Effects of Supplementation of a Mycotoxin Mitigation Feed Additive in Lactating Dairy Cows Fed Fusarium Mycotoxin-Contaminated Diet for an Extended Period
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Contamination of Animal Diets
3.2. Feed Intake and Rumen Activities
3.3. Milk Yield and Its Quality
3.4. Digestibility Traits and Ruminal and Fecal Variables
3.5. Immuno-Metabolic Parameters
4. Conclusions
5. Materials and Methods
5.1. Experimental Cows and Diets
5.2. Analysis of Feeds, Diets and Mycotoxins
5.3. Rumination Time, Body Weight and Body Condition Score
5.4. Health Status of Cows
5.5. Milk Yield, Composition and Cheesemaking Traits
5.6. Feces Collection and Nutrient Digestibility
5.7. Blood Sampling and Blood Biochemistry
5.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. The role of mycotoxins in the health and performance of dairy cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Cheli, F.; Pinotti, L.; Rossi, L.; Dell’Orto, V. Effect of milling procedures on mycotoxin distribution in wheat fractions: A review. LWT—Food Sci. Technol. 2013, 54, 307–314. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J. 2013, 11, 3262. [Google Scholar] [CrossRef]
- May, H.; Wu, Q.; Blake, C. Effects of the Fusarium spp. mycotoxins fusaric acid and deoxynivalenol on the growth of Ruminococcus albus and Methanobrevibacter ruminantium. Can. J. Microbiol. 2000, 46, 692–699. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed. Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
- Bernabucci, U.; Colavecchia, L.; Danieli, P.P.; Basiricò, L.; Lacetera, N.; Nardone, A.; Ronchi, B. Aflatoxin B1 and fumonisin B1 affect the oxidative status of bovine peripheral blood mononuclear cells. Toxicol. In Vitro 2011, 25, 684–691. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to deoxynivalenol (DON) as undesirable substance in animal feed. EFSA J. 2004, 2, 73. [Google Scholar] [CrossRef]
- Gallo, A.; Mosconi, M.; Trevisi, E.; Santos, R.R. Adverse Effects of Fusarium Toxins in Ruminants: A Review of In Vivo and In Vitro Studies. Dairy 2022, 3, 474–499. [Google Scholar] [CrossRef]
- Antonissen, G.; Martel, A.; Pasmans, F.; Ducatelle, R.; Verbrugghe, E.; Vandenbroucke, V. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 2014, 6, 430e52. [Google Scholar] [CrossRef]
- Caloni, F.; Spotti, M.; Auerbach, H.; den Camp, H.O.; Gremmels, J.F.; Pompa, G. In vitro metabolism of fumonisin B1 by ruminal microflora. Vet. Res. Commun. 2000, 24, 379–387. [Google Scholar] [CrossRef]
- Sabatini, A.; Danieli, P.P.; Bernabucci, U.; Ronchi, B. Evaluation of mycotoxins contamination in intensive beef cattle production system. Ital. J. Anim. Sci. 2007, 6, 466–468. [Google Scholar] [CrossRef]
- Abeni, F.; Migliorati, L.; Terzano, G.M.; Capelletti, M.; Gallo, A.; Masoero, F.; Pirlo, G. Effects of two different blends of naturally mycotoxin-contaminated maize meal on growth and metabolic profile in replacement heifers. Animal 2014, 8, 1667–1676. [Google Scholar] [CrossRef]
- Gallo, A.; Ghilardelli, F.; Atzori, A.S.; Zara, S.; Novak, B.; Faas, J.; Fancello, F. Co-Occurrence of Regulated and Emerging Mycotoxins in Corn Silage: Relationships with Fermentation Quality and Bacterial Communities. Toxins 2021, 13, 232. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.T.; Pestka, J. Mycotoxins: Metabolism, mechanisms and biochemical markers. In The Mycotoxin Blue Book; Diaz, D.E., Ed.; Nottingham University Press: Nottingham, UK, 2005; pp. 279–294. [Google Scholar]
- Sugiyama, K.; Muroi, M.; Kinoshita, M.; Hamada, O.; Minai, Y.; Sugita-Konishi, Y.; Kamata, Y.; Tanamoto, K. NF-κB activation via MyD88-dependent toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol. J. Toxicol. Sci. 2016, 41, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, M.; Jakimiuk, E.; Gajęcka, M.; Gajęcki, M.T.; Zielonka, Ł. Effect of deoxynivalenol on the levels of toll-like receptors 2 and 9 and their mRNA expression in enterocytes in the porcine large intestine: A preliminary study. Pol. J. Vet. Sci. 2017, 20, 213–220. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. Mycotoxins in cattle feeds and carry-over to dairy milk: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 172–180. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Opinion. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J. 2018, 16, e05172. [Google Scholar] [CrossRef]
- Migliorati, L.; Abeni, F.; Cattaneo, M.P.; Tornielli, C.; Pirlo, G. Effects of adsorbents in dairy cow diet on milk quality and cheese-making properties. Ital. J. Anim. Sci. 2007, 6 (Suppl. 1), 460–462. [Google Scholar] [CrossRef]
- Dunière, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Technol. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Santos, R.R.; Schoevers, E.J.; Roelen, B.A.J.; Fink-Gremmels, J. Mycotoxins and female reproduction: In vitro approaches. World Mycotoxin J. 2013, 6, 245–253. [Google Scholar] [CrossRef]
- Pulina, G.; Battacone, G.; Brambilla, G.; Cheli, F.; Danieli, P.P.; Masoero, F.; Pietri, A.; Ronchi, B. An update on the safety of foods of animal origin and feeds. Ital. J. Anim. Sci. 2014, 13, 3571. [Google Scholar] [CrossRef]
- Fumagalli, F.; Ottoboni, M.; Pinotti, L.; Cheli, F. Integrated mycotoxin management system in the feed supply chain: Innovative approaches. Toxins 2021, 13, 572. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Bittante, G.; Penasa, M.; Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012, 95, 6843–6870. [Google Scholar] [CrossRef]
- Gallo, A.; Minuti, A.; Bani, P.; Bertuzzi, T.; Piccioli, F.; Cappelli, B.; Doupovec, J.; Faas, D.; Schatzmayr, E. Trevisi. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. J. Dairy Sci. 2020, 103, 11314–11331. [Google Scholar] [CrossRef] [PubMed]
- McKay, Z.C.; Averkieva, O.; Rajauria, G.; Pierce, K.M. The effect of feedborne Fusarium mycotoxins on dry matter intake, milk production and blood metabolites of early lactation dairy cows. Anim. Feed Sci. Technol. 2019, 253, 39–44. [Google Scholar] [CrossRef]
- Winkler, J.; Kersten, S.; Meyer, U.; Engelhardt, U.; Dänicke, S. Residues of zearalenone (ZEN), deoxynivalenol (DON) and their metabolites in plasma of dairy cows fed Fusarium contaminated maize and their relationships to performance parameters. Food Chem. Toxicol. 2014, 65, 196–204. [Google Scholar] [CrossRef]
- Osweiler, G.D.; Kehrli, M.E.; Stabel, J.R.; Thurston, J.R.; Ross, P.F.; Wilson, T.M. Effects of fumonisin-contaminated corn screenings on growth and health of feeder calves. J. Anim. Sci. 1993, 71, 459–466. [Google Scholar] [CrossRef]
- Keese, C.; Meyer, U.; Rehage, J.; Spilke, J.; Boguhn, J.; Breves, G.; Dänicke, S. Ruminal fermentation patterns and parameters of the acid base metabolism in the urine as influenced by the proportion of concentrate in the ration of dairy cows with and without Fusarium toxin-contaminated triticale. Arch. Anim. Nutr. 2008, 62, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Hartinger, T.; Grabher, L.; Pacífico, C.; Angelmayr, B.; Faas, J.; Zebeli, Q. Short-term exposure to the mycotoxins zearalenone or fumonisins affects rumen fermentation and microbiota, and health variables in cattle. Food Chem. Toxicol. 2022, 162, 112900. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Giamouri, E.; Tavrizelou, S.; Zacharioudaki, M.; Danezis, G.; Simitzis, P.E.; Zoidis, E.; Tsiplakou, E.; Pappas, A.C.; Georgiou, C.A.; et al. Impact of Mycotoxins on Animals’ Oxidative Status. Antioxidants 2021, 10, 214. [Google Scholar] [CrossRef]
- Roberts, H.L.; Bionaz, M.; Jiang, D.; Doupovec, B.; Faas, J.; Estill, C.T.; Schatzmayr, D.; Duringer, J.M. Effects of Deoxynivalenol and Fumonisins Fed in Combination to Beef Cattle: Immunotoxicity and Gene Expression. Toxins 2021, 13, 714. [Google Scholar] [CrossRef]
- Jovaišienė, J.; Bakutis, B.; Baliukoniene, V.; Gerulis, G. Fusarium and Aspergillus mycotoxins effects on dairy cow health, performance and the efficacy of anti-mycotoxin additive. Pol. J. Vet. Sci. 2016, 19, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Zouagui, Z.; Asrar, M.; Lakhdissi, H.; Abdennebi, E.H. Prevention of mycotoxin effects in dairy cows by adding an antimycotoxin product in feed. J. Mater. Environ. Sci. 2017, 8, 3766–3770. [Google Scholar]
- Pretto, D.; De Marchi, M.; Penasa, M.; Cassandro, M. Effect of milk composition and coagulation traits on Grana Padano cheese yield under field conditions. J. Dairy Res. 2013, 80, 1–5. [Google Scholar] [CrossRef]
- Cassandro, M.; Pretto, D.; Lopez-Villalobos, N.; De Marchi, M.; Penasa, M. Estimation of economic values for milk coagulation properties in Italian Holstein-Friesian cattle. J. Dairy Sci. 2016, 99, 6619–6626. [Google Scholar] [CrossRef]
- Křížová, L.; Hanuš, O.; Klimešová, M.; Nedělník, J.; Kučera, J.; Roubal, P.; Kopecký, J.; Jedelská, R. Chemical, physical and technological properties of milk as affected by the mycotoxin load of dairy herds. Arch. Tierz. 2016, 59, 293–300. [Google Scholar] [CrossRef]
- Hildebrand, B.; Boguhn, J.; Dänicke, S.; Rodehutscord, M. Effect of Fusarium toxin-contaminated triticale and forage-to-concentrate ratio on fermentation and microbial protein synthesis in the rumen. J. Anim. Physiol. Anim. Nutr. 2012, 96, 307–318. [Google Scholar] [CrossRef]
- Duringer, J.M.; Roberts, H.L.; Doupovec, B.; Faas, J.; Estill, C.T.; Jiang, D.; Schatzmayr, D. Effects of deoxynivalenol and fumonisins fed in combination on beef cattle: Health and performance indices. World Mycotoxin J. 2020, 13, 533–543. [Google Scholar] [CrossRef]
- Kinoshita, A.; Keese, C.; Meyer, U.; Starke, A.; Wrenzycki, C.; Dänicke, S.; Rehage, J. Chronic Effects of Fusarium Mycotoxins in rations with or without Increased Concentrate Proportion on the Insulin Sensitivity in Lactating Dairy Cows. Toxins 2018, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Faixová, Z.; Faix, Š.; Bořutová, R.; Leng, Ľ. Effects of feeding diets con-762 taminated with Fusarium mycotoxins on blood biochemical parameters of 763 broiler chickens. Acta Vet. Hung. 2010, 58, 275–285. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Gallo, A.; Masoero, F.; Bertuzzi, T.; Piva, G.; Pietri, A. Effect of the inclusion of adsorbents on aflatoxin B1 quantification in animal feedstuffs. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 54–63. [Google Scholar] [CrossRef]
- Pietri, A.; Bertuzzi, T. Simple phosphate buffer extraction for the determination of fumonisins in masa, maize, and derived products. Food Anal. Methods 2012, 5, 1088–1096. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Leggieri, M.C.; Battilani, P.; Pietri, A. Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009–2011. Food Addit. Contam. Part B Surveill. 2014, 7, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Bertuzzi, T.; Comizzoli, S.; Turconi, G.; Roggi, C.; Pagani, M.; Cravedi, P.; Pietri, A. Preliminary survey on composition and quality of conventional and organic wheat. Ital. J. Food Sci. 2006, 18, 355–366. [Google Scholar]
- ADAS (Agricultural Development and Advisory Service). Condition Scoring of Dairy Cows; Publication 612; Agricultural Development and Advisory Service, Ministry of Agriculture, Fisheries and Food Lion House, Alnwick: Northumberland, UK, 1986. [Google Scholar]
- Ireland-Perry, R.L.; Stallings, C.C. Fecal consistency as related to dietary composition in lactating Holstein cows. J. Dairy Sci. 1993, 76, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Chessa, S.; Bulgari, O.; Rizzi, R.; Calamari, L.; Bani, P.; Biffani, S.; Caroli, A.M. Selection for milk coagulation properties predicted by Fourier transform infrared spectroscopy in the Italian Holstein-Friesian breed. J. Dairy Sci. 2014, 97, 4512–4521. [Google Scholar] [CrossRef]
- Cipolat-Gotet, C.; Cecchinato, A.; Stocco, G.; Bittante, G. The 9-MilCA method as a rapid, partly automated protocol for simultaneously recording milk coagulation, curd firming, syneresis, cheese cheese yield, and curd nutrients recovery or whey loss. J. Dairy Sci. 2016, 99, 1065–1082. [Google Scholar] [CrossRef] [PubMed]
- Cipolat-Gotet, C.; Cecchinato, A.; De Marchi, M.; Bittante, G. Factors affecting variation of different measures of cheese yield and milk nutrient recovery from an individual model cheese- manufacturing process. J. Dairy Sci. 2013, 96, 7952–7965. [Google Scholar] [CrossRef] [PubMed]
- Calamari, L.; Ferrari, A.; Minuti, A.; Trevisi, E. Assessment of the main plasma parameters included in a metabolic profile of dairy cow based on Fourier Transform mid-infrared spectroscopy: Preliminary results. BMC Vet. Res. 2016, 12, 4. [Google Scholar] [CrossRef]
- Mezzetti, M.; Minuti, A.; Piccioli-Cappelli, F.; Amadori, M.; Bionaz, M.; Trevisi, E. The role of altered immune function during the dry period in promoting the development of subclinical ketosis in early lactation. J. Dairy Sci. 2019, 102, 9241–9258. [Google Scholar] [CrossRef]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Goonewardene, L.A. The use of MIXED models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci. 2004, 84, 1–11. [Google Scholar] [CrossRef]
Items | Experimental Diets 1 | ||
---|---|---|---|
CTR (n = 10) | MTX (n = 10) | MMP (n = 10) | |
Ingredients (% DM) | |||
Corn meal | 5.9 | ||
Barley meal | 2.5 | ||
Sunflower meal, dehulled 34% | 4.3 | ||
Soybean, solvent meal 44% | 13.7 | ||
High moisture corn | 22.7 | ||
Alfalfa hay | 17.4 | ||
Ryegrass hay | 1.8 | ||
Mineral-vitamin supplement 2 | 1.7 | ||
Fat (palm oil) | 0.8 | ||
Corn silage | 12.0 | ||
Sorghum silage | 12.2 | ||
Beet pulp | 5.0 | ||
Forage:concentrate ratio | 49.9:50.1 | ||
Chemical composition (% DM) | |||
DM (% as fed) | 53.8 ± 2.4 | 52.7 ± 2.3 | 53.6 ± 1.9 |
CP | 14.8 ± 1.0 | 14.6 ± 1.0 | 15.1 ± 0.8 |
Soluble CP | 5.2 ± 0.5 | 5.2 ± 0.6 | 5.3 ± 0.5 |
Ash | 8.9 ± 0.6 | 8.8 ± 0.6 | 8.7 ± 0.6 |
ANDFom | 31.9 ± 1.8 | 31.9 ± 2.4 | 32.0 ± 1.2 |
ADFom | 19.7 ± 1.4 | 20.3 ± 1.8 | 19.7 ± 1.8 |
ADL | 3.0 ± 0.3 | 3.1 ± 0.4 | 2.9 ± 0.3 |
NDFD 24 h | 47.9 ± 2.1 | 48.3 ± 2.3 | 48.3 ± 1.9 |
EE | 3.3 ± 0.5 | 3.3 ± 0.5 | 3.3 ± 0.4 |
Starch | 26.9 ± 1.7 | 26.8 ± 1.9 | 27.1 ± 1.9 |
Sugar | 4.2 ± 0.5 | 4.2 ± 0.4 | 4.3 ± 0.6 |
NDICP | 3.1 ± 0.5 | 3.0 ± 0.5 | 3.1 ± 0.5 |
ADICP | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 |
Energy evaluations (Mcal/kg DM) 3 | |||
TDN (%) | 70.1 ± 0.7 | 70.0 ± 0.9 | 70.1 ± 0.8 |
ME3x | 2.54 ± 0.05 | 2.54 ± 0.06 | 2.54 ± 0.05 |
Mycotoxin contamination 4 in TMR (µg/kg DM) | |||
FB1 in TMR | 85.3 ± 56.3 | 159.5 ± 60.9 | 163.8 ± 58.1 |
FB2 in TMR | 44.3 ± 30.4 | 75.9 ± 31.9 | 77.9 ± 32.9 |
ZEN in TMR | 43.2 ± 13.1 | 196.8 ± 75.7 | 248.5 ± 139.3 |
DON in TMR | 284.9 ± 91.9 | 1021.7 ± 234.5 | 1009.6 ± 213.5 |
Feed Ingredients | ||||||||
---|---|---|---|---|---|---|---|---|
Chemical Composition (% DM) | Corn Silage | Sorghum Silage | HMC CTR | HMC TRT | Beet Pulp TRT | Beet Pulp CTR | Alfalfa Hay | Ryegrass Hay |
DM, % as fed | 32.68 ± 1.9 | 29.4 ± 0.1 | 54.7 ± 1.4 | 58.13 ± 0.4 | 89.1 ± 1.3 | 88.8 ± 1.1 | 89.0 ± 0.4 | 90.0 ± 0.3 |
CP | 8.4 ± 0.7 | 10.6 ± 0.3 | 5.9 ± 0.1 | 6.3 ± 0.3 | 8.1 ± 0.7 | 8.9 ± 0.6 | 15.0 ± 3.4 | 6.2 ± 0.7 |
Ash | 5.7 ± 0.5 | 7.7 ± 0.5 | 1.2 ± 0.1 | 1.1 ± 0.2 | 6.8 ± 1.3 | 7.1 ± 1.5 | 10.0 ± 1.2 | 9.8 ± 1.0 |
aNDFom | 40.0 ± 2.8 | 48.3 ± 0.3 | 16.4 ± 0.5 | 17.8 ± 2.3 | 40.5 ± 4.9 | 44.1 ± 3.7 | 44.9 ± 7.6 | 59.2 ± 1.0 |
ADFom | 25.2 ± 1.9 | 31.7 ± 0.7 | 9.4 ± 0.1 | 8.4 ± 2.1 | 20.6 ± 2.0 | 23.8 ± 1.5 | 33.9 ± 2.0 | 40.7 ± 1.6 |
ADL | 3.2 ± 0.7 | 4.6 ± 0.1 | - | - | 1.9 ± 0.8 | 1.7 ± 0.7 | 7.2 ± 0.7 | 6.0 ± 0.4 |
NDFD24h, %NDF | 50.9 ± 7.2 | 43.6 ± 0.6 | - | - | - | - | 32.8 ± 6.4 | 45.9 ± 2.6 |
EE | 3.2 ± 0.3 | 3.6 ± 0.1 | - | - | 0.9 ± 0.4 | 0.9 ± 0.4 | 1.9 ± 0.5 | 1.3 ± 0.3 |
Starch | 21.3 ± 0.8 | 20.6 ± 1.1 | 59.6 ± 2.7 | 60.3 ± 4.1 | - | . | 2.9 ± 0.2 | 3.5 ± 0.8 |
Sugar | 1.3 ± 0.5 | 2.1 ± 0.1 | - | - | 6.6 ± 2.2 | 7.1 ± 2.4 | 7.9 ± 1.5 | 9.2 ± 0.2 |
Mycotoxins (µg/kg DM) | ||||||||
FB1 | 96.2 ± 8.7 | 106.2 ± 13.2 | <10 | 645.3 ± 43.2 | <10 | 13.1 ± 2.4 | <10 | <10 |
FB2 | 38.3 ± 4.8 | 21.4 ± 1.3 | <10 | 278.3 ± 25.9 | <10 | <10 | <10 | <10 |
ZEN | <10 | 238.2 ± 21.9 | <10 | 76.1 ± 21.1 | 2911.4 ± 121.4 | <10 | <10 | <10 |
DON | 713.2 ± 54.2 | 635.6 ± 47.2 | 38.3 ± 13.1 | 1988.1 ± 234.2 | 45.3 ± 5.6 | 27.5 ± 3.8 | 519.2 ± 78.5 | 355.3 ± 43.2 |
Fermentation parameters (%DM) | ||||||||
pH | 3.68 ± 0.05 | 3.83 ± 0.02 | ||||||
Ethanol | 0.52 ± 0.34 | 1.10 ± 0.13 | ||||||
Acetic acid | 3.02 ± 0.55 | 3.55 ± 0.63 | ||||||
Propionic acid | 0.06 ± 0.02 | 0.28 ± 0.15 | ||||||
Isobutyric acid | 0.00 ± 0.00 | 0.00 ± 0.00 | ||||||
1,2 Propanediol | 2.42 ± 0.97 | 1.87 ± 1.12 | ||||||
Butyric acid | 0.02 ± 0.02 | 0.01 ± 0.01 | ||||||
Isovalerianic acid | 0.00 ± 0.00 | 0.00 ± 0.00 | ||||||
Valerianic acid | 0.00 ± 0.00 | 0.00 ± 0.00 | ||||||
Lactic acid | 5.77 ± 0.91 | 6.40 ± 0.49 | ||||||
Aldehydes tot. | 0.01 ± 0.00 | 0.01 ± 0.00 | ||||||
Alcohols tot. | 0.75 ± 0.47 | 1.87 ± 0.41 | ||||||
Ketons tot. | 0.00 ± 0.00 | 0.00 ± 0.00 | ||||||
Esters tot. | 0.02 ± 0.01 | 0.04 ± 0.01 |
Items | Treatment | Period | SEM | P of the Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CTR | MTX | MMP | 1 | 2 | Period | Treatment (T) | Day (D) | D * T | |||
Feeding Behavior | |||||||||||
DMI | kg/cow/day | 25.21 | 25.18 | 25.67 | 24.34 | 26.36 | 1.270 | 0.032 | 0.896 | 0.132 | 0.328 |
DMI | % BW | 4.01 | 3.85 | 4.03 | 3.81 | 4.17 | 0.031 | 0.046 | 0.503 | 0.140 | 0.247 |
Rumination time | Min | 519 | 504 | 526 | 519 | 513 | 50.2 | 0.848 | 0.833 | 0.022 | 0.328 |
Body weight | Kg | 622 | 653 | 638 | 641 | 635 | 17.6 | 0.651 | 0.080 | 0.016 | 0.284 |
Milk yields | |||||||||||
Milk yield | L/cow/day | 36.9 | 36.7 | 35.8 | 35.6 | 37.4 | 1.08 | 0.465 | 0.928 | <0.001 | 0.621 |
Milk yield | kg/cow/day | 38.0 | 37.8 | 36.8 | 36.7 | 38.4 | 1.15 | 0.465 | 0.982 | <0.001 | 0.621 |
FPCM | kg/cow/day | 38.5 | 37.7 | 38.6 | 34.4 | 40.7 | 6.70 | 0.060 | 0.637 | - | - |
ECM | kg/cow/day | 35.5 | 34.2 | 35.8 | 33.2 | 37.7 | 6.16 | 0.051 | 0.653 | - | - |
Milk yield/DMI | dmnl | 1.53 | 1.53 | 1.46 | 1.53 | 1.48 | 0.010 | 0.531 | 0.763 | 0.168 | 0.539 |
Milk parameters | |||||||||||
Fat | % | 3.71 | 3.91 | 3.99 | 4.17 | 3.56 | 0.406 | <0.001 | 0.522 | - | - |
kg/cow/day | 1.37 | 1.30 | 1.42 | 1.30 | 1.42 | 0.270 | 0.387 | 0.667 | - | - | |
Protein | % | 3.23 | 3.28 | 3.28 | 3.29 | 3.22 | 0.235 | 0.578 | 0.927 | - | - |
kg/cow/day | 1.20 | 1.10 | 1.17 | 1.02 | 1.28 | 0.199 | 0.012 | 0.618 | - | - | |
Casein | % | 2.55 | 2.60 | 2.61 | 2.62 | 2.55 | 0.279 | 0.613 | 0.924 | - | - |
kg/cow/day | 0.94 | 0.87 | 0.93 | 0.81 | 1.01 | 0.160 | 0.016 | 0.624 | - | - | |
Lactose | % | 4.79 | 4.84 | 4.83 | 4.79 | 4.85 | 0.166 | 0.359 | 0.785 | - | - |
kg/cow/day | 1.78 | 1.64 | 1.74 | 1.49 | 1.94 | 0.329 | <0.001 | 0.703 | - | - | |
MUN | mg/100 mL | 25.3 | 27.5 | 24.7 | 29.5 | 22.1 | 4.30 | <0.001 | 0.552 | ||
LogSCC | Log10(cells/mL) | 5.01 | 5.03 | 4.67 | 5.21 | 4.60 | 0.668 | 0.065 | 0.540 | - | - |
Items | Treatment | Period | SEM | P of the Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CTR | MTX | MMP | 1 | 2 | Period | Treatment (T) | Day (D) | D * T | |||
Feeding Behavior | |||||||||||
DMI | kg/cow/day | 25.62 | 26.09 | 26.36 | 26.47 | 25.58 | 0.401 | 0.238 | 0.714 | <0.001 | 0.987 |
DMI | % BW | 4.02 | 3.98 | 4.09 | 4.10 | 3.96 | 0.01 | 0.290 | 0.829 | <0.001 | 0.986 |
Rumination time | min | 512 | 505 | 524 | 518 | 510 | 14.53 | 0.684 | 0.756 | <0.001 | 0.800 |
Body weight | kg | 638 | 657 | 647 | 646 | 648 | 8.0 | 0.858 | 0.358 | <0.001 | 0.835 |
Body condition score | 1–5 scale | 3.17 | 3.24 | 3.18 | 3.10 | 3.28 | 0.023 | 0.212 | 0.456 | - | - |
Milk yields | |||||||||||
Milk yield | L/cow/day | 37.2 | 36.5 | 38.2 | 37.6 | 37.1 | 0.27 | 0.834 | 0.839 | <0.001 | 0.959 |
Milk yield | kg/cow/day | 38.3 | 37.6 | 39.4 | 38.7 | 37.2 | 0.29 | 0.834 | 0.839 | <0.001 | 0.959 |
3.5% FCM | kg/cow/day | 39.9 | 39.7 | 41.6 | 41.3 | 39.5 | 0.762 | 0.431 | 0.752 | 0.008 | 0.017 |
ECM | kg/cow/day | 37.8 | 36.6 | 38.4 | 38.1 | 36.5 | 0.669 | 0.436 | 0.761 | 0.006 | 0.02 |
Milk yield/DMI | dmnl | 1.54 | 1.46 | 1.52 | 1.50 | 1.51 | 0.076 | 0.895 | 0.692 | 0.02 | 0.999 |
Milk parameters | |||||||||||
Fat | % | 3.52 | 3.74 | 3.80 | 3.77 | 3.60 | 0.011 | 0.133 | 0.138 | <0.001 | 0.565 |
kg/cow/day | 1.37 | 1.42 | 1.49 | 1.47 | 1.38 | 0.002 | 0.245 | 0.374 | <0.001 | 0.212 | |
Protein | % | 3.36 | 3.26 | 3.31 | 3.31 | 3.30 | 0.016 | 0.921 | 0.383 | 0.007 | 0.194 |
kg/cow/day | 1.31 | 1.23 | 1.30 | 1.30 | 1.26 | 0.0007 | 0.643 | 0.930 | 0.223 | 0.006 | |
Casein | % | 2.67 | 2.59 | 2.63 | 2.63 | 2.63 | 0.0018 | 0.993 | 0.775 | 0.003 | 0.274 |
kg/cow/day | 1.04 | 0.98 | 1.03 | 1.03 | 1.01 | 0.0005 | 0.689 | 0.907 | 0.024 | 0.365 | |
Lactose | % | 4.75 | 4.74 | 4.80 | 4.75 | 4.77 | 0.009 | 0.639 | 0.751 | 0.017 | 0.939 |
kg/cow/day | 1.86 | 1.81 | 1.90 | 1.87 | 1.84 | 0.0013 | 0.741 | 0.910 | 0.276 | 0.030 | |
MUN | mg/100 ml | 31.6 | 32.7 | 33.7 | 31.9 | 33.5 | 0.859 | 0.125 | 0.301 | 0.002 | 0.965 |
LogSCC | Log10(cells/mL) | 4.68 | 4.88 | 4.60 | 4.81 | 4.63 | 0.006 | 0.400 | 0.506 | 0.119 | 0.142 |
Items | Treatment | Period | SEM | P of the Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CTR | MTX | MMP | 1 | 2 | Period | Treatment (T) | Week (W) | W * T | |||
Diet digestibility | |||||||||||
Apparent NDF digestibility | % | 65.68 | 66.87 | 64.27 | 66.35 | 64.85 | 0.632 | 0.039 | 0.126 | 0.021 | 0.963 |
Apparent starch digestibility | % | 98.21 | 98.12 | 97.48 | 98.30 | 97.57 | 0.050 | <0.001 | 0.060 | 0.610 | 0.974 |
Apparent CP digestibility | % | 81.61 | 81.84 | 79.32 | 81.73 | 80.11 | 0.287 | <0.001 | <0.001 | 0.363 | 0.612 |
Fecal fermentation profile | |||||||||||
pH of feces | dmnl | 6.83 | 6.86 | 6.76 | 6.96 | 6.68 | 0.002 | <0.001 | 0.378 | 0.504 | 0.919 |
Volatilome fecal profile | |||||||||||
Acetic acid | mmol/kg DM | 167.63 | 169.25 | 178.99 | 148.73 | 195.17 | 168.13 | <0.001 | 0.683 | 0.04 | 0.513 |
Propionic acid | mmol/kg DM | 47.39 | 48.85 | 48.27 | 40.31 | 56.03 | 12.201 | <0.001 | 0.946 | 0.02 | 0.998 |
Butyric acid | mmol/kg DM | 22.02 | 22.52 | 24.73 | 19.00 | 27.17 | 3.523 | <0.001 | 0.595 | 0.004 | 0.556 |
Isobutyric acid | mmol/kg DM | 2.34 | 2.95 | 2.48 | 2.27 | 2.91 | 0.073 | <0.001 | 0.142 | 0.058 | 0.922 |
Isovalerianic acid | mmol/kg DM | 2.14 | 2.71 | 2.20 | 1.81 | 2.89 | 0.079 | <0.001 | 0.066 | <0.001 | 0.578 |
Valerianic acid | mmol/kg DM | 3.39 | 3.69 | 3.47 | 2.96 | 4.06 | 0.096 | <0.001 | 0.393 | <0.001 | 0.384 |
Methanol | mmol/kg DM | 0.76 | 0.29 | 0.28 | 0.32 | 0.56 | 0.200 | 0.288 | 0.296 | 0.438 | 0.249 |
Ethanol | mmol/kg DM | 4.83 | 4.01 | 5.81 | 4.22 | 5.54 | 1.906 | 0.086 | 0.696 | 0.476 | 0.836 |
Volatile fatty acid tot. | mmol/kg DM | 244.90 | 249.96 | 260.13 | 215.09 | 288.24 | 320.11 | <0.001 | 0.836 | 0.002 | 0.634 |
Aldehydes tot. | mmol/kg DM | 2.51 | 1.85 | 2.33 | 2.60 | 1.87 | 0.528 | 0.070 | 0.392 | 0.002 | 0.740 |
Alcohols tot. | mmol/kg DM | 6.41 | 4.78 | 6.88 | 5.14 | 6.92 | 2.883 | 0.040 | 0.585 | 0.913 | 0.801 |
Items | Treatment | Period | SEM | P of the Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CTR | MTX | MMP | 1 | 2 | Period | Treatment (T) | Week (W) | W * T | |||
Plasma components | |||||||||||
Indexes of energy metabolism–protein metabolism | |||||||||||
Glucose | mmol/L | 4.36 | 4.28 | 4.28 | 4.31 | 4.30 | 0.008 | 0.895 | 0.819 | 0.853 | 0.704 |
Cholesterol | mmol/L | 4.74 | 4.81 | 4.61 | 4.55 | 4.89 | 0.059 | 0.190 | 0.576 | 0.210 | 0.624 |
NEFA | mmol/L | 0.10 | 0.10 | 0.13 | 0.11 | 0.10 | 0.007 | 0.734 | 0.245 | 0.009 | 0.549 |
BOHB | mmol/L | 0.31 | 0.38 | 0.36 | 0.37 | 0.34 | 0.003 | 0.450 | 0.051 | 0.148 | 0.074 |
Urea | mmol/L | 5.56 | 6.18 | 5.39 | 5.93 | 5.49 | 0.158 | 0.244 | 0.712 | 0.032 | 0.751 |
Creatinine | μmol/L | 84.45 | 82.59 | 82.49 | 80.41 | 85.95 | 1.679 | <0.001 | 0.814 | <0.001 | 0.202 |
Indexes of mineral metabolism | |||||||||||
Calcium | mmol/L | 2.52 | 2.48 | 2.44 | 2.46 | 2.50 | 0.040 | 0.235 | 0.290 | 0.871 | 0.404 |
Phosphorous | mmol/L | 1.71 | 1.86 | 1.73 | 1.82 | 1.72 | 0.018 | 0.268 | 0.764 | 0.524 | 0.429 |
Magnesium | mmol/L | 1.08 | 1.05 | 1.06 | 1.03 | 1.10 | 0.020 | 0.010 | 0.972 | <0.001 | 0.622 |
Zinc | mcmol/L | 16.47 | 17.07 | 16.74 | 16.18 | 17.34 | 0.918 | 0.311 | 0.988 | 0.159 | 0.946 |
Indexes of liver functionality | |||||||||||
GGT | U/L | 33.28 | 27.64 | 30.05 | 27.74 | 32.91 | 3.288 | 0.052 | 0.317 | 0.016 | 0.420 |
GOT | U/L | 122.50 | 102.25 | 109.64 | 105.63 | 117.30 | 8.080 | 0.311 | 0.250 | 0.277 | 0.382 |
Alkaline phosphatase | U/L | 51.18 | 57.81 | 61.52 | 57.92 | 55.84 | 26.898 | 0.775 | 0.515 | 0.652 | 0.034 |
Albumin | g/L | 36.07 | 35.93 | 35.83 | 35.47 | 36.42 | 0.345 | 0.049 | 0.377 | 0.019 | 0.149 |
Bilirubin | mcmol/L | 1.65 | 1.53 | 1.49 | 1.45 | 1.66 | 0.021 | 0.105 | 0.892 | 0.310 | 0.754 |
Paraoxonase | U/ml | 90.48 | 85.40 | 90.57 | 90.04 | 87.59 | 17.277 | 0.518 | 0.245 | 0.782 | 0.098 |
Indexes of innate immune system and oxidative stress | |||||||||||
Haptoglobin | g/L | 0.28 | 0.24 | 0.19 | 0.25 | 0.22 | 0.040 | 0.495 | 0.205 | 0.178 | 0.562 |
Ceruloplasmin | mcmol/L | 2.93 | 2.77 | 2.70 | 2.80 | 2.80 | 0.027 | 0.972 | 0.602 | 0.698 | 0.613 |
Total proteins | g/L | 83.19 | 84.18 | 82.49 | 83.52 | 83.05 | 1.672 | 0.669 | 0.270 | 0.181 | 0.342 |
Globulin | g/L | 47.12 | 48.23 | 46.66 | 48.05 | 46.63 | 1.914 | 0.280 | 0.160 | 0.819 | 0.130 |
MPO | U/L | 446.65 | 466.71 | 470.62 | 453.86 | 468.79 | 476.04 | 0.279 | 0.755 | 0.008 | 0.991 |
Total antioxidants (FRAP) | μmol/L | 132.81 | 133.57 | 134.48 | 127.77 | 139.48 | 39.783 | 0.017 | 0.751 | 0.130 | 0.515 |
ROM | mgH2O2/100 mL | 16.33 | 15.85 | 15.19 | 15.86 | 15.73 | 0.867 | 0.891 | 0.848 | 0.145 | 0.740 |
Items | Treatment | Period | SEM | P of the model | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CTR | MTX | MMP | 1 | 2 | Period | Treatment (T) | Week (W) | W * T | |||
Milk coagulation properties | |||||||||||
pH | dmnl | 6.46 | 6.49 | 6.47 | 6.51 | 6.44 | 0.008 | <0.001 | 0.158 | 0.0023 | 0.533 |
Casein index | % | 78.8 | 79.4 | 80.2 | 80.3 | 78.7 | 0.800 | 0.001 | 0.225 | 0.006 | 0.624 |
Milk total solid | % | 12.69 | 12.76 | 12.87 | 13.01 | 12.54 | 0.04 | 0.108 | 0.666 | 0.009 | 0.074 |
Milk total solid (w/o fat) | % | 9.21 | 9.11 | 9.15 | 9.24 | 9.08 | 0.007 | 0.196 | 0.662 | 0.049 | 0.443 |
r | Min | 24.2 | 29.0 | 25.8 | 26.9 | 25.8 | 6.92 | 0.744 | 0.171 | 0.418 | 0.274 |
K20 | Min | 8.4 | 11.9 | 8.7 | 10.0 | 9.3 | 1.65 | 0.719 | 0.237 | 0.225 | 0.062 |
a30 | Mm | 17.9 | 13.2 | 23.7 | 18.1 | 18.5 | 11.98 | 0.927 | 0.338 | 0.313 | 0.460 |
a45 | Mm | 29.3 | 24.7 | 32.3 | 31.0 | 26.4 | 15.64 | 0.251 | 0.177 | 0.948 | 0.202 |
a60 | Mm | 29.0 | 26.3 | 28.6 | 31.6 | 24.4 | 28.58 | 0.024 | 0.408 | 0.486 | 0.514 |
Rct_eq | Min | 24.9 | 29.0 | 21.3 | 25.5 | 24.6 | 3.69 | 0.716 | 0.025 | 0.781 | 0.112 |
tmax | Min | 48.0 | 52.3 | 43.1 | 50.8 | 44.9 | 10.15 | 0.051 | 0.085 | 0.545 | 0.847 |
CFmax | Mm | 34.3 | 28.5 | 35.5 | 35.7 | 29.8 | 12.39 | 0.074 | 0.079 | 0.957 | 0.082 |
CFp | Mm | 46.0 | 38.2 | 47.5 | 47.9 | 40.0 | 22.25 | 0.074 | 0.079 | 0.957 | 0.082 |
kcf | %/min | 10.3 | 9.2 | 12.7 | 9.5 | 11.9 | 4.17 | 0.081 | 0.793 | 0.216 | 0.544 |
ksr | %/min | 0.9 | 0.8 | 1.3 | 0.8 | 1.2 | 0.09 | 0.085 | 0.829 | 0.077 | 0.410 |
CY parameters | |||||||||||
CY curd | % | 18.91 | 18.51 | 19.62 | 20.23 | 17.79 | 1.089 | 0.002 | 0.924 | 0.030 | 0.703 |
CY solid | % | 6.51 | 6.30 | 6.59 | 6.70 | 6.24 | 0.074 | 0.163 | 0.997 | 0.010 | 0.303 |
CY water | % | 12.41 | 11.95 | 13.02 | 13.53 | 11.38 | 1.010 | <0.001 | 0.577 | 0.201 | 0.958 |
REC parameters | |||||||||||
REC protein | % | 77.82 | 76.12 | 79.32 | 78.60 | 76.91 | 2.480 | 0.148 | 0.272 | 0.207 | 0.923 |
REC fat | % | 82.78 | 80.65 | 83.54 | 82.42 | 82.22 | 16.124 | 0.951 | 0.575 | 0.078 | 0.363 |
REC solids | % | 51.20 | 48.88 | 51.06 | 51.31 | 49.44 | 3.693 | 0.266 | 0.844 | 0.135 | 0.698 |
REC energy | % | 64.75 | 63.04 | 65.63 | 65.18 | 63.77 | 2.835 | 0.470 | 0.855 | 0.017 | 0.457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catellani, A.; Ghilardelli, F.; Trevisi, E.; Cecchinato, A.; Bisutti, V.; Fumagalli, F.; Swamy, H.V.L.N.; Han, Y.; van Kuijk, S.; Gallo, A. Effects of Supplementation of a Mycotoxin Mitigation Feed Additive in Lactating Dairy Cows Fed Fusarium Mycotoxin-Contaminated Diet for an Extended Period. Toxins 2023, 15, 546. https://doi.org/10.3390/toxins15090546
Catellani A, Ghilardelli F, Trevisi E, Cecchinato A, Bisutti V, Fumagalli F, Swamy HVLN, Han Y, van Kuijk S, Gallo A. Effects of Supplementation of a Mycotoxin Mitigation Feed Additive in Lactating Dairy Cows Fed Fusarium Mycotoxin-Contaminated Diet for an Extended Period. Toxins. 2023; 15(9):546. https://doi.org/10.3390/toxins15090546
Chicago/Turabian StyleCatellani, Alessandro, Francesca Ghilardelli, Erminio Trevisi, Alessio Cecchinato, Vittoria Bisutti, Francesca Fumagalli, H. V. L. N. Swamy, Yanming Han, Sandra van Kuijk, and Antonio Gallo. 2023. "Effects of Supplementation of a Mycotoxin Mitigation Feed Additive in Lactating Dairy Cows Fed Fusarium Mycotoxin-Contaminated Diet for an Extended Period" Toxins 15, no. 9: 546. https://doi.org/10.3390/toxins15090546
APA StyleCatellani, A., Ghilardelli, F., Trevisi, E., Cecchinato, A., Bisutti, V., Fumagalli, F., Swamy, H. V. L. N., Han, Y., van Kuijk, S., & Gallo, A. (2023). Effects of Supplementation of a Mycotoxin Mitigation Feed Additive in Lactating Dairy Cows Fed Fusarium Mycotoxin-Contaminated Diet for an Extended Period. Toxins, 15(9), 546. https://doi.org/10.3390/toxins15090546