A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity
Abstract
:Plain Language Summary
1. Introduction
2. Results
2.1. Baseline Demographics and Clinical Characteristics
2.2. Description of Injection Practice
2.3. Treatment Outcomes
2.3.1. Goal Attainment Scale T Scores
2.3.2. Reinjections
2.3.3. Patient-Reported Outcomes
2.4. Cost of BoNT-A Treatment
2.5. Safety
2.6. Service Redesign
3. Discussion
Limitations
4. Conclusions
5. Materials and Methods
5.1. Study Design
5.2. Ethics
5.3. Inclusion and Exclusion Criteria
5.4. Population
5.5. Patient Follow-Up
5.6. Practice Changes and Continuity
5.7. Study Objectives
5.7.1. Primary Objective
5.7.2. Secondary Objectives
5.8. Patient-Level Treatment Cost Estimations
5.9. Data Analysis
5.10. Exploratory Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G.R. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef]
- Patel, A.T.; Wein, T.; Bahroo, L.B.; Wilczynski, O.; Rios, C.D.; Murie-Fernandez, M. Perspective of an an international online patient and caregiver community on the burden of spasticity and impact of botulinum neurotoxin therapy: Survey study. JMIR Public Health Surveill. 2020, 6, e17928. [Google Scholar] [CrossRef] [PubMed]
- Royal College of Physicians; The British Society Of Rehabilitation Medicine; The Chartered Society of Physiotherapy; Association of Chartered Physiotherapists in Neurology and the Royal College of Occupational Therapists. Spasticity in Adults: Management Using Botulinum Toxin National Guidelines, 2nd ed.; Royal College of Physician: London, UK, 2018. [Google Scholar]
- Ward, A.B. Spasticity treatment with botulinum toxin. Turk. J. Phys. Med. Rehab. 2007, 53, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Christofi, G.; BCh, B.M.; Ashford, S.; Birns, J.; Dalton, C.; Duke, L.; Madsen, C.; Salam, S. Improving the management of post-stroke spasticity: Time for action. J. Rehabil. Med. Clin. Commun. 2018, 1, 1000004. [Google Scholar] [CrossRef]
- Bavikatte, G.; Subramanian, G.; Ashford, S.; Allison, R.; Hicklin, D. Early identification, intervention and management of post-stroke spasticity: Expert consensus recommendations. J. Cent. Nerv. Syst. Dis. 2021, 13, 11795735211036576. [Google Scholar] [CrossRef]
- Chang, E.; Ghosh, N.; Yanni, D.; Lee, S.; Alexandru, D.; Mozaffar, T. A review of spasticity treatments: Pharmacological and interventional approaches. Crit. Rev. Phys. Rehabil. Med. 2013, 25, 11–22. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Brashear, A.; Maisonobe, P.; Lysandropoulos, A.; Ashford, S.; The ULIS-III Study Group. Longitudinal goal attainment with integrated upper limb spasticity management including repeat injections of botulinum toxin A: Findings from the prospective, observational Upper Limb International Spasticity (ULIS-III) cohort study. J. Rehabil. Med. 2021, 53, jrm00157. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Brashear, A.; Maisonobe, P.; Lysandropoulos, A.; Ashford, S.; The ULIS-III Study Group. Assessing the effectiveness of upper-limb spasticity management using a structured approach to goal-setting and outcome measurement: First cycle results from the ULIS-III Study. J. Rehabil. Med. 2021, 53, jrm00133. [Google Scholar] [CrossRef]
- Ozer, I.S.; Kuzu Kumcu, M.; Tezcan Aydemir, S.; Akbostanci, M.C. Dose conversion ratio, comparative efficacy, and adverse events after switching from onabotulinum toxin A to abobotulinum toxin A for neurological conditions. Clin. Neurol. Neurosurg. 2021, 209, 106889. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef]
- Ipsen Ltd. Summary of Product Characteristics, Dysport®. Available online: https://www.medicines.org.uk/emc/product/964/smpc (accessed on 1 March 2023).
- AbbVie Ltd. Summary of Product Characteristics, BOTOX® (onabotulinumtoxinA). Available online: https://www.medicines.org.uk/emc/product/859/smpc (accessed on 1 March 2023).
- Merz Pharma UK Ltd. Summary of Product Characteristics, Xeomin® (incobotulinumtoxinA). Available online: https://www.medicines.org.uk/emc/product/6202/smpc (accessed on 1 March 2023).
- Roze, S.; Kurth, H.; Hunt, B.; Valentine, W.; Marty, R. Evaluation of the cost per patient per injection of botulinum toxin A in upper limb spasticity: Comparison of two preparations in 19 countries. Med. Devices 2012, 5, 97–101. [Google Scholar] [CrossRef]
- Danchenko, N.; Johnston, K.M.; Haeussler, K.; Whalen, J. Comparative efficacy, safety, and cost-effectiveness of abobotulinumtoxinA and onabotulinumtoxinA in children with upper limb spasticity: A systematic literature review, indirect treatment comparison, and economic evaluation. J. Med. Econ. 2021, 24, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Danchenko, N.; Johnston, K.M.; Whalen, J. The cost-effectiveness of abobotulinumtoxinA (Dysport) and onabotulinumtoxinA (Botox) for managing spasticity of the upper and lower limbs, and cervical dystonia. J. Med. Econ. 2022, 25, 919–929. [Google Scholar] [CrossRef]
- Abogunrin, S.; Brand, S.; Desai, K.; Dinet, J.; Gabriel, S.; Harrower, T. AbobotulinumtoxinA in the management of cervical dystonia in the United Kingdom: A budget impact analysis. Clinicoecon. Outcomes Res 2015, 7, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Francisco, G.E.; Balbert, A.; Bavikatte, G.; Bensmail, D.; Carda, S.; Deltombe, T.; Draulans, N.; Escaldi, S.; Gross, R.; Jacinto, J.; et al. A practical guide to optimizing the benefits of post-stroke spasticity interventions with botulinum toxin A: An international group consensus. J. Rehabil. Med. 2021, 53, jrm00134. [Google Scholar] [CrossRef] [PubMed]
- Pohar, R.; Rabb, D. Switching Botulinum Toxin A Products for Patients with Upper Limb Spasticity Or cervical Dystonia: A Review of Clinical Effectiveness; CADTH Rapid Response Report: Summary with Critical Appraisal; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2018; p. 24.
- Nestor, M.S.A.; Glynis, R. Duration of action of abobotulinumtoxinA and onabotulinumtoxinA. A randomized, double-blind study using a contralateral frontalis model. J. Clin. Aesthet. Dermatol. 2011, 4, 43–49. [Google Scholar] [PubMed]
- Thomas, A.J.; Larson, M.O.; Braden, S.; Cannon, R.B.; Ward, P.D. Effect of 3 commercially available botulinum toxin neuromodulators on facial synkinesis: A randomized clinical trial. JAMA Facial Plast. Surg. 2018, 20, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.; Riberto, M.; Frances, J.A.; Chueire, R.; Amorim, A.; Xerez, D.; Chung, T.M.; Mercuri, L.H.C.; Longo, A.L.; Lianza, S.; et al. The effectiveness of botulinum toxin type A (BoNT-A) treatment in Brazilian patients with chronic post-stroke spasticity: Results from the observational, multicenter, prospective BCause study. Toxins 2020, 12, 770. [Google Scholar] [CrossRef] [PubMed]
- Ghroubi, S.; Alila, S.; Elleuch, W.; Ayed, H.B.; Mhiri, C.; Elleuch, M.H. Efficacy of botulinum toxin A for the treatment of hemiparesis in adults with chronic upper limb spasticity. Pan Afr. Med. J. 2020, 35, 55. [Google Scholar] [CrossRef]
- Field, M.; Splevins, A.; Picaut, P.; van der Schans, M.; Langenberg, J.; Noort, D.; Snyder, D.; Foster, K. AbobotulinumtoxinA (Dysport®), onabotulinumtoxinA (Botox®), and incobotulinumtoxinA (Xeomin®) neurotoxin content and potential implications for duration of response in patients. Toxins 2018, 10, 535. [Google Scholar] [CrossRef]
- Esquenazi, A.; Delgado, M.R.; Hauser, R.A.; Picaut, P.; Foster, K.; Lysandropoulos, A.; Gracies, J.M. Duration of symptom relief between injections for abobotulinumtoxinA (Dysport®) in spastic paresis and cervical dystonia: Comparison of evidence from clinical studies. Front. Neurol. 2020, 11, 576117. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Pons, L.; Calvi-Gries, F.; Otto, J. Extensor digitorum brevis and DIRECTION: Two studies in progress comparing the duration of response of abobotulinumtoxina with other native botulinum toxins. Toxicon 2022, 214, S16–S17. [Google Scholar] [CrossRef]
- Fheodoroff, K.; Rekand, T.; Medeiros, L.; Kossmehl, P.; Wissel, J.; Bensmail, D.; Scheschonka, A.; Flatau-Baque, B.; Simon, O.; Dressler, D.; et al. Quality of life in subjects with upper- and lower-limb spasticity treated with incobotulinumtoxinA. Health Qual. Life Outcomes 2020, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.H.; Hong, J.E.; Yang, H.M. Neuromuscular compartmentation of the subscapularis muscle and its clinical implication for botulinum neurotoxin injection. Sci. Rep. 2023, 13, 11167. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; An, M.H.; Lee, H.J.; Yi, K.H. Guidance in botulinum neurotoxin injection for lower extremity spasticity: Sihler’s staining technique. Surg. Radiol. Anat. 2023, 45, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.H.; Lee, J.H.; Hur, H.W.; Lee, H.J.; Choi, Y.J.; Kim, H.J. Distribution of the intramuscular innervation of the triceps brachii: Clinical importance in the treatment of spasticity with botulinum neurotoxin. Clin. Anat. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Kiresuk, T.J.; Sherman, R.E. Goal attainment scaling: A general method for evaluating comprehensive community mental health programs. Community Ment. Health J. 1968, 4, 443–453. [Google Scholar] [CrossRef]
Cohort 1 (Pre-2017) (N = 60) | Cohort 2 (Post-2017) (N = 54) | |
---|---|---|
Age at first BoNT-A injection | ||
Mean (SD), years | 58.4 (15.6) | 57.7 (16.3) |
Median (range), years | 57.1 (23.0–85.2) | 62.7 (18.2–90.5) |
Sex, n (%) | ||
Male | 26 (43.3) | 22 (40.7) |
Female | 34 (56.7) | 32 (59.3) |
Underlying neurological condition | ||
Patients with data available, n | 60 | 53 |
Stroke due to infarction, n (%) | 18 (30.0) | 17 (32.1) |
Stroke–hemorrhagic, n (%) | 2 (3.3) | 8 (15.1) |
Stroke–unspecified, n (%) | 12 (20.0) | 0 (0.0) |
Chronic disease (MS and other), n (%) | 15 (25.0) | 12 (22.6) |
Traumatic brain injury, n (%) | 5 (8.3) | 6 (11.3) |
Other a, n (%) | 8 (13.3) | 10 (18.9) |
Not known, n | 0 | 1 |
Time from diagnosis of neurological condition to first BoNT-A injection | ||
Patients with data available, n | 41 | 40 |
Median (range), years | 2.1 (0.3–29.7) | 2.4 (0.1–27.0) |
Location of spasticity, n (%) | ||
LL spasticity | 30 (50.0) | 30 (55.6) |
UL spasticity | 23 (38.3) | 19 (35.2) |
LL + UL spasticity | 7 (11.7) | 5 (9.3) |
Time from diagnosis of spasticity to first BoNT-A injection | ||
Patients with data available, n | 57 | 54 |
Median (range), years | 0 (0.0–0.1) | 0 (0.0–3.1) |
Baseline existing therapies for LS, n (%) | ||
Prescribed antispasticity medication | 28 (46.7) | 25 (46.3) |
Pain medication and opioid use | 15 (25.0) | 22 (40.7) |
Physiotherapy and/or occupational therapy | 35 (58.3) | 28 (51.9) |
No therapy recorded | 12 (20.0) | 10 (18.5) |
Cohort 1 (Pre-2017) (N = 60) | Cohort 2 (Post-2017) (N = 54) | |||
---|---|---|---|---|
Patients attending scheduled visit, n (%) | ||||
Week 6 | 42 (70.0) | 40 (74.1) | ||
Week 12 | 40 (66.7) | 26 (48.1) | ||
Week 24 | 22 (36.7) | 22 (40.7) | ||
Patients reinjected at each visit, n (%) | ||||
Week 6 | 0 (0.0) | 0 (0.0) | ||
Week 12 | 5 (8.3) | 7 (13.0) | ||
Week 24 | 11 (18.3) | 15 (27.8) | ||
Time between index date and reinjection | ||||
Patients reinjected during the 24-week follow-up a, n (%) | 16 (26.7) | 22 (40.7) | ||
Mean (SD), weeks | 16.4 (2.7) | 17.4 (3.7) | ||
95% CI, weeks | 15.1–17.7 | 15.9–19.0 | ||
Median (Q1, Q3), weeks | 16.1 (15.1, 17.3) | 17.1 (15.1, 19.9) | ||
Patients reinjected during the observation period b, n (%) | 18 (30.0) | 27 (50.0) c | ||
Mean (SD), weeks | 19.9 (9.1) | 19.8 (6.2) | ||
95% CI, weeks | 15.0–23.4 | 17.4–22.1 | ||
Median (Q1, Q3), weeks | 16.1 (15.4, 18.0) | 18.1 (16.1, 23.1) | ||
Limb injected at reinjection | ||||
Data available, n | 14 | 31 c | ||
LL only, n (%) | 9 (64.3) | 18 (58.1) | ||
UL only, n (%) | 3 (21.4) | 13 (41.9) | ||
LL + UL, n (%) | 2 (14.3) | 0 (0) | ||
Total dose at reinjection (units in Cohort 1 and Cohort 2 are noninterchangeable) | n | mean (SD), U | n | mean (SD), U |
UL | 5 | 214.0 (37.8) | 13 | 696.2 (420.1) |
LL | 11 | 203.6 (64.3) | 17 d | 708.8 (445.9) |
UL and/or LL | 14 | 236.4 (80.8) | 30 c,d | 703.3 (427.5) |
Cohort 1 (Pre-2017) (N = 60) | Cohort 2 (Post-2017) (N = 54) | |||
---|---|---|---|---|
EQ-5D VAS score by visit a | n | n | ||
Baseline, median (Q1, Q3) | 54 (41.3, 70.0) | 46 | 60 (50.0, 75.0) | 35 |
Week 6, median (Q1, Q3) | 55 (48.0, 75.0) | 36 | 65 (50.0, 80.0) | 24 |
Week 12, median (Q1, Q3) | 65 (50.0, 75.0) | 25 | 80 (62.5, 90.0) | 15 |
Change in EQ-5D VAS score a | n | n | ||
Change from baseline to Week 6, median (Q1, Q3) | 0 (−7.5, 0.0) | 35 | 0 (−5.0, 0.0) | 24 |
Change from baseline to Week 12, median (Q1, Q3) | 0 (−10.0, 0.0) | 24 | −5 (−28.8, 0.0) | 14 |
Costs (£) | Cohort 1 (Pre-2017) (N = 60) | Cohort 2 (Post-2017) (N = 54) | ||||
---|---|---|---|---|---|---|
Mean (SD) | 95% CI | n | Mean (SD) | 95% CI | n | |
Per patient | ||||||
Week 6 | 315.56 (141.88) | 279.66–351.46 | 60 | 249.25 (136.08) | 212.96–285.55 | 54 |
Week 12 | 343.20 (189.54) | 295.24–391.16 | 60 | 273.21 (159.09) | 230.77–315.64 | 54 |
Per responder | ||||||
Week 6 | 276.40 (116.80) | 246.85–305.95 | 15 | 233.80 (139.91) | 198.40–269.20 | 22 |
Week 12 | 391.57 (268.97) | 323.51–459.63 | 12 | 290.89 (182.94) | 244.60–337.18 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezzina, C.; Degtiar, V.; Danchenko, N.; Maisonobe, P.; Davis, B.; Engmann, E.; Guyon, E.; Lecanuet, S.; Whalen, J. A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity. Toxins 2023, 15, 532. https://doi.org/10.3390/toxins15090532
Bezzina C, Degtiar V, Danchenko N, Maisonobe P, Davis B, Engmann E, Guyon E, Lecanuet S, Whalen J. A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity. Toxins. 2023; 15(9):532. https://doi.org/10.3390/toxins15090532
Chicago/Turabian StyleBezzina, Clive, Vadim Degtiar, Natalya Danchenko, Pascal Maisonobe, Benjamin Davis, Emanuel Engmann, Elodie Guyon, Sophie Lecanuet, and John Whalen. 2023. "A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity" Toxins 15, no. 9: 532. https://doi.org/10.3390/toxins15090532
APA StyleBezzina, C., Degtiar, V., Danchenko, N., Maisonobe, P., Davis, B., Engmann, E., Guyon, E., Lecanuet, S., & Whalen, J. (2023). A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity. Toxins, 15(9), 532. https://doi.org/10.3390/toxins15090532