A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice
Abstract
:1. Introduction
2. Results
2.1. BoNT/G Holotoxin and Domains for Immunization and mAb Characterization
2.2. Mouse Immunization
2.3. Primary Immune Library Construction and mAb Isolation
2.4. BoNT/G Domain Binding and Binding of BoNT/G from C. argentinense
2.5. Antibody Humanization and Affinity Maturation
2.6. Identification of Antibodies Binding Non-Overlapping Epitopes
2.7. In Vivo Mouse Neutralization Assays (MNA)
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Ethics
5.2. Materials
5.3. Preparation of BoNT/G fragments and IgGs
5.4. Mouse Immunization
5.5. scFv Library Construction and FACS Screening
5.6. scFv Binding Confirmation and IgG Affinity Determination
5.7. Epitope Overlap Determination
5.8. Antibody Humanization and Affinity Maturation
5.8.1. Humanization of Antibodies 6G6, 6G7, 6G9, 6G10 and 6G11
5.8.2. Humanization of 6G7.1
5.8.3. Affinity Maturation of Antibodies
5.9. In Vivo Mouse Neutralization Assay (MNA) and MLD50 Determination
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M. Botulinum toxin as a biological weapon: Medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Barash, J.R.; Arnon, S.S. A Novel Strain of Clostridium botulinum That Produces Type B and Type H Botulinum Toxins. J. Infect. Dis. 2013, 209, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Barash, J.R.; Conrad, F.; Lou, J.; Tam, C.; Cheng, L.W.; Arnon, S.S.; Marks, J.D. The novel clostridial neurotoxin produced by strain IBCA10-7060 is immunologically equivalent to BoNT/HA. Toxins 2020, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef]
- Zornetta, I.; Arrigoni, G.; Anniballi, F.; Bano, L.; Leka, O.; Zanotti, G.; Binz, T.; Montecucco, C. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci. Rep. 2016, 6, 30257. [Google Scholar] [CrossRef]
- Sonnabend, O.; Sonnabend, W.; Heinzle, R.; Sigrist, T.; Dirnhofer, R.; Krech, U. Isolation of Clostridium botulinum type G and identification of type G botulinal toxin in humans: Report of five sudden unexpected deaths. J. Infect. Dis. 1981, 143, 22–27. [Google Scholar] [CrossRef]
- Smith, T.J.; Hill, K.K.; Xie, G.; Foley, B.T.; Williamson, C.H.; Foster, J.T.; Johnson, S.L.; Chertkov, O.; Teshima, H.; Gibbons, H.S. Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes. Infect. Genet. Evol. 2015, 30, 102–113. [Google Scholar] [CrossRef]
- Taylor, S.M.; Wolfe, C.R.; Dixon, T.C.; Ruch, D.S.; Cox, G.M. Wound botulism complicating internal fixation of a complex radial fracture. J. Clin. Microbiol. 2010, 48, 650–653. [Google Scholar] [CrossRef]
- Sonnabend, W.; Sonnabend, U.; Krech, T. Isolation of Clostridium botulinum type G from Swiss soil specimens by using sequential steps in an identification scheme. Appl. Environ. Microbiol. 1987, 53, 1880–1884. [Google Scholar] [CrossRef]
- Campbell, K.; Collins, M.D.; East, A.K. Nucleotide sequence of the gene coding for Clostridium botulinum (Clostridium argentinense) type G neurotoxin: Genealogical comparison with other clostridial neurotoxins. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr. 1993, 1216, 487–491. [Google Scholar] [CrossRef]
- Suen, J.C.; Hatheway, C.L.; Steigerwalt, A.G.; Brenner, D.J. Clostridium argentinense sp. nov.: A genetically homogeneous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme. Int. J. Syst. Evol. Microbiol. 1988, 38, 375–381. [Google Scholar] [CrossRef]
- Montal, M. Botulinum neurotoxin: A marvel of protein design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, P.; Dong, M.; Dupuy, J.; Chapman, E.R.; Stevens, R.C. Crystal structure of the botulinum neurotoxin type G binding domain: Insight into cell surface binding. J. Mol. Biol. 2010, 397, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Binz, T.; Hayashi, T.; Szabo, E.; Yamasaki, N.; Eklund, M.; Jahn, R.; Niemann, H. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem. Biophys. Res. Commun. 1994, 200, 829–835. [Google Scholar] [CrossRef]
- Terilli, R.R.; Moura, H.; Woolfitt, A.R.; Rees, J.; Schieltz, D.M.; Barr, J.R. A historical and proteomic analysis of botulinum neurotoxin type/G. BMC Microbiol. 2011, 11, 232. [Google Scholar] [CrossRef]
- Rummel, A.; Karnath, T.; Henke, T.; Bigalke, H.; Binz, T. Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J. Biol. Chem. 2004, 279, 30865–30870. [Google Scholar] [CrossRef]
- Rummel, A.; Eichner, T.; Weil, T.; Karnath, T.; Gutcaits, A.; Mahrhold, S.; Sandhoff, K.; Proia, R.L.; Acharya, K.R.; Bigalke, H. Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc. Natl. Acad. Sci. USA 2007, 104, 359–364. [Google Scholar] [CrossRef]
- Schmitt, J.; Karalewitz, A.; Benefield, D.A.; Mushrush, D.J.; Pruitt, R.N.; Spiller, B.W.; Barbieri, J.T.; Lacy, D.B. Structural analysis of botulinum neurotoxin type G receptor binding. Biochemistry 2010, 49, 5200–5205. [Google Scholar] [CrossRef]
- Cangene Inc. Package Insert—Botulism Antitoxin Heptavalent (A,B,C,D,E,F,G)—(Equine). Available online: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/bat-botulism-antitoxin-heptavalent-b-c-d-e-f-g-equine (accessed on 28 April 2023).
- Pirazzini, M.; Rossetto, O. Challenges in searching for therapeutics against botulinum neurotoxins. Expert Opin. Drug Discov. 2017, 12, 497–510. [Google Scholar] [CrossRef]
- Fagan, R.P.; Neil, K.P.; Sasich, R.; Luquez, C.; Asaad, H.; Maslanka, S.; Khalil, W. Initial recovery and rebound of type F intestinal colonization botulism after administration of investigational heptavalent botulinum antitoxin. Clin. Infect. Dis. 2011, 53, e125–e128. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Maslanka, S.E.; Jewell, N.P.; Hatheway, C.L. Human botulism immune globulin for the treatment of infant botulism. N. Engl. J. Med. 2006, 354, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.U.; Griffiss, J.M.; McKenzie, R.; Fuchs, E.J.; Jurao, R.A.; An, A.T.; Ahene, A.; Tomic, M.; Hendrix, C.W.; Zenilman, J.M. Safety and pharmacokinetics of XOMA 3AB, a novel mixture of three monoclonal antibodies against botulinum toxin A. Antimicrob. Agents Chemother. 2014, 58, 5047–5053. [Google Scholar] [CrossRef] [PubMed]
- Guptill, J.; Raja, S.; Juel, V.; Walter, E.; Cohen-Wolkowiez, M.; Hill, H.; Sendra, E.; Hauser, B.; Jackson, P.; Swamy, G. Safety, Tolerability and Pharmacokinetics of NTM-1632, a Novel Mixture of Three Monoclonal Antibodies against Botulinum Toxin B. Antimicrob. Agents Chemother. 2021, 65, e0232920. [Google Scholar] [CrossRef] [PubMed]
- Snow, D.M.; Riling, K.; Kimbler, A.; Espinoza, Y.; Wong, D.; Pham, K.; Martinez, Z.; Kraus, C.N.; Conrad, F.; Garcia-Rodriguez, C.; et al. Safety and Pharmacokinetics of a Four Monoclonal Antibody Combination Against Botulinum C and D Neurotoxins. Antimicrob. Agents Chemother. 2019, 63, e01270-19. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.; Guptill, J.; Juel, V.; Walter, E.; Cohen-Wolkowiez, M.; Hill, H.; Sendra, E.; Hauser, B.; Jackson, P.; Tomic, M. First-in-Human Clinical Trial to Assess the Safety, Tolerability and Pharmacokinetics of Single Doses of NTM-1633, a Novel Mixture of Monoclonal Antibodies against Botulinum Toxin E. Antimicrob. Agents Chemother. 2022, 66, e01732-21. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Garcia-Rodriguez, C.; Lou, J.; Wen, W.; Conrad, F.; Zhai, W.; Smith, T.J.; Smith, L.A.; Marks, J.D. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes. PLoS ONE 2017, 12, e0174187. [Google Scholar] [CrossRef]
- Fan, Y.; Dong, J.; Lou, J.; Wen, W.; Conrad, F.; Geren, I.N.; Garcia-Rodriguez, C.; Smith, T.J.; Smith, L.A.; Ho, M. Monoclonal antibodies that inhibit the proteolytic activity of botulinum neurotoxin serotype/B. Toxins 2015, 7, 3405–3423. [Google Scholar] [CrossRef]
- Fan, Y.; Geren, I.N.; Dong, J.; Lou, J.; Wen, W.; Conrad, F.; Smith, T.J.; Smith, L.A.; Ho, M.; Pires-Alves, M.; et al. Monoclonal antibodies targeting the alpha-exosite of botulinum neurotoxin serotype/A inhibit catalytic activity. PLoS ONE 2015, 10, e0135306. [Google Scholar] [CrossRef]
- Razai, A.; Garcia-Rodriguez, C.; Lou, J.; Geren, I.; Forsyth, C.; Robles, Y.; Tsai, R.; Smith, T.; Smith, L.; Siegel, R. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J. Mol. Biol. 2005, 351, 158–169. [Google Scholar] [CrossRef]
- Dong, J.; Thompson, A.A.; Fan, Y.; Lou, J.; Conrad, F.; Ho, M.; Pires-Alves, M.; Wilson, B.A.; Stevens, R.C.; Marks, J.D. A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic α-exosite binding region. J. Mol. Biol. 2010, 397, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez, C.; Yan, S.; Geren, I.N.; Knopp, K.A.; Dong, J.; Sun, Z.; Lou, J.; Conrad, F.; Wen, W.-H.; Farr-Jones, S. A Four-Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotypes C and D. Toxins 2021, 13, 641. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.; Wang, C.; Powers, D.; Amersdorfer, P.; Smith, T.; Montgomery, V.; Sheridan, R.; Blake, R.; Smith, L.; Marks, J. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl. Acad. Sci. USA 2002, 99, 11346–11350. [Google Scholar] [CrossRef] [PubMed]
- Tomic, M.T.; Espinoza, Y.; Martinez, Z.; Pham, K.; Cobb, R.R.; Snow, D.M.; Earnhart, C.G.; Pals, T.; Syar, E.S.; Niemuth, N. Monoclonal antibody combinations prevent serotype A and serotype B inhalational botulism in a guinea pig model. Toxins 2019, 11, 208. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez, C.; Razai, A.; Geren, I.N.; Lou, J.; Conrad, F.; Wen, W.-H.; Farr-Jones, S.; Smith, T.J.; Brown, J.L.; Skerry, J.C. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype E subtypes. Toxins 2018, 10, 105. [Google Scholar] [CrossRef]
- Almagro, J.C.; Fransson, J. Humanization of antibodies. Front. Biosci. 2008, 13, 1619–1633. [Google Scholar]
- Jespers, L.S.; Roberts, A.; Mahler, S.M.; Winter, G.; Hoogenboom, H.R. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology 1994, 12, 899–903. [Google Scholar] [CrossRef]
- Ehrenmann, F.; Kaas, Q.; Lefranc, M.-P. IMGT/3Dstructure-DB and IMGT/DomainGapAlign: A database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Res. 2010, 38, D301-7. [Google Scholar] [CrossRef]
- Figini, M.; Obici, L.; Mezzanzanica, D.; Griffiths, A.; Colnaghi, M.I.; Winter, G.; Canevari, S. Panning phage antibody libraries on cells: Isolation of human Fab fragments against ovarian carcinoma using guided selection. Cancer Res. 1998, 58, 991–996. [Google Scholar]
- Fan, Y.; Sun, Z.; Conrad, F.; Wen, W.; Zhao, L.; Lou, J.; Zhou, Y.; Farr-Jones, S.; Marks, J.D. Multicolor fluorescence activated cell sorting to generate humanized monoclonal antibody binding seven subtypes of BoNT/F. PLoS ONE 2022, 17, e0273512. [Google Scholar] [CrossRef]
- Kalb, S.R.; Smith, T.J.; Moura, H.; Hill, K.; Lou, J.; Geren, I.N.; Garcia-Rodriguez, C.; Marks, J.D.; Smith, L.A.; Pirkle, J.L. The use of Endopep-MS to detect multiple subtypes of botulinum neurotoxins A, B, E, and F. Int. J. Mass Spectrom. 2008, 278, 101–108. [Google Scholar] [CrossRef]
- Kalb, S.R.; Garcia-Rodriguez, C.; Lou, J.; Baudys, J.; Smith, T.J.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R. Extraction of BoNT/A,/B,/E, and/F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by Endopep-MS. PLoS ONE 2010, 5, e12237. [Google Scholar] [CrossRef] [PubMed]
- Solomon, H.M.; Lilly, T., Jr. Bacteriological Analytical Manual (BAM): Clostridium botulinum. Available online: https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070879.htm (accessed on 27 April 2023).
- Schantz, E.J.; Kautter, D.A. Standardized assay for Clostridium botulinum toxins. J. Assoc. Off. Anal. Chem. 1978, 61, 96–99. [Google Scholar] [CrossRef]
Library Name | Immunogen (Days 0, 21, 42) | Boost Immunogen (Day 63) | Library Size | Resulting Antibodies |
---|---|---|---|---|
BoNT/G library | Recombinant BoNT/G LC-HN | 2 MLD50 BoNT/G holotoxin | 2.0 × 107 | 6G6 |
BoNT/G LC-HN library | Recombinant BoNT/G LC-HN | Recombinant BoNT/G LC-HN | 2.4 × 107 | 6G7, 6G8 |
BoNT/Gi library | Recombinant BoNT/Gi | Recombinant BoNT/Gi | 5.0 x 107 | 13 antibodies (see Table 2) |
Antibody | KD Value for BoNT/Gi (nM) | Qualitative Binding to BoNT/G Holotoxin | BoNT/G Domain Bound |
---|---|---|---|
6G6 | 17.80 ± 3.54 | + | LC |
6G7 | 7.72 ± 1.77 | + | HN |
6G8 | >100 | + | LC |
101C2 | 11.3 ± 0.81 | + | Hc |
102B3 | 13.02 ± 19.3 | + | Hc |
102C12 | 43.2 ± 3.2 | + | Hc |
6G9 | 13.66 ± 1.45 | + | Hc |
103B5 | 5.2 ± 0.9 | − | − |
6G10 | 3.86 ± 0.6 | + | Hc |
103D9 | 44.8 ± 6.5 | + | HN |
103D12 | 46.3 ± 9.6 | + | HN |
103F7 | 49.3 ± 8.7 | + | Hc |
103F9 | 148 ± 19 | + | Hc |
6G11 | 102.5 ± 9.5 | + | Hc |
108bB5 | 17.3 ± 7.2 | + | Hc |
108bC8 | 24.0 ± 3.1 | − | − |
Antibodies | Domain Bound | KD of scFv on Yeast by FACS for BoNT/Gi | KD of IgG by KinExA for BoNT/G Holotoxin | |
---|---|---|---|---|
6G6 | 6G6 | LC | 17.8 nM | Not determined |
hu6G6 | 23.0 nM | 8.37 nM | ||
hu6G6.1 | 3.4 nM | 0.47 nM | ||
Hu6G6.2 | 0.22 nM | 42.2 pM | ||
6G7 | 6G7 | HN | 7.7 nM | Not determined |
6G7.1 | 0.27 nM | 26.6 pM | ||
Hu6G7.1 | 3.20 nM | 1.19 nM | ||
Hu6G7.2 | 1.42 nM | 51.01 pM | ||
6G9 | 6G9 | Hc | 13.66 nM | 1.59 nM |
Hu6G9 | 18.8 nM | Not determined | ||
Hu6G9.1 | 2.04 nM | 27.48 pM | ||
6G10 | 6G10 | Hc | 2.48 nM | 0.33 nM |
Hu6G10 | 0.52 nM | 8.36 pM | ||
6G11 | 6G11 | Hc | 104.9 nM | Not determined |
hu6G11 | 4.5 nM | 531 pM | ||
Hu6G11.1 | 0.32 nM | 100.7 pM | ||
Hu6G11.2 | 0.56 nM | 48 pM |
Treatment 50 μg Total Antibodies | Number of Deaths/ 5 Mice Treated 200 MLD50 | Time to Death (h) 200 MLD50 | Number of Deaths/ 5 Mice Treated 500 MLD50 | Time to Death (h) 500 MLD50 |
---|---|---|---|---|
Control (BoNT/G only) | 5/5 | 3.92 ± 0.52 | 5/5 | 3.44 ± 0.28 |
hu6G6.2 | 0/5 | N/A | 5/5 | 45.9 ± 4.25 |
hu6G7.2 | 5/5 | 19.5 ± 0.00 | Not determined | |
hu6G9.1 | 5/5 | 81.60 ± 9.04 | Not determined | |
hu6G10 | 5/5 | 5.56 ± 0.82 | Not determined | |
hu6G11.2 | 5/5 | 59.4 ± 10.1 | Not determined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Lou, J.; Tam, C.C.; Wen, W.; Conrad, F.; Leal da Silva Alves, P.; Cheng, L.W.; Garcia-Rodriguez, C.; Farr-Jones, S.; Marks, J.D. A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice. Toxins 2023, 15, 316. https://doi.org/10.3390/toxins15050316
Fan Y, Lou J, Tam CC, Wen W, Conrad F, Leal da Silva Alves P, Cheng LW, Garcia-Rodriguez C, Farr-Jones S, Marks JD. A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice. Toxins. 2023; 15(5):316. https://doi.org/10.3390/toxins15050316
Chicago/Turabian StyleFan, Yongfeng, Jianlong Lou, Christina C. Tam, Weihua Wen, Fraser Conrad, Priscila Leal da Silva Alves, Luisa W. Cheng, Consuelo Garcia-Rodriguez, Shauna Farr-Jones, and James D. Marks. 2023. "A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice" Toxins 15, no. 5: 316. https://doi.org/10.3390/toxins15050316
APA StyleFan, Y., Lou, J., Tam, C. C., Wen, W., Conrad, F., Leal da Silva Alves, P., Cheng, L. W., Garcia-Rodriguez, C., Farr-Jones, S., & Marks, J. D. (2023). A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice. Toxins, 15(5), 316. https://doi.org/10.3390/toxins15050316