Paenibacillus polymyxa Antagonism towards Fusarium: Identification and Optimisation of Antibiotic Production
Abstract
:1. Introduction
2. Results
2.1. Identification of Antagonistic Bacteria 7F1
2.2. Antifungal Activity and Culture Conditions for Antibiotic
2.3. Model Fitting and ANOVA
2.4. Analysis of Response Surfaces
2.5. Optimization of the Models
2.6. Identification of Antibiotic
3. Discussion
4. Materials and Methods
4.1. Strain and Culture Conditions
4.2. Identification of Antagonistic Bacteria 7F1
4.3. Extraction of Antibiotic
4.4. Antifungal Test
4.5. Selection of the Suitable Conditions for Antibiotics by OFAT Approach
4.6. Optimization of Antibiotic by RSM
4.7. Identification of Antibiotic
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, W.H.; Zhang, J.; Yang, C.; Page, R.; Steffenson, B.J. Automatic evaluation of wheat resistance to fusarium head blight using dual Mask-RCNN deep learning frameworks in computer vision. Remote. Sens. 2021, 13, 26. [Google Scholar] [CrossRef]
- Drakopoulos, D.; Kagi, A.; Six, J.; Zorn, A.; Wettstein, F.E.; Bucheli, T.D.; Forrer, H.R.; Vogelgsang, S. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat. Agric. Syst. 2021, 192, 103198. [Google Scholar] [CrossRef]
- Abaya, A.; Serajazari, M.; Hsiang, T. Control of Fusarium head blight using the endophytic fungus, Simplicillium lamellicola, and its effect on the growth of Triticum aestivum. Biol. Control 2021, 160, 104684. [Google Scholar] [CrossRef]
- Ran, J.J.; Jiao, L.X.; Zhao, R.X.; Zhu, M.M.; Shi, J.R.; Xu, B.C. Characterization of a novel antifungal protein produced by isolated from the wheat rhizosphere. J. Sci. Food Agric. 2021, 101, 1901–1909. [Google Scholar] [CrossRef] [PubMed]
- Riahi, I.; Ramos, A.J.; Brufau, J.; Marquis, V. Biomarkers of deoxynivalenol toxicity in chickens with special emphasis on metabolic and welfare parameters. Toxins 2021, 13, 217. [Google Scholar] [CrossRef]
- Sari, E.; Knox, R.E.; Ruan, Y.; Henriquez, M.A.; Kumar, S.; Burt, A.J.; Cuthbert, R.D.; Konkin, D.J.; Walkowiak, S.; Campbell, H.L.; et al. Historic recombination in a durum wheat breeding panel enables high-resolution mapping of Fusarium head blight resistance quantitative trait loci. Sci. Rep. 2020, 10, 7567. [Google Scholar] [CrossRef]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.F.; Chen, W.; Floch, G.L. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biol. Control 2017, 113, 26–38. [Google Scholar] [CrossRef]
- Haile, J.K.; N’Diaye, A.; Walkowiak, S.; Nilsen, K.T.; Pozniak, C.J. Fusarium Head Blight in durum wheat: Recent status, breeding directions, and future research prospects. Phytopathology 2019, 109, e0095. [Google Scholar] [CrossRef]
- Rasul, M.; Yasmin, S.; Zubair, M.; Mahreen, N.; Mirza, M.S. Phosphate solubilizers as antagonists for bacterial leaf blight with improved rice growth in phosphorus deficit soil. Biol. Control 2019, 136, e103997. [Google Scholar] [CrossRef]
- Palacios, S.A.; Canto, A.D.; Erazo, J.; Torres, A.M. Fusarium cerealis causing Fusarium head blight of durum wheat and its associated mycotoxins. Int. J. Food. Microbiol. 2021, 346, e109161. [Google Scholar] [CrossRef]
- Huang, P.; Liu, W.; Xu, M.; Jiang, R.; Xia, L.; Wang, P.; Li, H.; Tang, Z.; Zheng, Q.; Zeng, J. Modulation of benzylisoquinoline alkaloid biosynthesis by overexpression berberine bridge enzyme in Macleaya cordata. Sci. Rep. 2018, 8, e17988. [Google Scholar] [CrossRef]
- Bobadilla, M.C.; Lorza, R.L.; Gómez, F.S.; Martínez, R.F.; González, E.V. An improvement in biodiesel production from waste cooking oil by applying thought multi-response surface methodology using desirability functions. Energies 2017, 10, 130. [Google Scholar] [CrossRef]
- Archivio, A.D.; Maggi, M.A. Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids. Food Chem. 2017, 219, 414–418. [Google Scholar] [CrossRef]
- Jiang, H.L.; Yang, J.L.; Shi, Y.P. Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrason. Sonochem. 2017, 34, 325–331. [Google Scholar] [CrossRef]
- Souagui, Y.; Tritsch, D.; Kecha, M.; Grosdemange-Billiard, C. Optimization of antifungal production by an alkaliphilic and halotolerant actinomycete, Streptomyces sp. SY-BS5, using response surface methodology. J. Mycol. Med. 2015, 25, 108–115. [Google Scholar] [CrossRef]
- Jabeen, H.; Iqbal, S.; Anwar, S.; Parales, R.E. Optimization of profenofos degradation by a novel bacterial consortium PBAC using response surface methodology. Int. Biodeter. Biodegr. 2015, 100, 89–97. [Google Scholar] [CrossRef]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Alam, P.; Siddiqui, N.A.; Rehman, M.T.; Hussain, A.; Alajmi, M.F. Box–Behnken Design (BBD)-Based optimization of microwave-assisted extraction of parthenolide from the stems of Tarconanthus camphoratus and cytotoxic analysis. Molecules 2021, 26, e1876. [Google Scholar] [CrossRef]
- Mohammed, I.Y.; Abakr, Y.A.; Yusup, S.; Kazi, F.K. Valorization of Napier grass via intermediate pyrolysis: Optimization using response surface methodology and pyrolysis products characterization. J. Clean Prod. 2017, 142, 1848–1866. [Google Scholar] [CrossRef]
- Levingstone, T.J.; Barron, N.; Ardhaoui, M.; Benyounis, K.; Looney, L.; Stokes, J. Application of response surface methodology in the design of functionally graded plasma sprayed hydroxyapatite coatings. Surf. Coat. Tech. 2017, 313, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Filip, S.; Pavlic, B.; Vidovi, S.; Vladic, J.; Zekovic, Z. Optimization of microwave-assisted extraction of polyphenolic compounds from Ocimum basilicum by response surface methodology. Food Anal. Method. 2017, 10, 2270–2280. [Google Scholar] [CrossRef]
- Bai, X.; Wen, S.; Liu, J.; Lin, Y. Response surface methodology for optimization of copper leaching from refractory flotation tailings. Minerals 2018, 8, 165. [Google Scholar] [CrossRef]
- Kadi, A.A.; Attwa, M.; Darwish, H.W. LC-ESI-MS/MS reveals the formation of reactive intermediates in brigatinib metabolism: Elucidation of bioactivation pathways. RSC Adv. 2018, 8, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Reichert, B.; Kok, A.D.; Pizzutti, I.R.; Scholten, J.; Spanjer, M. Simultaneous determination of 117 pesticides and 30 mycotoxins in raw coffee, without clean-up, by LC-ESI-MS/MS analysis. Anal. Chim. Acta 2018, 1004, 40–50. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Q.; Zhang, G.; Wu, J.; Zhuang, Y. Carbendazim-resistance of gibberella zeae associated with fusarium head blight and its management in Jiangsu province, China. Crop Prot. 2019, 124, 104866. [Google Scholar] [CrossRef]
- Wegulo, S.; Baenziger, P.S.; Nopsa, J.H.; Bockus, W.W.; Hallen-Adams, H. Management of fusarium head blight of wheat and barley. Crop Prot. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Palazzini, J.M.; Alberione, E.; Torres, A.; Donat, C.; Köhl, J.; Chulze, S. Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina. Biol Control 2016, 94, 56–61. [Google Scholar] [CrossRef]
- Ahmed, J. Effect of pressure, concentration and temperature on the oscillatory rheology of guar gum dispersions: Response surface methodology approach. Food Hydrocoll. 2021, 113, 106554. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, B.; Yang, G.; Chen, J.; Liu, W. Enzymatic preparation of phytosterol esters with fatty acids from high-oleic sunflower seed oil using response surface methodology. RSC Adv. 2021, 11, 15204–15212. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, Q.; Qiu, T.; Zhao, G.; Fang, X. Optimization of rare earth carbonate reactive-crystallization process based on response surface method. J. Rare Earths 2021, 39, 104–110. [Google Scholar] [CrossRef]
- Song, R.; Chen, Q.; Yan, L.; Rao, P.; Sun, P.; Wang, L.; Shen, G. Response surface optimization of an extraction method for the simultaneous detection of sulfamethoxazole and 17β-estradiol in soil. Molecules 2020, 25, 1415. [Google Scholar] [CrossRef]
- Gong, A.D.; Li, H.P.; Yuan, Q.S.; Song, X.S.; Yao, W.; He, W.J.; Zhang, J.B.; Liao, Y.C. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE 2015, 10, e0116871. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Li, X.; Yu, H.; Shen, Z.Y. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal. Bioanal. Chem. 2015, 407, 2529–2542. [Google Scholar] [CrossRef]
- Tsuge, K.; Akayama, T.; Shoda, M. Cloning, sequencing and characterization of the iturin a operon. J. Bacteriol. 2001, 183, 6265–6273. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Fickers, P.; Guez, J.S.; Damblon, C.; Leclère, V.; Béchet, M.; Jacques, P.; Joris, B. High-level biosynthesis of the anteiso-C17 isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl. Environ. Microb. 2009, 75, 4363–4640. [Google Scholar] [CrossRef]
- Zhao, P.C.; Quan, C.S.; Wang, Y.G.; Fan, S. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. Spinaciae. J. Basic Microb. 2014, 54, 448–456. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Selvaraj, J.N.; Xing, F.G. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE 2014, 9, e92486. [Google Scholar] [CrossRef]
- Völksch, B.; May, R. Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microb. Ecol. 2001, 41, 132–139. [Google Scholar]
- Wong, W.C.; Hughes, I.K. Sclerotium cepivorum Berk. in onion (Allium cepa L.) crops: Isolation and characterization of bacteria antagonistic to the fungus in Queensland. J. Appl. Microbiol. 2010, 60, 57–60. [Google Scholar]
- Koskey, G.; Mburu, S.W.; Awino, R.; Maingi, J.M. Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Front. Sustain. Food Syst. 2021, 5, 606308. [Google Scholar] [CrossRef]
- Chalad, C.; Kongrueng, J.; Vongkamjan, K.; Robins, W.P.; Vuddhakul, V.; Mekalanos, J.J. Modification of an agar well diffusion technique to isolate yeasts that inhibit Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease. Aquac. Res. 2018, 49, 3838–3844. [Google Scholar] [CrossRef]
- Ran, J.J.; Fan, M.T.; Li, Y.H.; Li, G.W.; Zhao, Z.Y.; Liang, J. Optimisation of ultrasonic-assisted extraction of polyphenols from apple peel employing cellulase enzymolysis. Inter. J. Food Sci. Tech. 2013, 48, 910–917. [Google Scholar]
Certified Variety | 7F1 |
---|---|
Catalase test | + |
pH 7.0 | + |
Amylase test | + |
Gelatin hydrolysis | + |
Citrate utilization | − |
Voges-Proskauer test | + |
Indole production | − |
1% NaCl | + |
4% NaCl | + |
8% NaCl | − |
Trail NO. | Coded Value | Real Value | Y Observed/(mm) | Y Predicted/(mm) | Y Residual/(mm) | ||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X1/°C | X2 | X3/h | ||||
1 | 1 | 0 | −1 | 40 | 7 | 6 | 14.63 | 14.74 | −0.11 |
2 | 0 | 1 | 1 | 37 | 8 | 10 | 15.16 | 15.43 | −0.27 |
3 | 0 | 0 | 0 | 37 | 7 | 8 | 14.45 | 14.63 | −0.18 |
4 | 1 | −1 | 0 | 40 | 6 | 8 | 14.35 | 14.51 | −0.16 |
5 | 0 | 0 | 0 | 37 | 7 | 8 | 14.84 | 14.63 | 0.21 |
6 | −1 | 0 | −1 | 34 | 7 | 6 | 9.73 | 9.80 | −0.071 |
7 | 0 | 1 | −1 | 37 | 8 | 6 | 15.27 | 15.36 | −0.089 |
8 | −1 | 0 | 1 | 34 | 7 | 10 | 11.42 | 11.31 | 0.11 |
9 | 1 | 0 | 1 | 40 | 7 | 10 | 15.36 | 15.29 | 0.071 |
10 | 0 | 0 | 0 | 37 | 7 | 8 | 14.61 | 14.63 | −0.023 |
11 | 1 | 1 | 0 | 40 | 8 | 8 | 16.46 | 16.26 | 0.20 |
12 | −1 | 1 | 0 | 34 | 8 | 8 | 13.45 | 13.29 | 0.16 |
13 | 0 | −1 | −1 | 37 | 6 | 6 | 11.43 | 11.16 | 0.27 |
14 | −1 | −1 | 0 | 34 | 6 | 8 | 8.37 | 8.57 | −0.20 |
15 | 0 | −1 | 1 | 37 | 6 | 10 | 13.24 | 13.15 | 0.089 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value |
---|---|---|---|---|---|
Model | 72.85 | 9 | 8.09 | 101.15 | <0.0001 |
Residual | 0.40 | 5 | 0.080 | ||
Lack of Fit | 0.32 | 3 | 0.11 | 2.80 | 0.2739 |
Pure Error | 0.077 | 2 | 0.038 | ||
Cor Total | 73.25 | 14 |
Factor | Coefficient Estimate | df | Standard Error | F Value | p-Value |
---|---|---|---|---|---|
Intercept | 16.43 | 1.00 | 0.16 | ||
X1 | 2.23 | 1.00 | 0.10 | 496.62 | <0.0001 |
X2 | 1.62 | 1.00 | 0.10 | 261.98 | <0.0001 |
X3 | 0.51 | 1.00 | 0.10 | 26.52 | 0.0036 |
X1X2 | −0.74 | 1.00 | 0.14 | 27.56 | 0.0033 |
X1X3 | −0.24 | 1.00 | 0.14 | 2.88 | 0.1505 |
X2X3 | −0.48 | 1.00 | 0.14 | 11.52 | 0.0194 |
X12 | −1.23 | 1.00 | 0.15 | 70.14 | 0.0004 |
X22 | −0.24 | 1.00 | 0.15 | 2.72 | 0.1598 |
X32 | −0.62 | 1.00 | 0.15 | 17.48 | 0.0087 |
Name | Culture Temperature/°C | Initial pH | Culture Time/h | Antagonistic Diameter/mm |
---|---|---|---|---|
Optimum conditions | 38.83 | 8.00 | 7.87 | 16.46 (predicted) |
Modified conditions | 38 | 8 | 8 | 16.38 ± 0.084 (Actual) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, J.; Wu, Y.; Zhang, B.; Su, Y.; Lu, N.; Li, Y.; Liang, X.; Zhou, H.; Shi, J. Paenibacillus polymyxa Antagonism towards Fusarium: Identification and Optimisation of Antibiotic Production. Toxins 2023, 15, 138. https://doi.org/10.3390/toxins15020138
Ran J, Wu Y, Zhang B, Su Y, Lu N, Li Y, Liang X, Zhou H, Shi J. Paenibacillus polymyxa Antagonism towards Fusarium: Identification and Optimisation of Antibiotic Production. Toxins. 2023; 15(2):138. https://doi.org/10.3390/toxins15020138
Chicago/Turabian StyleRan, Junjian, Youzhi Wu, Bo Zhang, Yiwei Su, Ninghai Lu, Yongchao Li, Xinhong Liang, Haixu Zhou, and Jianrong Shi. 2023. "Paenibacillus polymyxa Antagonism towards Fusarium: Identification and Optimisation of Antibiotic Production" Toxins 15, no. 2: 138. https://doi.org/10.3390/toxins15020138
APA StyleRan, J., Wu, Y., Zhang, B., Su, Y., Lu, N., Li, Y., Liang, X., Zhou, H., & Shi, J. (2023). Paenibacillus polymyxa Antagonism towards Fusarium: Identification and Optimisation of Antibiotic Production. Toxins, 15(2), 138. https://doi.org/10.3390/toxins15020138