−1) | 0.305 | ±0.097 | 0.409 | ±0.005 | 0.390 | ±0.071 | 0.441 | ±0.057 | 0.618 | ±0.276 |
rmaxP (gPO43− gcell−1 d−1) | 0.021 | ±0.009 | 0.077 | ±0.031 | 0.205 | ±0.054 | 0.327 | ±0.034 | 0.514 | ±0.066 |
KpN (gNO3− L−1) | 0.006 | ±0.004 | 0.006 | ±0.005 | 0.020 | ±0.015 | 0.093 | ±0.011 | 0.04 | ±0.029 |
kpP (gPO43− L−1) | 0.007 | ±0.002 | 0.010 | ±0.003 | 0.057 | ±0.040 | 0.022 | ±0.004 | 0.045 | ±0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Miras, A.; Bueso-Sánchez, A.; Cerón-García, M.d.C.; Sánchez-Mirón, A.; Contreras-Gómez, A.; García-Camacho, F. Effect of Nitrogen, Phosphorous, and Light Colimitation on Amphidinol Production and Growth in the Marine Dinoflagellate Microalga Amphidinium carterae. Toxins 2022, 14, 594. https://doi.org/10.3390/toxins14090594
Molina-Miras A, Bueso-Sánchez A, Cerón-García MdC, Sánchez-Mirón A, Contreras-Gómez A, García-Camacho F. Effect of Nitrogen, Phosphorous, and Light Colimitation on Amphidinol Production and Growth in the Marine Dinoflagellate Microalga Amphidinium carterae. Toxins. 2022; 14(9):594. https://doi.org/10.3390/toxins14090594
Chicago/Turabian StyleMolina-Miras, Alejandro, Alejandro Bueso-Sánchez, María del Carmen Cerón-García, Asterio Sánchez-Mirón, Antonio Contreras-Gómez, and Francisco García-Camacho. 2022. "Effect of Nitrogen, Phosphorous, and Light Colimitation on Amphidinol Production and Growth in the Marine Dinoflagellate Microalga Amphidinium carterae" Toxins 14, no. 9: 594. https://doi.org/10.3390/toxins14090594
APA StyleMolina-Miras, A., Bueso-Sánchez, A., Cerón-García, M. d. C., Sánchez-Mirón, A., Contreras-Gómez, A., & García-Camacho, F. (2022). Effect of Nitrogen, Phosphorous, and Light Colimitation on Amphidinol Production and Growth in the Marine Dinoflagellate Microalga Amphidinium carterae. Toxins, 14(9), 594. https://doi.org/10.3390/toxins14090594