Electrospun Membranes Anchored with g-C3N4/MoS2 for Highly Efficient Photocatalytic Degradation of Aflatoxin B1 under Visible Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the PAN-g-C3N4/MoS2 Electrospun Membranes
2.2. Photocatalysis and Recycling Performance
2.3. Mechanism for Enhanced Degradation Performance
3. Conclusions
4. Materials and Methods
4.1. Materials and Reagents
4.2. Preparation of g-C3N4/MoS2
4.3. Preparation of PAN-g-C3N4/MoS2 Electrospun Membranes
4.4. Characterization of PAN-g-C3N4/MoS2 Electrospun Membranes
4.5. Photocatalytic Degradation Experiment
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wild, C.P.; Turner, P.C. The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public health impacts of foodborne mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 52014, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahato, D.K.; KamLe, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 2017, 7, 2170. [Google Scholar] [CrossRef] [PubMed]
- Sherif, O.S.; Salama, E.E.; Abdel-Wahhab, M.A. Mycotoxins and child health: The need for health risk assessment. Int. J. Hyg. Environ. Health 2009, 212, 347–368. [Google Scholar]
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef]
- Fan, T.; Xie, Y.; Ma, W. Research progress on the protection and detoxification of phytochemicals against aflatoxin B1-induced liver toxicity. Toxicon 2021, 195, 58–68. [Google Scholar] [CrossRef]
- IARC. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr. Eval. Carcinog. Risks Hum. 1993, 56, 489–521. [Google Scholar]
- Liu, Y.; Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 2010, 118, 818–824. [Google Scholar] [CrossRef]
- El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012, 143, 269. [Google Scholar] [CrossRef]
- Joubert, O. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Environ. Risques Sante 2020, 19, 296–297. [Google Scholar]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef]
- Xiong, J.L.; Wang, Y.M.; Zhou, H.L.; Liu, J.X. Effects of dietary adsorbent on milk aflatoxin m1 content and the health of lactating dairy cows exposed to long-term aflatoxin B1 challenge. J. Dairy Sci. 2018, 101, 8944–8953. [Google Scholar] [CrossRef]
- De Jesus Nava-Ramirez, M.; Salazar, A.M.; Sordo, M.; Lopez-Coello, C.; Tellez-Isaias, G.; Mendez-Albores, A.; Vazquez-Duran, A. Ability of low contents of biosorbents to bind the food carcinogen aflatoxin B1 in vitro. Food Chem. 2021, 345, 128863. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Fan, J.; Chen, X.; Wan, Y. Aflatoxin B1 removal by multifunctional membrane based on polydopamine intermediate layer. Sep. Purif. Technol. 2018, 199, 311–319. [Google Scholar] [CrossRef]
- Isikber, A.A.; Athanassiou, C.G. The use of ozone gas for the control of insects and micro-organisms in stored products. J. Stored Prod. Res. 2015, 64, 139–145. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, J.; Xie, B.; He, Y.; Qin, Y.; Wang, D.; Shi, H.; Ke, Y.; Sun, Q. Detoxification of aflatoxin B1 in corn by chlorine dioxide gas. Food Chem. 2020, 328, 127121. [Google Scholar] [CrossRef]
- Yousefi, M.; Shariatifar, N.; Ebrahimi, M.T.; Mortazavian, A.M.; Mohammadi, A.; Khorshidian, N.; Arab, M.; Hosseini, H. In vitro removal of polycyclic aromatic hydrocarbons by lactic acid bacteria. J. Appl. Microbiol. 2019, 126, 954–964. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, J.; Nepovimova, E.; Long, M.; Wu, W.; Kuca, K. Aflatoxin detoxification using microorganisms and enzymes. Toxins 2021, 13, 46. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Bai, X.; Sun, C.; Liu, D.; Luo, X.; Li, D.; Wang, J.; Wang, N.; Chang, X.; Zong, R.; Zhu, Y. Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Appl. Catal. B 2017, 204, 11–20. [Google Scholar] [CrossRef]
- Mboula, V.M.; Hequet, V.; Gru, Y.; Colin, R.; Andres, Y. Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J. Hazard. Mater. 2012, 209, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Li, P.; Wang, J.; Wang, H.; Zhang, Q.; Zhang, L.; Li, H.; Zhang, W.; Peng, T. Insights into photocatalytic inactivation mechanism of the hypertoxic site in aflatoxin B1 over clew-like WO3 decorated with CdS nanoparticles. Appl. Catal. B 2019, 248, 477–486. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, L.; Wang, H.; Zhang, Q.; Zhang, W.; Li, P. Facile fabrication of nanosized graphitic carbon nitride sheets with efficient charge separation for mitigation of toxic pollutant. Chem. Eng. J. 2018, 342, 30–40. [Google Scholar] [CrossRef]
- Yao, L.; Sun, C.; Lin, H.; Li, G.; Lian, Z.; Song, R.; Zhuang, S.; Zhang, D. Electrospun Bi-decorated BixTiyOz/TiO2 flexible carbon nanofibers and their applications on degradating of organic pollutants under solar radiation. J. Mater. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, Q.; Li, P.; Zhang, L.; Zhang, W. Geometric architecture design of ternary composites based on dispersive WO3 nanowires for enhanced visible-light-driven activity of refractory pollutant degradation. Chem. Eng. J. 2018, 334, 2568–2578. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, R.; Xie, Y.; Liu, Y. Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst. Food Control 2019, 100, 183–188. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, X.; Guo, W.; Wu, Z.; Yin, Y.; Li, Z. Enhanced photocatalytic activity of TiO2/UiO-67 under visible-light for aflatoxin B1 degradation. RSC Adv. 2022, 12, 6676–6682. [Google Scholar] [CrossRef]
- Raesi, S.; Mohammadi, R.; Khammar, Z.; Paimard, G.; Abdalbeygi, S.; Sarlak, Z.; Rouhi, M. Photocatalytic detoxification of aflatoxin B1 in an aqueous solution and soymilk using nano metal oxides under UV light: Kinetic and isotherm models. LWT-Food Sci. Technol. 2022, 154, 112638. [Google Scholar] [CrossRef]
- Sun, D.; Mao, J.; Cheng, L.; Yang, X.; Li, H.; Zhang, L.; Zhang, W.; Zhang, Q.; Li, P. Magnetic g-C3N4/NiFe2O4 composite with enhanced activity on photocatalytic disinfection of aspergillus flavus. Chem. Eng. J. 2021, 418, 129417. [Google Scholar] [CrossRef]
- Wang, H.; Mao, J.; Zhang, Z.; Zhang, Q.; Zhang, L.; Li, P. Photocatalytic degradation of deoxynivalenol over dendritic-like α-Fe₂O₃ under visible light irradiation. Toxins 2019, 11, 105. [Google Scholar] [CrossRef]
- Li, G.; Lian, Z.; Wang, W.; Zhang, D.; Li, H. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 2016, 19, 446–454. [Google Scholar] [CrossRef]
- Song, J.; Wang, X.; Yan, J.; Yu, J.; Sun, G.; Ding, B. Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 2017, 7, 1636. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Liu, X.; Li, Q.; Zheng, Y. A novel PVDF-TiO2@g-C3N4 composite electrospun fiber for efficient photocatalytic degradation of tetracycline under visible light irradiation. Ecotoxicol. Environ. Saf. 2021, 210, 111866. [Google Scholar] [CrossRef]
- Thi Kim Anh, N.; Thanh-Truc, P.; Huy, N.-P.; Shin, E.W. The effect of graphitic carbon nitride precursors on the photocatalytic dye degradation of water-dispersible graphitic carbon nitride photocatalysts. Appl. Surf. Sci. 2021, 537, 148027. [Google Scholar]
- Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B 2017, 217, 388–406. [Google Scholar] [CrossRef]
- Wu, M.; Li, L.; Liu, N.; Wang, D.; Xue, Y.; Tang, L. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Process Saf. Environ. Prot. 2018, 118, 40–58. [Google Scholar] [CrossRef]
- Li, J.; Wu, W.; Li, Y.; Zhang, H.; Xu, X.; Jiang, Y.; Lin, K. In situ synthesized rodlike MoS2 as a cocatalyst for enhanced photocatalytic hydrogen evolution by graphitic carbon nitride without a noble metal. ACS Appl. Energy Mater. 2021, 4, 11836–11843. [Google Scholar] [CrossRef]
- Marinho, B.A.; de Souza, S.M.A.G.U.; de Souza, A.A.U.; Hotza, D. Electrospun TiO2 nanofibers for water and wastewater treatment: A review. J. Mater. Sci. 2021, 56, 5428–5448. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, S.; Ma, P.; Luo, Y.; Wu, W.; Long, Y.; Ma, J. In situ synthesis of MoS2 on C3N4 to form MoS2/C3N4 with interfacial Mo-N coordination for electrocatalytic reduction of N2 to NH3. ACS Sustain. Chem. Eng. 2020, 8, 8814–8822. [Google Scholar] [CrossRef]
- Zhang, Z.-G.; Liu, H.; Wang, X.-X.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. One-step low temperature hydrothermal synthesis of flexible TiO2/PVDF@MoS2 core-shell heterostructured fibers for visible-light-driven photocatalysis and self-cleaning. Nanomaterials 2019, 9, 431. [Google Scholar] [CrossRef]
- D’Elia, A.; Cibin, G.; Robbins, P.E.; Maggi, V.; Marcelli, A. Design and characterization of a mapping device optimized to collect XRD patterns from highly inhomogeneous and low density powder samples. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 411, 22–28. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, L.; Liu, H.; Xu, H.; Zhong, Y.; Sui, X.; Mao, Z. Construction of CQDs-Bi20TiO32/PAN electrospun fiber membranes and their photocatalytic activity for isoproturon degradation under visible light. Mater. Res. Bull. 2017, 94, 7–14. [Google Scholar] [CrossRef]
- Liang, H.; Bai, J.; Xu, T.; Li, C. Enhancing photocatalytic performance of heterostructure MoS2/g-C3N4 embeded in PAN frameworks by electrospining process. Mater. Sci. Semicond. Process. 2021, 121, 105414. [Google Scholar] [CrossRef]
- Bode-Aluko, C.A.; Pereao, O.; Kyaw, H.H.; Al-Naamani, L.; Al-Abri, M.Z.; Myint, M.T.Z.; Rossouw, A.; Fatoba, O.; Petrik, L.; Dobretsov, S. Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Mater. Sci. Eng. B 2021, 264, 114913. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, Z.; Xu, C.; Zhu, M.; Li, W.; Wang, C. Preparation, filtration, and photocatalytic properties of PAN@g-C3N4 fibrous membranes by electrospinning. RSC Adv. 2021, 11, 19579–19586. [Google Scholar] [CrossRef]
- Dai, K.; Lu, L.; Liang, C.; Liu, Q.; Zhu, G. Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible led light irradiation. Appl. Catal. B 2014, 156, 331–340. [Google Scholar] [CrossRef]
- Chu, K.; Liu, Y.-p.; Li, Y.-b.; Guo, Y.-l.; Tian, Y. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 7081–7090. [Google Scholar] [CrossRef]
- Shafiee, A.; Aibaghi, B.; Carrier, A.J.; Ehsan, M.F.; Nganou, C.; Zhang, X.; Oakes, K.D. Rapid photodegradation mechanism enabled by broad-spectrum absorbing black anatase and reduced graphene oxide nanocomposites. Appl. Surf. Sci. 2022, 575, 151718. [Google Scholar] [CrossRef]
- Yuangpho, N.; Trinh, D.T.T.; Channei, D.; Khanitchaidecha, W.; Nakaruk, A. The influence of experimental conditions on photocatalytic degradation of methylene blue using titanium dioxide particle. J. Aust. Ceram. Soc. 2018, 54, 557–564. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M.; Sun, L. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef]
- Samuel, M.S.; Mohanraj, K.; Chandrasekar, N.; Balaji, R.; Selvarajan, E. Synthesis of recyclable GO/Cu3(BTC)2/Fe3O4 hybrid nanocomposites with enhanced photocatalytic degradation of aflatoxin B1. Chemosphere 2022, 291, 132684. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhao, H.; Yang, M. Composite of TiO2 nanoparticles and carbon nanotubes loaded on poly (methyl methacrylate) nanofibers: Preparation and photocatalytic performance. Synth. Met. 2020, 269, 116529. [Google Scholar] [CrossRef]
- Li, J.; Liu, E.; Ma, Y.; Hu, X.; Wan, J.; Sun, L.; Fan, J. Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl. Surf. Sci. 2016, 364, 694–702. [Google Scholar] [CrossRef]
- Samsudin, M.F.R.; Frebillot, C.; Kaddoury, Y.; Sufian, S.; Ong, W.-J. Bifunctional Z-scheme Ag/AgVO3/g-C3C4 photocatalysts for expired ciprofloxacin degradation and hydrogen production from natural rainwater without using scavengers. J. Environ. Manag. 2020, 270, 110803. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
Pollutant (Concentration) | Medium | Catalyst | Source | Time | Degradation | Ref (Year) |
---|---|---|---|---|---|---|
AFB1 (0.5 µg/mL) | Aqueous | g-C3N4 (0.1 mg/mL) | Xenon lamp (300 W, λ ≥ 400 nm) | 120 min | 70.20% | [23] Mao et al. (2018) |
AFB1 (0.54 µg/mL) | Aqueous | WO3/RGO /g-C3N4 (0.1 mg/mL) | Xenon lamp (300 W, λ ≥ 420 nm) | 120 min | 92.40% | [25] Mao et al. (2018) |
AFB1 (0.426 µg/mL) | Aqueous | WO3/CdS | Visible light irradiation (λ ≥ 420 nm) | 80 min | 95.50% | [22] Mao et al. (2019) |
AFB1 (0.5~2 µg/mL) | Methanol | AC/TiO2 (0.3 mg/mL) | Mercury lamp (130 W, 350–450 nm) | 120 min | 98% | [26] Sun et al. (2019) |
AFB1 (0.5 µg/mL) | Aqueous | TiO2 /UiO-67 (0.1 mg/mL) | Xenon lamp (300 W, λ ≥ 420 nm) | 80 min | 98.90% | [27] Zhang et al. (2022) |
AFB1 (0.5~30 μg/mL) | Aqueous/Soymilk | ZnO, Fe2O3, MnO2 and CuO (0.1 mg/mL) | UV irradiation | 60 min | ±95% | [28] Raesi et al. (2022) |
AFB1/AFB2/ AFG1/AFG2 (315.21 µg/kg) | Peanuts | g-C3N4 /NiFe2O4 (2 mg/mL) | Xenon lamp (300 W, λ ≥ 420 nm) | 90 min | 94.10% | [29] Sun et al. (2021) |
DONs (15 µg/mL) | Aqueous | Graphene /ZnO (0.5 mg/mL) | UV irradiation | 120 min | 99.00% | [20] Sun et al. (2017) |
DONs (4 µg/mL) | Aqueous | α-Fe2O3 (0.1 mg/mL) | Xenon lamp (300 W, λ ≥ 420 nm) | 120 min | 90.30% | [30] Mao et al. (2019) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, R.; Yao, L.; Sun, C.; Yu, D.; Lin, H.; Li, G.; Lian, Z.; Zhuang, S.; Zhang, D. Electrospun Membranes Anchored with g-C3N4/MoS2 for Highly Efficient Photocatalytic Degradation of Aflatoxin B1 under Visible Light. Toxins 2023, 15, 133. https://doi.org/10.3390/toxins15020133
Song R, Yao L, Sun C, Yu D, Lin H, Li G, Lian Z, Zhuang S, Zhang D. Electrospun Membranes Anchored with g-C3N4/MoS2 for Highly Efficient Photocatalytic Degradation of Aflatoxin B1 under Visible Light. Toxins. 2023; 15(2):133. https://doi.org/10.3390/toxins15020133
Chicago/Turabian StyleSong, Ruixin, Liangtao Yao, Changpo Sun, Dechao Yu, Hui Lin, Guisheng Li, Zichao Lian, Songlin Zhuang, and Dawei Zhang. 2023. "Electrospun Membranes Anchored with g-C3N4/MoS2 for Highly Efficient Photocatalytic Degradation of Aflatoxin B1 under Visible Light" Toxins 15, no. 2: 133. https://doi.org/10.3390/toxins15020133
APA StyleSong, R., Yao, L., Sun, C., Yu, D., Lin, H., Li, G., Lian, Z., Zhuang, S., & Zhang, D. (2023). Electrospun Membranes Anchored with g-C3N4/MoS2 for Highly Efficient Photocatalytic Degradation of Aflatoxin B1 under Visible Light. Toxins, 15(2), 133. https://doi.org/10.3390/toxins15020133