Progress on the Link between Nutrient Availability and Toxin Production by Ostreopsis cf. ovata: Field and Laboratory Experiments
Abstract
:1. Introduction
2. Results
2.1. Ostreopsis cf. ovata Bloom 2018
2.2. Experimental Series 1: Comparing the Responses of the NW Mediterranean and the Adriatic Ostreopsis cf. ovata Strains to P and N Deficiency
2.3. Experimental Series 2: Exploring the Effect of Different Inorganic and Organic N Sources at Two Different Concentration Levels on Ostreopsis cf. ovata Growth and Toxin Content
3. Discussion
3.1. Comparing the Responses of the NW Mediterranean and the Adriatic Strains to P and N Deficiency: Cell Growth, Cell Size, and Toxin Content in Experimental Series 1
3.2. Use of Different Inorganic and Organic N Sources at Two Different Concentration Levels in Experimental Series 2
3.3. Toxin Profiles and Nutrients
3.4. Risk of Exposure to Ostreopsis cf. ovata Toxin Analogues
4. Conclusions
5. Materials and Methods
5.1. Field Study
5.2. Laboratory Cultures and Experiments
5.3. Chemicals
5.4. Ostreopsis cf. ovata Cell Counts, Growth Rate, and Biovolume Estimations
5.5. Toxin Extraction and Analysis
5.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tester, P.A.; Litaker, R.W.; Berdalet, E. Climate Change and Harmful Benthic Microalgae. Harmful Algae 2020, 91, 101655. [Google Scholar] [CrossRef] [PubMed]
- Shears, N.T.; Ross, P.M. Blooms of Benthic Dinoflagellates of the Genus Ostreopsis; an Increasing and Ecologically Important Phenomenon on Temperate Reefs in New Zealand and Worldwide. Harmful Algae 2009, 8, 916–925. [Google Scholar] [CrossRef]
- Accoroni, S.; Romagnoli, T.; Colombo, F.; Pennesi, C.; di Camillo, C.G.; Marini, M.; Battocchi, C.; Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; et al. Ostreopsis cf. Ovata Bloom in the Northern Adriatic Sea during Summer 2009: Ecology, Molecular Characterization and Toxin Profile. Mar. Pollut. Bull. 2011, 62, 2512–2519. [Google Scholar] [CrossRef] [PubMed]
- Pavaux, A.S.; Ternon, E.; Dufour, L.; Marro, S.; Gémin, M.P.; Thomas, O.P.; Lemée, R. Efficient, Fast and Inexpensive Bioassay to Monitor Benthic Microalgae Toxicity: Application to Ostreopsis Species. Aquat. Toxicol. 2020, 223, 105485. [Google Scholar] [CrossRef]
- Pavaux, A.S.; Berdalet, E.; Lemée, R. Chemical Ecology of the Benthic Dinoflagellate Genus Ostreopsis: Review of Progress and Future Directions. Front. Mar. Sci. 2020, 7, 498. [Google Scholar] [CrossRef]
- Onuma, Y.; Satake, M.; Ukena, T.; Roux, J.; Chanteau, S.; Rasolofonirina, N.; Ratsimaloto, M.; Naoki, H.; Yasumoto, T. Identification of Putative Palytoxin as the Cause of Clupeotoxism. Toxicon 1999, 37, 55–65. [Google Scholar] [CrossRef]
- Taniyama, S.; Mahmud, Y.; Terada, M.; Takatani, T.; Arakawa, O.; Noguchi, T. Occurrence of a Food Poisoning Incident by Palytoxin from a Serranid Epinephelus Sp. in Japan. J. Nat. Toxins 2002, 11, 277–282. [Google Scholar]
- Tubaro, A.; Durando, P.; Del Favero, G.; Ansaldi, F.; Icardi, G.; Deeds, J.R.; Sosa, S. Case Definitions for Human Poisonings Postulated to Palytoxins Exposure. Toxicon 2011, 57, 478–495. [Google Scholar] [CrossRef]
- Pelin, M.; Zanette, C.; De Bortoli, M.; Sosa, S.; Della Loggia, R.; Tubaro, A.; Florio, C. Effects of the Marine Toxin Palytoxin on Human Skin Keratinocytes: Role of Ionic Imbalance. Toxicology 2011, 282, 30–38. [Google Scholar] [CrossRef]
- Tichadou, L.; Glaizal, M.; Armengaud, A.; Grossel, H.; Lemée, R.; Kantin, R.; Lasalle, J.L.; Drouet, G.; Rambaud, L.; Malfait, P.; et al. Health Impact of Unicellular Algae of the Ostreopsis Genus Blooms in the Mediterranean Sea: Experience of the French Mediterranean Coast Surveillance Network from 2006 to 2009. Clin. Toxicol. 2010, 48, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Durando, P.; Ansaldi, F.; Oreste, P.; Moscatelli, P.; Marensi, L.; Grillo, C.; Gasparini, R.; Icardi, G.; Collaborative Group for the Ligurian Syndromic Algal Surveillance. Ostreopsis ovata and Human Health: Epidemiological and Clinical Features of Respiratory Syndrome Outbreaks from a Two-Year Syndromic Surveillance, 2005–2006, in North-West Italy. Eurosurveillance 2007, 12, 3212. [Google Scholar]
- Vila, M.; Abós-Herràndiz, R.; Isern-Fontanet, J.; Àlvarez, J.; Berdalet, E. Establishing the Link between Ostreopsis cf. ovata Blooms and Human Health Impacts Using Ecology and Epidemiology. Sci. Mar. 2016, 80, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Berdalet, E.; Pavaux, A.S.; Abós-Herràndiz, R.; Travers, M.; Appéré, G.; Vila, M.; Thomas, J.; de Haro, L.; Estrada, M.; Medina-Pérez, N.I.; et al. Environmental, Human Health and Socioeconomic Impacts of Ostreopsis Spp. Blooms in the NW Mediterranean. Harmful Algae 2022, 119, 102320. [Google Scholar] [CrossRef] [PubMed]
- Gallitelli, M.; Ungaro, N.; Addante, L.M.; Procacci, V.; Silver, N.G.; Sabbà, C. Respiratory Illness as a Reaction to Tropical Algal Blooms Occurring in a Temperate Climate. JAMA 2005, 293, 2595–2600. [Google Scholar]
- Amzil, Z.; Sibat, M.; Chomerat, N.; Grossel, H.; Marco-Miralles, F.; Lemee, R.; Nezan, E.; Sechet, V. Ovatoxin-a and Palytoxin Accumulation in Seafood in Relation to Ostreopsis cf. ovata Blooms on the French Mediterranean Coast. Mar. Drugs 2012, 10, 477–496. [Google Scholar] [CrossRef] [Green Version]
- Biré, R.; Trotereau, S.; Lemée, R.; Delpont, C.; Chabot, B.; Aumond, Y.; Krys, S. Occurrence of Palytoxins in Marine Organisms from Different Trophic Levels of the French Mediterranean Coast Harvested in 2009. Harmful Algae 2013, 28, 10–22. [Google Scholar] [CrossRef]
- Biré, R.; Trotereau, S.; Lemée, R.; Oregioni, D.; Delpont, C.; Krys, S.; Guérin, T. Hunt for Palytoxins in a Wide Variety of Marine Organisms Harvested in 2010 on the French Mediterranean Coast. Mar. Drugs 2015, 13, 5425–5446. [Google Scholar] [CrossRef] [Green Version]
- Brissard, C.; Herrenknecht, C.; Séchet, V.; Hervé, F.; Pisapia, F.; Harcouet, J.; Lémée, R.; Chomérat, N.; Hess, P.; Amzil, Z. Complex Toxin Profile of French Mediterranean Ostreopsis cf. ovata Strains, Seafood Accumulation and Ovatoxins Prepurification. Mar. Drugs 2014, 12, 2851–2876. [Google Scholar] [CrossRef] [Green Version]
- Funari, E.; Manganelli, M.; Testai, E. Ostreospis cf. ovata Blooms in Coastal Water: Italian Guidelines to Assess and Manage the Risk Associated to Bathing Waters and Recreational Activities. Harmful Algae 2015, 50, 45–56. [Google Scholar] [CrossRef]
- Vila, M.; Viure, L.; Lemée, R.; Berdalet, E. Developing an Ostreopsis Early Warning System: The Joint Engagement of Environmental Agencies, Beach Users and Scientists. In Proceedings of the 19th International Conference on Harmful Algae, La Paz, Mexico, 10–15 October 2021. [Google Scholar]
- Brescianini, C.; Grillo, C.; Melchiorre, N.; Bertolotto, R.; Ferrari, A.; Vivaldi, B.; Icardi, G.; Gramaccioni, L.; Funari, E.; Scardala, S. Ostreopsis ovata Algal Blooms Affecting Human Health in Genova, Italy, 2005 and 2006. Eurosurveillance 2006, 11, 3040. [Google Scholar] [CrossRef]
- Totti, C.; Accoroni, S.; Cerino, F.; Cucchiari, E.; Romagnoli, T. Ostreopsis ovata Bloom along the Conero Riviera (Northern Adriatic Sea): Relationships with Environmental Conditions and Substrata. Harmful Algae 2010, 9, 233–239. [Google Scholar] [CrossRef]
- Mangialajo, L.; Ganzin, N.; Accoroni, S.; Asnaghi, V.; Blanfuné, A.; Cabrini, M.; Cattaneo-Vietti, R.; Chavanon, F.; Chiantore, M.; Cohu, S.; et al. Trends in Ostreopsis Proliferation along the Northern Mediterranean Coasts. Toxicon 2011, 57, 408–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pistocchi, R.; Pezzolesi, L.; Guerrini, F.; Vanucci, S.; Dell’Aversano, C.; Fattorusso, E. A Review on the Effects of Environmental Conditions on Growth and Toxin Production of Ostreopsis ovata. Toxicon 2011, 57, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Cohu, S.; Mangialajo, L.; Thibaut, T.; Blanfuné, A.; Marro, S.; Lemée, R. Proliferation of the Toxic Dinoflagellate Ostreopsis cf. ovata in Relation to Depth, Biotic Substrate and Environmental Factors in the North West Mediterranean Sea. Harmful Algae 2013, 24, 32–44. [Google Scholar] [CrossRef]
- Pavaux, A.S.; Velasquez-Carjaval, D.; Drouet, K.; Lebrun, A.; Hiroux, A.; Marro, S.; Christians, E.; Castagnetti, S.; Lemée, R. Daily Variations of Ostreopsis cf. ovata Abundances in NW Mediterranean Sea. Harmful Algae 2021, 110, 102144. [Google Scholar] [CrossRef]
- Drouet, K.; Jauzein, C.; Gasparini, S.; Pavaux, A.S.; Berdalet, E.; Marro, S.; Davenet-Sbirrazuoli, V.; Siano, R.; Lemée, R. The Benthic Toxic Dinoflagellate Ostreopsis cf. ovata in the NW Mediterranean Sea: Relationship between Sea Surface Temperature and Bloom Phenology. Harmful Algae 2022, 112, 102184. [Google Scholar] [CrossRef]
- Accoroni, S.; Totti, C. The Toxic Benthic Dinoflagellates of the Genus Ostreopsis in Temperate Areas: A Review. Adv. Oceanogr. Limnol. 2016, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Accoroni, S.; Glibert, P.M.; Pichierri, S.; Romagnoli, T.; Marini, M.; Totti, C. A Conceptual Model of Annual Ostreopsis cf. ovata Blooms in the Northern Adriatic Sea Based on the Synergic Effects of Hydrodynamics, Temperature, and the N:P Ratio of Water Column Nutrients. Harmful Algae 2015, 45, 14–25. [Google Scholar] [CrossRef]
- Meroni, L.; Chiantore, M.; Petrillo, M.; Asnaghi, V. Habitat Effects on Ostreopsis cf. ovata Bloom Dynamics. Harmful Algae 2018, 80, 64–71. [Google Scholar] [CrossRef]
- Ungano, N.; Assennato, G.; Blonda, M.; Cudillo, B.; Petruzzelli, M.R.; Mariani, M.; Pastorelli, A.M.; Aliquò, M.R.; D’Angela, A.; Aiello, C.; et al. Occurrence of the Potentially Toxic Dinoflagellate Ostreopsis ovata along the Apulian Coastal Areas (Southern Italy) and Relationship with Anthropogenic Pollution. Fresenius Environ. Bull. 2010, 19, 1813–1821. [Google Scholar]
- Parsons, M.L.; Dortch, Q. Sedimentological Evidence of an Increase in Pseudo-nitzschia (Bacillariophyceae) Abundance in Response to Coastal Eutrophication. Limnol. Oceanogr. 2002, 47, 551–558. [Google Scholar] [CrossRef]
- Gilbert, P.M.; Burford, M.A. Globally Changing Nutrient Loads and Harmful Algal Blooms: Recent Advances, New Paradigms, and Continuing Challenges. Oceanography 2017, 30, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and Harmful Algal Blooms: A Scientific Consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudela, R.M.; Hayashi, K.; Caceres, C.G. Is San Francisco Bay Resistant to Pseudo-nitzschia and Domoic Acid? Harmful Algae 2020, 92, 101617. [Google Scholar] [CrossRef] [PubMed]
- John, E.H.; Flynn, K.J. Growth Dynamics and Toxicity of Alexandrium Fundyense (Dinophyceae): The Effect of Changing N:P Supply Ratios on Internal Toxin and Nutrient Levels. Eur. J. Phycol. 2000, 35, 11–23. [Google Scholar] [CrossRef]
- Vanucci, S.; Pezzolesi, L.; Pistocchi, R.; Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Fattorusso, E.; Tartaglione, L.; Guerrini, F. Nitrogen and Phosphorus Limitation Effects on Cell Growth, Biovolume, and Toxin Production in Ostreopsis cf. ovata. Harmful Algae 2012, 15, 78–90. [Google Scholar] [CrossRef]
- Han, M.; Lee, H.; Anderson, D.M.; Kim, B. Paralytic Shellfish Toxin Production by the Dinoflagellate Alexandrium Pacificum (Chinhae Bay, Korea) in Axenic, Nutrient-Limited Chemostat Cultures and Nutrient-Enriched Batch Cultures. Mar. Pollut. Bull. 2016, 104, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Van de Waal, D.B.; Smith, V.H.; Declerck, S.A.J.; Stam, E.C.M.; Elser, J.J. Stoichiometric Regulation of Phytoplankton Toxins. Ecol. Lett. 2014, 17, 736–742. [Google Scholar] [CrossRef]
- Pinna, A.; Pezzolesi, L.; Pistocchi, R.; Vanucci, S.; Ciavatta, S.; Polimene, L. Modelling the Stoichiometric Regulation of CRich Toxins in Marine Dinoflagellates. PLoS ONE 2015, 10, e0139046. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, F.; Pezzolesi, L.; Feller, A.; Riccardi, M.; Ciminiello, P.; Dell’Aversano, C.; Tartaglione, L.; Dello Iacovo, E.; Fattorusso, E.; Forino, M.; et al. Comparative Growth and Toxin Profile of Cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas. Toxicon 2010, 55, 211–220. [Google Scholar] [CrossRef]
- Pezzolesi, L.; Pistocchi, R.; Fratangeli, F.; Dell’Aversano, C.; Dello Iacovo, E.; Tartaglione, L. Growth Dynamics in Relation to the Production of the Main Cellular Components in the Toxic Dinoflagellate Ostreopsis cf. ovata. Harmful Algae 2014, 36, 1–10. [Google Scholar] [CrossRef]
- Pezzolesi, L.; Vanucci, S.; Dell’Aversano, C.; Dello Iacovo, E.; Tartaglione, L.; Pistocchi, R. Effects of N and P Availability on Carbon Allocation in the Toxic Dinoflagellate Ostreopsis cf. ovata. Harmful Algae 2016, 55, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Vidyarathna, N.K.; Granéli, E. Physiological Responses of Ostreopsis ovata to Changes in N and P Availability and Temperature Increase. Harmful Algae 2013, 21–22, 54–63. [Google Scholar] [CrossRef]
- Tartaglione, L.; Dello Iacovo, E.; Mazzeo, A.; Casabianca, S.; Ciminiello, P.; Penna, A.; Dell’Aversano, C. Variability in Toxin Profiles of the Mediterranean Ostreopsis cf. ovata and in Structural Features of the Produced Ovatoxins. Environ. Sci. Technol. 2017, 51, 13920–13928. [Google Scholar] [CrossRef]
- Mangialajo, L.; Bertolotto, R.; Cattaneo-Vietti, R.; Chiantore, M.; Grillo, C.; Lemée, R.; Melchiorre, N.; Moretto, P.; Povero, P.; Ruggieri, N. The Toxic Benthic Dinoflagellate Ostreopsis ovata: Quantification of Proliferation along the Coastline of Genoa, Italy. Mar. Pollut. Bull. 2008, 56, 1209–1214. [Google Scholar] [CrossRef]
- Accoroni, S.; Romagnoli, T.; Pichierri, S.; Totti, C. New Insights on the Life Cycle Stages of the Toxic Benthic Dinoflagellate Ostreopsis cf. ovata. Harmful Algae 2014, 34, 7–16. [Google Scholar] [CrossRef]
- Vidyarathna, N.K.; Graneli, E. Influence of Temperature on Growth, Toxicity and Carbohydrate Production of a Japanese Ostreopsis ovata strain, a Toxic-Bloom-Forming Dinoflagellate. Aquat. Microb. Ecol. 2012, 65, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Pezzolesi, L.; Guerrini, F.; Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Pistocchi, R. Influence of Temperature and Salinity on Ostreopsis cf. ovata Growth and Evaluation of Toxin Content through HR LC-MS and Biological Assays. Water Res. 2012, 46, 82–92. [Google Scholar] [CrossRef]
- Vidyarathna, N.K.; Granéli, E. Impact of Temperature and Nutrients on the Growth and Toxicity of Ostreopsis ovata. In Proceedings of the 14th International Conference of Harmful Algae, Hersonissos-Crete, Greece, 1–5 November 2010; p. 82. [Google Scholar]
- Bravo, I.; Vila, M.; Casabianca, S.; Rodriguez, F.; Rial, P.; Riobó, P.; Penna, A. Life Cycle Stages of the Benthic Palytoxin-Producing Dinoflagellate Ostreopsis cf. ovata (Dinophyceae). Harmful Algae 2012, 18, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Aligizaki, K.; Katikou, P.; Nikolaidis, G.; Panou, A. First Episode of Shellfish Contamination by Palytoxin-like Compounds from Ostreopsis Species (Aegean Sea, Greece). Toxicon 2008, 51, 418–427. [Google Scholar] [CrossRef]
- Chomérat, N.; Antajan, E.; Auby, I.; Bilien, G.; Carpentier, L.; de Casamajor, M.N.; Ganthy, F.; Hervé, F.; Labadie, M.; Méteigner, C.; et al. First Characterization of Ostreopsis cf. ovata (Dinophyceae) and Detection of Ovatoxins during a Multispecific and Toxic Ostreopsis Bloom on French Atlantic Coast. Mar. Drugs 2022, 20, 461. [Google Scholar] [CrossRef] [PubMed]
- Carnicer, O.; García-Altares, M.; Andree, K.B.; Tartaglione, L.; Dell’Aversano, C.; Ciminiello, P.; de la Iglesia, P.; Diogène, J.; Fernández-Tejedor, M. Ostreopsis cf. ovata from Western Mediterranean Sea: Physiological Responses under Different Temperature and Salinity Conditions. Harmful Algae 2016, 57, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Carnicer, O.; Guallar, C.; Andree, K.B.; Diogène, J.; Fernández-Tejedor, M. Ostreopsis cf. ovata Dynamics in the NW Mediterranean Sea in Relation to Biotic and Abiotic Factors. Environ. Res. 2015, 143, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Accoroni, S.; Romagnoli, T.; Pichierri, S.; Colombo, F.; Totti, C. Morphometric Analysis of Ostreopsis cf. ovata Cells in Relation to Environmental Conditions and Bloom Phases. Harmful Algae 2012, 19, 15–22. [Google Scholar] [CrossRef]
- Nascimento, S.M.; Corrêa, E.V.; Menezes, M.; Varela, D.; Paredes, J.; Morris, S. Growth and Toxin Profile of Ostreopsis cf. ovata (Dinophyta) from Rio de Janeiro, Brazil. Harmful Algae 2012, 13, 1–9. [Google Scholar] [CrossRef]
- Honsell, G.; De Bortoli, M.; Boscolo, S.; Dell’Aversano, C.; Battocchi, C.; Fontanive, G.; Penna, A.; Berti, F.; Sosa, S.; Yasumoto, T.; et al. Harmful Dinoflagellate Ostreopsis cf. ovata Fukuyo: Detection of Ovatoxins in Field Samples and Cell Immunolocalization Using Antipalytoxin Antibodies. Environ. Sci. Technol. 2011, 45, 7051–7059. [Google Scholar] [CrossRef]
- Selina, M.S.; Orlova, T.Y. First Occurrence of the Genus Ostreopsis (Dinophyceae) in the Sea of Japan. Bot. Mar. 2010, 53, 243–249. [Google Scholar] [CrossRef]
- Monti, M.; Minocci, M.; Beran, A.; Iveša, L. First Record of Ostreopsis cf. ovata on Macroalgae in the Northern Adriatic Sea. Mar. Pollut. Bull. 2007, 54, 598–601. [Google Scholar] [CrossRef]
- Aligizaki, K.; Nikolaidis, G. The Presence of the Potentially Toxic Genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea, Greece. Harmful Algae 2006, 5, 717–730. [Google Scholar] [CrossRef]
- Granéli, E.; Flynn, K. Chemical and Physical Factors Influencing Toxin Content. In Ecology of Harmful Algae; Granéli, E., Turner, J.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 189, pp. 229–241. ISBN 9783540773405. [Google Scholar]
- Johansson, N.; Granéli, E. Influence of Different Nutrient Conditions on Cell Density, Chemical Composition and Toxicity of Prymnesium parvum (Haptophyta) in Semi-Continuous Cultures. J. Exp. Mar. Biol. Ecol. 1999, 239, 243–258. [Google Scholar] [CrossRef]
- Edvardsen, B.; Moy, F.; Paasche, E. Hemolytic Activity in Extracts of Chrysochromulina polylepis Grown at Different Levels of Selenite and Phosphate. In Toxic Phytoplankton; Granéli, E., Sundtröm, B., Edler, L., Andersen, D.M., Eds.; Elsevier: New York, NY, USA, 1990; pp. 284–289. [Google Scholar]
- Guerrini, F.; Ciminiello, P.; Dell’Aversano, C.; Tartaglione, L.; Fattorusso, E.; Boni, L.; Pistocchi, R. Influence of Temperature, Salinity and Nutrient Limitation on Yessotoxin Production and Release by the Dinoflagellate Protoceratium reticulatum in Batch-Cultures. Harmful Algae 2007, 6, 707–717. [Google Scholar] [CrossRef]
- Tindall, D.R.; Morton, S.L. Community Dynamics and Physiology of Epiphytic/Benthic Dinoflagellates Associated with Ciguatera. In Physiological Ecology of Harmful Algal Blooms; Anderson, D.M., Cembella, A.D., Hallegraeff, G.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 219–313. [Google Scholar]
- Tomas, C.R.; Baden, D.G. Detection of Gymnodinium Breve in Natural Waters by Using an ELISA Detection Technique. In Proceedings of the Sixth International Conference on Toxic Marine Phytoplankton, Nantes, France, 18–22 October 1993. [Google Scholar]
- Vanucci, S.; Guerrini, F.; Milandri, A.; Pistocchi, R. Effects of Different Levels of N- and P-Deficiency on Cell Yield, Okadaic Acid, DTX-1, Protein and Carbohydrate Dynamics in the Benthic Dinoflagellate Prorocentrum lima. Harmful Algae 2010, 9, 590–599. [Google Scholar] [CrossRef]
- Jauzein, C.; Couet, D.; Blasco, T.; Lemée, R. Uptake of Dissolved Inorganic and Organic Nitrogen by the Benthic Toxic Dinoflagellate Ostreopsis cf. ovata. Harmful Algae 2017, 65, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Fattorusso, E.; Forino, M.; Grauso, L.; Tartaglione, L.; Guerrini, F.; Pistocchi, R. Complex Palytoxin-like Profile of Ostreopsis ovata. Identification of Four New Ovatoxins by High-Resolution Liquid Chromatography/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 2735–2744. [Google Scholar] [CrossRef]
- Ciminiello, P.; Aversano, C.D.; Dello Iacovo, E.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Battocchi, C.; Crinelli, R.; Carloni, E.; Magnani, M.; et al. Unique Toxin Profile of a Mediterranean Ostreopsis cf. ovata Strain: HR LC-MSn Characterization of Ovatoxin-f, a New Palytoxin Congener. Chem. Res. Toxicol. 2012, 25, 1243–1252. [Google Scholar] [CrossRef]
- García-Altares, M.; Tartaglione, L.; Dell’Aversano, C.; Carnicer, O.; De La Iglesia, P.; Forino, M.; Diogène, J.; Ciminiello, P. The Novel Ovatoxin-g and Isobaric Palytoxin (so Far Referred to as Putative Palytoxin) from Ostreopsis cf. ovata (NW Mediterranean Sea): Structural Insights by LC-High Resolution MSn. Anal. Bioanal. Chem. 2015, 407, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Grasshoff, K.; Ehrhardt, M.; Kremling, K. Methods of Seawater Analysis, Second Revised and Extended Edition. Chem. Oceanogr. 1983, 8, 398. [Google Scholar]
- Álvarez-Salgado, X.A.; Miller, A.E.J. Simultaneous Determination of Dissolved Organic Carbon and Total Dissolved Nitrogen in Seawater by High Temperature Catalytic Oxidation: Conditions for Precise Shipboard Measurements. Mar. Chem. 1998, 62, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Hoshaw, R.W.; Rosowski, J.R. Methods for Microscopic Algae. In Handbook of Phycological Methods; Cambridge University Press: London, UK, 1973; pp. 53–67. [Google Scholar]
- Guillard, R.R.L. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Springer: New York, NY, USA, 1975; pp. 29–60. [Google Scholar]
- Andersen, P.; Throndsen, J. Estimating Cell Numbers. In Manual on Harmful Marine Microalgae. IOC Manuals and Guides; Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Eds.; UNESDOC: Paris, Italy, 2003. [Google Scholar]
- Utermöhl, H. Zur Vervollkommnung Der Quantitativen Phytoplankton-Methodik. Int. Ver. Theor. Angew. Limnol. Mitt. 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Division Rates. In Handbook of Phycological Methods; Stein, J.R., Ed.; Cambridge University Press: London, UK, 1973; pp. 289–312. [Google Scholar]
- Wood, A.M.; Everroad, R.C.; Wingard, L. Measuring Growth Rates in Microalgal Cultures. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; pp. 280–296. [Google Scholar]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next Generation of Scientific Image Data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Liu, D. Geometric Models for Calculating Cell Biovolume and Surface Area for Phytoplankton. J. Plankton Res. 2003, 25, 1331–1346. [Google Scholar] [CrossRef] [Green Version]
- Medina-Pérez, N.I.; Dall’osto, M.; Decesari, S.; Paglione, M.; Moyano, E.; Berdalet, E. Aerosol Toxins Emitted by Harmful Algal Blooms Susceptible to Complex Air-Sea Interactions. Environ. Sci. Technol. 2021, 55, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Légendre, P.; Légendre, L. Numerical Ecology, 2nd ed.; Elsevier Science BV: Amsterdam, The Netherlands, 1998; p. 853. [Google Scholar]
Treatment | N Source (µM) | P Source (µM) | N:P | Growth Rate (µ, d−1) | Maximum Yield (cell mL−1) | Biovolume (µm3) | Cell Toxin Content (pgtox cell−1) |
---|---|---|---|---|---|---|---|
Series 1. Comparing the responses of the NW Mediterranean and the Adriatic strains to P and N deficiency | |||||||
f/2 | 883 | 36.3 | 24 | 0.39 | 8058 ± 873 | 18,019 ± 8704 | 104 ± 43 |
Control | 105 | 6.56 | 16 | 0.32 | 3299 ± 578 | 31,546 ± 9252 | 153 ± 91 |
Control ([37]) | 105 | 6.56 | 16 | 0.39 | 5000 | 30,000 ± 25,000 | 25 ± 4 |
P deficiency | 105 | 1.14 | 92 | 0.32 | 2118 ± 321 | 32,105 ± 13,013 | 140 ± 50 |
P deficiency ([37]) | 105 | 1.14 | 92 | 0.30 | 2800 | 30,000 ± 25,000 | 15 ± 3 |
N deficiency | 30 | 6.56 | 5 | 0.17 | 935 ± 166 | 30,185 ± 9551 | 175 ± 62 |
N deficiency ([37]) | 30 | 6.56 | 5 | 0.23 | 2100 | 27,000 ± 15,000 | 13 ± 2 |
Series 2. Exploring the use of different inorganic and organic N sources at two different concentration levels | |||||||
Nitrate 50 µM | 50 | 7.26 | 6.87 | 0.44 | 2950 ± 524 | 14,718 ± 9705 | 22 ± 9 |
Ammonium 50 µM | 50 | 7.26 | 6.87 | 0.49 | 3074 ± 591 | 14,861 ± 10,384 | 24 ± 15 |
Urea 50 µM | 50 | 7.26 | 6.87 | 0.53 | 4549 ± 1437 | 8326 ± 8317 | 11 ± 8 |
Fertilizer 50 µM | 50 | 7.26 | 6.87 | 0.34 | 1285 ± 196 | 11,888 ± 7053 | 21 ± 10 |
Nitrate 0.5 µM | 0.5 | 7.26 | 0.07 | 0.15 | 267 ± 10 | 9640 ± 6577 | 11 ± 2 |
Ammonium 0.5 µM | 0.5 | 7.26 | 0.07 | 0.09 | 460 ± 75 | 7522 ± 5188 | 7 ± 1 |
Urea 0.5 µM | 0.5 | 7.26 | 0.07 | 0.08 | 287 ± 24 | 8850 ± 5603 | 11 ± 3 |
Fertilizer 0.5 µM | 0.5 | 7.26 | 0.07 | 0.15 | 604 ± 122 | 9243 ± 7088 | 9 ± 1 |
DV (µm) | W (µm) | DV/AP | Sample Type | Reference |
---|---|---|---|---|
55–72 | 35–50 | nd | Natural population from the French Atlantic Coast | [53] |
14–62 | 14–44 | nd | Cultures from natural population in NW Spain (Catalonia) | [54] |
21–77 | 16–51 | nd | Natural population from the NW Mediterranean Sea | [55] |
19–75 | 13–60 | 2.31 ± 0.37 | Natural population from the NE Adriatic Sea | [56] |
24–85 | 17–65 | nd | Cultures from natural population in NE Spain and Croatia | [51] |
24–87 | 13–53 | nd | Natural population from NE Spain and Croatia | [51] |
29–68 | 17–46 | nd | Cultures from natural population from the NW Adriatic Sea | [37] |
40–65 | 18–45 | nd | Natural population from Brazil (Rio de Janeiro) | [57] |
48–65 | 31–46 | nd | Natural population from the NW Adriatic Sea | [58] |
28–76 | 18–51 | nd | Cultures from natural population in the Adriatic Sea | [41] |
22–59 | 14–44 | nd | Cultures from natural population in the Tyrrhenian Sea | [41] |
36–60 | 24–45 | 3.1 | Natural population from the sea in Japan | [59] |
30–71 | 18–53 | 2.4 ± 0.4 | Natural population from the NW Adriatic Sea | [60] |
26–62 | 13–48 | 14–36 | Natural population from North Aegean Sea, Greece | [61] |
19–60 | 17–52 | nd | Cultures from natural population in the NW Mediterranean Sea: f/2 23 °C | Present experiment |
33–69 | 24–55 | nd | Cultures from natural population in the NW Mediterranean Sea: Control 23 °C | Present experiment |
39–71 | 25–61 | nd | Cultures from natural population in the NW Mediterranean Sea: P deficiency 23 °C | Present experiment |
27–68 | 28–62 | nd | Cultures from natural population in the NW Mediterranean Sea: N deficiency 23 °C | Present experiment |
24–69 | 14–56 | nd | Cultures from natural population in the NW Mediterranean Sea: Nitrate 50 µM | Present experiment |
20–68 | 12–56 | nd | Cultures from natural population in the NW Mediterranean Sea: Ammonium 50 µM | Present experiment |
24–58 | 14–48 | nd | Cultures from natural population in the NW Mediterranean Sea: Urea 50 µM | Present experiment |
21–60 | 13–48 | nd | Cultures from natural population in the NW Mediterranean Sea: Fertilizer 50 µM | Present experiment |
28–60 | 15–52 | nd | Cultures from natural population in the NW Mediterranean Sea: Nitrate 0.5 µM | Present experiment |
17–57 | 11–43 | nd | Cultures from natural population in the NW Mediterranean Sea: Ammonium 0.5 µM | Present experiment |
21–55 | 15–47 | nd | Cultures from natural population in the NW Mediterranean Sea: Urea 0.5 µM | Present experiment |
19–64 | 11–57 | nd | Cultures from natural population in the NW Mediterranean Sea: Fertilizer 0.5 µM | Present experiment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Pérez, N.I.; Cerdán-García, E.; Rubió, F.; Viure, L.; Estrada, M.; Moyano, E.; Berdalet, E. Progress on the Link between Nutrient Availability and Toxin Production by Ostreopsis cf. ovata: Field and Laboratory Experiments. Toxins 2023, 15, 188. https://doi.org/10.3390/toxins15030188
Medina-Pérez NI, Cerdán-García E, Rubió F, Viure L, Estrada M, Moyano E, Berdalet E. Progress on the Link between Nutrient Availability and Toxin Production by Ostreopsis cf. ovata: Field and Laboratory Experiments. Toxins. 2023; 15(3):188. https://doi.org/10.3390/toxins15030188
Chicago/Turabian StyleMedina-Pérez, Noemí Inmaculada, Elena Cerdán-García, Francesc Rubió, Laia Viure, Marta Estrada, Encarnación Moyano, and Elisa Berdalet. 2023. "Progress on the Link between Nutrient Availability and Toxin Production by Ostreopsis cf. ovata: Field and Laboratory Experiments" Toxins 15, no. 3: 188. https://doi.org/10.3390/toxins15030188
APA StyleMedina-Pérez, N. I., Cerdán-García, E., Rubió, F., Viure, L., Estrada, M., Moyano, E., & Berdalet, E. (2023). Progress on the Link between Nutrient Availability and Toxin Production by Ostreopsis cf. ovata: Field and Laboratory Experiments. Toxins, 15(3), 188. https://doi.org/10.3390/toxins15030188