Elucidation of Medusozoan (Jellyfish) Venom Constituent Activities Using Constellation Pharmacology
Abstract
:1. Introduction
Phenotypic Characterization of Test Compounds
2. Results
2.1. Identification of Pore-Forming Activity from Crude Venom Using Calcium Imaging
2.2. Assessing the Activity of Selected Venom Component Fractions
2.3. Cell-Specific Effects Elicited by Peak III Fractions
2.4. Constellation Pharmacology as Bioactivity-Driven Isolation Platform for Jellyfish Venom
3. Discussion
3.1. Medusozoan Venom Recovery
3.2. Medusozoan Venom Bioactivity
3.3. Future Directions
4. Conclusions
5. Materials and Methods
5.1. Jellyfish Collection and Venom Preparation
5.2. Size-Exclusion High-Pressure Liquid Chromatography
5.3. Primary DRG Cell Culture
5.4. Constellation Pharmacology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yanagihara, A.; Shohet, R.V. Cubozoan Venom-Induced Cardiovascular Collapse Is Caused by Hyperkalemia and Prevented by Zinc Gluconate in Mice. PLoS ONE 2012, 7, e51368. [Google Scholar] [CrossRef]
- Yanagihara, A.; Wilcox, C.; Smith, J.; Surrett, G. Cubozoan Envenomations: Clinical Features, Pathophysiology, and Management. In The Cnidaria, Past Present and Future; Springer International Publishing: Cham, Switzerland, 2016; pp. 637–652. [Google Scholar]
- Jouiaei, M.; Yanagihara, A.A.; Madio, B.; Nevalainen, T.J.; Alewood, P.F.; Fry, B.G. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins 2015, 7, 2251–2271. [Google Scholar] [CrossRef]
- D’Ambra, I.; Lauritano, C. A Review of Toxins from Cnidaria. Mar. Drugs 2020, 18, 507. [Google Scholar] [CrossRef]
- Tibballs, J.; Yanagihara, A.A.; Turner, H.C.; Winkel, K. Immunological and Toxinological Responses to Jellyfish Stings. Inflamm. Allergy Drug Targets 2011, 10, 438–446. [Google Scholar] [CrossRef]
- Brinkman, D.L.; Jia, X.; Potriquet, J.; Kumar, D.; Dash, D.; Kvaskoff, D.; Mulvenna, J. Transcriptome and Venom Proteome of the Box Jellyfish Chironex Fleckeri. BMC Genom. 2015, 16, 407. [Google Scholar] [CrossRef]
- Brinkman, D.L.; Burnell, J.N. Biochemical and Molecular Characterisation of Cubozoan Protein Toxins. Toxicon 2009, 54, 1162–1173. [Google Scholar] [CrossRef]
- Jouiaei, M.; Casewell, N.R.; Yanagihara, A.A.; Nouwens, A.; Cribb, B.W.; Whitehead, D.; Jackson, T.N.W.; Ali, S.A.; Wagstaff, S.C.; Koludarov, I.; et al. Firing the Sting: Chemically Induced Discharge of Cnidae Reveals Novel Proteins and Peptides from Box Jellyfish (Chironex fleckeri) Venom. Toxins 2015, 7, 936–950. [Google Scholar] [CrossRef]
- Beress, L.; Bruhn, T.; Sanchez-Rodriguez, J.; Wachter, E.; Schweitz, H. Sea Anemone Toxins, Action on Na+ Channels and K+ Channels: Isolation and Characterization. In Animal Toxins—Facts and Protocols; Rochat, H., Martin-Eauclaire, M., Eds.; Birkhauser: Basel, Swithzerland, 2000; ISBN 3-7643-6020-8/3-7643-5983-8. [Google Scholar]
- Mandrek, K.; Milenov, K. Responses of Porcine Gastric and Duodenal Smooth Muscle to VIP. J. Auton. Pharmacol. 1991, 11, 353–364. [Google Scholar] [CrossRef]
- Wollberg, Z.; Bdolah, A.; Galron, R.; Sokolovsky, M.; Kochva, E. Contractile Effects and Binding Properties of Endothelins/Sarafotoxins in the Guinea Pig Ileum. Eur. J. Pharmacol. 1991, 198, 31–36. [Google Scholar] [CrossRef]
- Fletcher, J.E.; Adnet, P.J.; Reyford, H.; Wieland, S.J.; Stewart, S.L.; Rosenberg, H. ATX II, a Sodium Channel Toxin, Sensitizes Skeletal Muscle to Halothane, Caffeine, and Ryanodine. Anesthesiology 1999, 90, 1294–1301. [Google Scholar] [CrossRef]
- Arkin, M.R.; Connor, P.R.; Emkey, R.; Garbison, K.E.; Heinz, B.A.; Wiernicki, T.R.; Johnston, P.A.; Kandasamy, R.A.; Rankl, N.B.; Sittampalam, S. FLIPRTM Assays for GPCR and Ion Channel Targets. In Assay Guidance Manual; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Prashanth, J.R.; Hasaballah, N.; Vetter, I. Pharmacological Screening Technologies for Venom Peptide Discovery. Neuropharmacology 2017, 127, 4–19. [Google Scholar] [CrossRef]
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2001; ISBN 978-0-87893-321-1. [Google Scholar]
- Maatuf, Y.; Priel, A. High-Throughput Calcium Imaging Screen of Toxins’ Function in Dissociated Sensory Neurons. In Snake and Spider Toxins. Methods in Molecular Biology; Priel, A., Ed.; Humana: New York, NY, USA, 2020; Volume 2068, pp. 275–282. [Google Scholar] [CrossRef]
- Teichert, R.W.; Memon, T.; Aman, J.W.; Olivera, B.M. Using Constellation Pharmacology to Define Comprehensively a Somatosensory Neuronal Subclass. Proc. Natl. Acad. Sci. USA 2014, 111, 2319–2324. [Google Scholar] [CrossRef]
- Teichert, R.W.; Raghuraman, S.; Memon, T.; Cox, J.L.; Foulkes, T.; Rivier, J.E.; Olivera, B.M. Characterization of Two Neuronal Subclasses through Constellation Pharmacology. Proc. Natl. Acad. Sci. USA 2012, 109, 12758–12763. [Google Scholar] [CrossRef]
- Teichert, R.W.; Schmidt, E.W.; Olivera, B.M. Constellation Pharmacology: A New Paradigm for Drug Discovery. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 573–589. [Google Scholar] [CrossRef]
- Curtice, K.J.; Leavitt, L.S.; Chase, K.; Raghuraman, S.; Horvath, M.P.; Olivera, B.M.; Teichert, R.W. Classifying Neuronal Subclasses of the Cerebellum through Constellation Pharmacology. J. Neurophysiol. 2016, 115, 1031–1042. [Google Scholar] [CrossRef]
- Giacobassi, M.J.; Leavitt, L.S.; Raghuraman, S.; Alluri, R. An Integrative Approach to the Facile Functional Classification of DRG Neuronal Subclasses. Proc. Natl. Acad. Sci. USA 2020, 117, 5494–5501. [Google Scholar] [CrossRef]
- Raghuraman, S.; Garcia, A.J.; Anderson, T.M.; Twede, V.D.; Curtice, K.J.; Chase, K.; Ramirez, J.-M.; Olivera, B.M.; Teichert, R.W. Defining Modulatory Inputs into CNS Neuronal Subclasses by Functional Pharmacological Profiling. Proc. Natl. Acad. Sci. USA 2014, 111, 6449–6454. [Google Scholar] [CrossRef]
- Inagaki, R.T.; Raghuraman, S.; Chase, K.; Steele, T.; Zornik, E.; Olivera, B.; Yamaguchi, A. Molecular Characterization of Frog Vocal Neurons Using Constellation Pharmacology. J. Neurophysiol. 2020, 123, 2297–2310. [Google Scholar] [CrossRef]
- Raghuraman, S.; Xie, J.Y.; Giacobassi, M.J.; Tun, J.O.; Chase, K.; Lu, D.; Teichert, R.W.; Porreca, F.; Olivera, B.M. Chronicling Changes in the Somatosensory Neurons after Peripheral Nerve Injury. Proc. Natl. Acad. Sci. USA 2020, 117, 26414–26421. [Google Scholar] [CrossRef]
- Imperial, J.S.; Cabang, A.B.; Song, J.; Raghuraman, S.; Gajewiak, J.; Watkins, M.; Showers-Corneli, P.; Fedosov, A.; Concepcion, G.P.; Terlau, H.; et al. A Family of Excitatory Peptide Toxins from Venomous Crassispirine Snails: Using Constellation Pharmacology to Assess Bioactivity. Toxicon Off. J. Int. Soc. Toxinology 2014, 89, 45–54. [Google Scholar] [CrossRef]
- Chua, V.M.; Gajewiak, J.; Watkins, M.; Espino, S.S.; Ramiro, I.B.L.; Omaga, C.A.; Imperial, J.S.; Carpio, L.P.D.; Fedosov, A.; Safavi-Hemami, H.; et al. Purification and Characterization of the Pink-Floyd Drillipeptide, a Bioactive Venom Peptide from Clavus davidgilmouri (Gastropoda: Conoidea: Drilliidae). Toxins 2020, 12, 508. [Google Scholar] [CrossRef]
- Bosse, G.D.; Urcino, C.; Watkins, M.; Flórez Salcedo, P.; Kozel, S.; Chase, K.; Cabang, A.; Espino, S.S.; Safavi-Hemami, H.; Raghuraman, S.; et al. Discovery of a Potent Conorfamide from Conus episcopatus Using a Novel Zebrafish Larvae Assay. J. Nat. Prod. 2021, 84, 1232–1243. [Google Scholar] [CrossRef]
- Neves, J.L.B.; Urcino, C.; Chase, K.; Dowell, C.; Hone, A.J.; Morgenstern, D.; Chua, V.M.; Ramiro, I.B.L.; Imperial, J.S.; Leavitt, L.S.; et al. Using Constellation Pharmacology to Characterize a Novel α-Conotoxin from Conus ateralbus. Mar. Drugs 2024, 22, 118. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Steinhäuser, C. Ion Channels in Glial Cells. Brain Res. Brain Res. Rev. 2000, 32, 380–412. [Google Scholar] [CrossRef]
- Hanani, M.; Spray, D.C. Emerging Importance of Satellite Glia in Nervous System Function and Dysfunction. Nat. Rev. Neurosci. 2020, 21, 485–498. [Google Scholar] [CrossRef]
- Cherkas, P.S.; Huang, T.-Y.; Pannicke, T.; Tal, M.; Reichenbach, A.; Hanani, M. The Effects of Axotomy on Neurons and Satellite Glial Cells in Mouse Trigeminal Ganglion. Pain 2004, 110, 290–298. [Google Scholar] [CrossRef]
- Paguigan, N.; Tun, J.O.; Leavitt, L.S.; Chase, K.; Dowell, C.; Deering-Rice, C.E.; Lim, A.L.; Karthikeyan, M.; Hughen, R.W.; Zhang, J.; et al. Nicotinic Acetylcholine Receptor Partial Antagonist Polyamides from Tunicates and Their Predatory Sea Slugs. ACS Chem. Neurosci. 2021, 12, 2693–2704. [Google Scholar] [CrossRef]
- Chung, J.J.; Ratnapala, L.A.; Cooke, I.M.; Yanagihara, A.A. Partial Purification and Characterization of a Hemolysin (CAH1) from Hawaiian Box Jellyfish (Carybdea alata) Venom. Toxicon 2001, 39, 981–990. [Google Scholar] [CrossRef]
- Flecker, H. Injuries by Unknown Agents to Bathers in North Queensland. Med. J. Aust. 1945, 20, 128–129. [Google Scholar]
- Flecker, H. Fatal Stings to North Queensland Bathers. Med. J. Aust. 1952, 1, 35–38. [Google Scholar] [CrossRef]
- Barnes, J.H. Observations on Jellyfish Stingings in North Queensland. Med. J. Aust. 1960, 2, 993–999. [Google Scholar] [CrossRef]
- Sonthichai, C.; Tikumrum, S.; Smithsuwan, P.; Bussarawit, S.; Sermgew, T. Jellyfish Envenomation Events in Selected Coastal Provinces of Thailand 1998-2008. Outbreak Surveill. Investig. Response 2009, 2, 9–12. [Google Scholar] [CrossRef]
- Pirkle, C.M.; Yanagihara, A.A. Insights in Public Health: Trapped in a Sea of Uncertainty: Limitations in Unintentional Injury Research in the Philippines and Interdisciplinary Solutions to Reduce Fatal Box Jellyfish Stings. Hawaii J. Med. Public Health J. Asia Pac. Med. Public Health 2019, 78, 30–34. [Google Scholar]
- Lawley, J.W.; Ames, C.L.; Bentlage, B.; Yanagihara, A.; Goodwill, R.; Kayal, E.; Hurwitz, K.; Collins, A.G. Box Jellyfish Alatina alata Has a Circumtropical Distribution. Biol. Bull. 2016, 231, 152–169. [Google Scholar] [CrossRef]
- Yanagihara, A.A. Methods and Compositions for Treating and/or Inhibiting Toxins Using Copper-Containing Compounds. U.S. Patent No. 10,172,883, 8 January 2019. [Google Scholar]
- Le Gall, F.; Favreau, P.; Richard, G.; Letourneux, Y.; Molgó, J. The Strategy Used by Some Piscivorous Cone Snails to Capture Their Prey: The Effects of Their Venoms on Vertebrates and on Isolated Neuromuscular Preparations. Toxicon 1999, 37, 985–998. [Google Scholar] [CrossRef]
- Van den Bergh, V.; Boens, N.; De Schryver, F.C.; Ameloot, M.; Steels, P.; Gallay, J.; Vincent, M.; Kowalczyk, A. Photophysics of the Fluorescent Ca2+ Indicator Fura-2. Biophys. J. 1995, 68, 1110–1119. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The Capsaicin Receptor: A Heat-Activated Ion Channel in the Pain Pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Jordt, S.-E.; Bautista, D.M.; Chuang, H.; McKemy, D.D.; Zygmunt, P.M.; Högestätt, E.D.; Meng, I.D.; Julius, D. Mustard Oils and Cannabinoids Excite Sensory Nerve Fibres through the TRP Channel ANKTM1. Nature 2004, 427, 260–265. [Google Scholar] [CrossRef]
- McKemy, D.D.; Neuhausser, W.M.; Julius, D. Identification of a Cold Receptor Reveals a General Role for TRP Channels in Thermosensation. Nature 2002, 416, 52–58. [Google Scholar] [CrossRef]
- Cordeiro, S.; Finol-Urdaneta, R.K.; Köpfer, D.; Markushina, A.; Song, J.; French, R.J.; Kopec, W.; de Groot, B.L.; Giacobassi, M.J.; Leavitt, L.S.; et al. Conotoxin κM-RIIIJ, a Tool Targeting Asymmetric Heteromeric Kv1 Channels. Proc. Natl. Acad. Sci. USA 2019, 116, 1059–1064. [Google Scholar] [CrossRef]
- Honma, T.; Shiomi, K. Peptide Toxins in Sea Anemones: Structural and Functional Aspects. Mar. Biotechnol. 2006, 8, 1–10. [Google Scholar] [CrossRef]
- Honma, T.; Kawahata, S.; Ishida, M.; Nagai, H.; Nagashima, Y.; Shiomi, K. Novel Peptide Toxins from the Sea Anemone Stichodactyla haddoni. Peptides 2008, 29, 536–544. [Google Scholar] [CrossRef]
- Oliveira, J.S.; Zaharenko, A.J.; Ferreira, W.A.; Konno, K.; Shida, C.S.; Richardson, M.; Lúcio, A.D.; Beirão, P.S.L.; de Freitas, J.C. BcIV, a New Paralyzing Peptide Obtained from the Venom of the Sea Anemone Bunodosoma Caissarum. A Comparison with the Na+ Channel Toxin BcIII. Biochim. Biophys. Acta 2006, 1764, 1592–1600. [Google Scholar] [CrossRef]
- Cuypers, E.; Peigneur, S.; Debaveye, S.; Shiomi, K.; Tytgat, J. TRPV1 Channel as New Target for Marine Toxins: Example of Gigantoxin I, a Sea Anemone Toxin Acting Via Modulation of the PLA2 Pathway. Acta Chim. Slov. 2011, 58, 735–741. [Google Scholar]
- Kasheverov, I.E.; Logashina, Y.A.; Kornilov, F.D.; Lushpa, V.A.; Maleeva, E.E.; Korolkova, Y.V.; Yu, J.; Zhu, X.; Zhangsun, D.; Luo, S.; et al. Peptides from the Sea Anemone Metridium senile with Modified Inhibitor Cystine Knot (ICK) Fold Inhibit Nicotinic Acetylcholine Receptors. Toxins 2022, 15, 28. [Google Scholar] [CrossRef]
- Holstein, T.; Tardent, P. An ultrahigh-speed analysis of exocytosis: Nematocyst discharge. Science 1984, 223, 830–833. [Google Scholar] [CrossRef]
- Carrette, T.; Seymour, J. A Rapid and Repeatable Method for Venom Extraction from Cubozoan Nematocysts. Toxicon Off. J. Int. Soc. Toxinology 2004, 44, 135–139. [Google Scholar] [CrossRef]
- Mustafa, M.R.; White, E.; Hongo, K.; Othman, I.; Orchard, C.H. The Mechanism Underlying the Cardiotoxic Effect of the Toxin from the Jellyfish Chironex fleckeri. Toxicol. Appl. Pharmacol. 1995, 133, 196–206. [Google Scholar] [CrossRef]
- Bailey, P.; Bakker, A.; Seymour, J.; Wilce, J. A Functional Comparison of the Venom of Three Australian Jellyfish–Chironex fleckeri, Chiropsalmus sp., and Carybdea xaymacana—On Cytosolic Ca2+, Haemolysis and Artemia sp. Lethality. Toxicon 2005, 45, 233–242. [Google Scholar] [CrossRef]
- Bloom, D.A.; Burnett, J.W.; Alderslade, P. Partial Purification of Box Jellyfish (Chironex fleckeri) Nematocyst Venom Isolated at the Beachside. Toxicon Off. J. Int. Soc. Toxinology 1998, 36, 1075–1085. [Google Scholar] [CrossRef]
- Winkel, K.; Tibballs, J.; Molenaar, P.; Lambert, G.; Coles, P.; Ross-Smith, M.; Kabore, C.; Fenner, P.; Gershwin, L.; Hawdon, G.; et al. Cardiovascular Actions of the Venom from the Irukandji (Carukia barnesi) Jellyfish: Effects in Human, Rat and Guinea-Pig Tissues In Vitro and in Pigs In Vivo. Clin. Exp. Pharmacol. Physiol. 2005, 32, 777–788. [Google Scholar] [CrossRef]
- Lausen, B.; Ahang, A.; Cummins, S.; Wang, T. Investigation of Best Practices for Venom Toxin Purification in Jellyfish towards Functional Characterisation. Toxins 2023, 15, 170. [Google Scholar] [CrossRef]
- Li, A.; Yu, H.; Li, R.; Yue, Y.; Yu, C.; Geng, H.; Liu, S.; Xing, R.; Li, P. Jellyfish Nemopilema nomurai Causes Myotoxicity through the Metalloprotease Component of Venom. Biomed. Pharmacother. 2022, 151, 113192. [Google Scholar] [CrossRef]
- Yu, C.; Yin, X.; Li, A.; Li, R.; Yu, H.; Xing, R.; Liu, S.; Li, P. Toxin Metalloproteinases Exert a Dominant Influence on Pro-Inflammatory Response and Anti-Inflammatory Regulation in Jellyfish Sting Dermatitis. J. Proteom. 2023, 292, 105048. [Google Scholar] [CrossRef]
- Hwang, S.J.; Ahn, E.-Y.; Park, Y.; Lee, H.-J. An Aqueous Extract of Nomura’s Jellyfish Ameliorates Inflammatory Responses in Lipopolysaccharide-Stimulated RAW264.7 Cells and a Zebrafish Model of Inflammation. Biomed. Pharmacother. 2018, 100, 583–589. [Google Scholar] [CrossRef]
- Yu, C.; Li, R.; Yin, X.; Yu, H.; Li, P. Synergistic Effect of Proteinase Activity by Purification and Identification of Toxic Protease From Nemopilema nomurai. Front. Pharmacol. 2021, 12, 791847. [Google Scholar] [CrossRef]
- Burnett, J.W.; Long, K.O.; Rubinstein, H.M. Beachside Preparation of Jellyfish Nematocyst Tentacles. Toxicon 1992, 30, 794–796. [Google Scholar] [CrossRef]
- Brinkman, D.L.; Konstantakopoulos, N.; McInerney, B.V.; Mulvenna, J.; Seymour, J.E.; Isbister, G.K.; Hodgson, W.C. Chironex fleckeri (Box Jellyfish) Venom Proteins: Expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects. J. Biol. Chem. 2014, 289, 4798–4812. [Google Scholar] [CrossRef]
- Yu, H.; Liu, X.; Dong, X.; Li, C.; Xing, R.; Liu, S.; Li, P. Insecticidal Activity of Proteinous Venom from Tentacle of Jellyfish Rhopilema esculentum Kishinouye. Bioorg. Med. Chem. Lett. 2005, 15, 4949–4952. [Google Scholar] [CrossRef]
- Beress, L.; Beress, R.; Wunderer, G. Isolation and characterisation of three polypeptides with neurotoxic activity from Anemonia sulcata. FEBS Lett. 1975, 50, 311–314. [Google Scholar] [CrossRef]
- Alama-Bermejo, G.; Holzer, A.S. Advances and Discoveries in Myxozoan Genomics. Trends Parasitol. 2021, 37, 552–568. [Google Scholar] [CrossRef]
- Santander, M.D.; Maronna, M.M.; Ryan, J.F.; Andrade, S.C.S. The State of Medusozoa Genomics: Current Evidence and Future Challenges. GigaScience 2022, 11, giac036. [Google Scholar] [CrossRef]
- Lara, A.; Simonson, B.T.; Ryan, J.F.; Jegla, T. Genome-Scale Analysis Reveals Extensive Diversification of Voltage-Gated K+ Channels in Stem Cnidarians. Genome Biol. Evol. 2023, 15, evad009. [Google Scholar] [CrossRef]
- Choudhary, I.; Hwang, D.H.; Lee, H.; Yoon, W.D.; Chae, J.; Han, C.H.; Yum, S.; Kang, C.; Kim, E. Proteomic Analysis of Novel Components of Nemopilema nomurai Jellyfish Venom: Deciphering the Mode of Action. Toxins 2019, 11, 153. [Google Scholar] [CrossRef]
- Festoff, B.W. Mechanism of Action of Neurotoxins. Ann. Clin. Lab. Sci. 1975, 5, 377–382. [Google Scholar]
- Terlau, H.; Olivera, B.M. Conus Venoms: A Rich Source of Novel Ion Channel-Targeted Peptides. Physiol. Rev. 2004, 84, 41–68. [Google Scholar] [CrossRef]
- Olivera, B.M.; Miljanich, G.P.; Ramachandran, J.; Adams, M.E. Calcium Channel Diversity and Neurotransmitter Release: The ω-Conotoxins and ω-Agatoxins. Annu. Rev. Biochem. 1994, 63, 823–867. [Google Scholar] [CrossRef]
- Liu, P.; Jo, S.; Bean, B.P. Modulation of Neuronal Sodium Channels by the Sea Anemone Peptide BDS-I. J. Neurophysiol. 2012, 107, 3155–3167. [Google Scholar] [CrossRef]
- Trim, S.A.; Trim, C.M. Venom: The Sharp End of Pain Therapeutics. Br. J. Pain 2013, 7, 179–188. [Google Scholar] [CrossRef]
- Bohlen, C.J.; Julius, D. Receptor-Targeting Mechanisms of Pain-Causing Toxins: How Ow? Toxicon 2012, 60, 254–264. [Google Scholar] [CrossRef]
- Logashina, Y.A.; Mosharova, I.V.; Korolkova, Y.V.; Shelukhina, I.V.; Dyachenko, I.A.; Palikov, V.A.; Palikova, Y.A.; Murashev, A.N.; Kozlov, S.A.; Stensvåg, K.; et al. Peptide from Sea Anemone Metridium senile Affects Transient Receptor Potential Ankyrin-Repeat 1 (TRPA1) Function and Produces Analgesic Effect. J. Biol. Chem. 2017, 292, 2992–3004. [Google Scholar] [CrossRef]
- Tonello, R.; Fusi, C.; Materazzi, S.; Marone, I.M.; De Logu, R.; Benemei, S.; Gonçalves, M.C.; Coppi, E.; Castro-Junior, C.J.; Gomez, M.V.; et al. The peptide Phα1β, from spider venom, acts as a TRPA1 channel antagonist with antinociceptive effects in mice. Br. J. Pharmacol. 2017, 174, 57–69. [Google Scholar] [CrossRef]
- Gui, J.; Liu, B.; Cao, G.; Lipchik, A.M.; Perez, M.; Dekan, Z.; Mobli, M.; Daly, N.L.; Alewood, P.F.; Parker, L.L.; et al. A Tarantula-Venom Peptide Antagonizes the TRPA1 Nociceptor Ion Channel by Binding to the S1–S4 Gating Domain. Curr. Biol. 2014, 24, 473–483. [Google Scholar] [CrossRef]
- Cuypers, E.; Yanagihara, A.; Karlsson, E.; Tytgat, J. Jellyfish and Other Cnidarian Envenomations Cause Pain by Affecting TRPV1 Channels. FEBS Lett. 2006, 580, 5728–5732. [Google Scholar] [CrossRef]
- Robinson, S.D.; Safavi-Hemami, H.; Raghuraman, S.; Imperial, J.S.; Papenfuss, A.T.; Teichert, R.W.; Purcell, A.W.; Olivera, B.M.; Norton, R.S. Discovery by Proteogenomics and Characterization of an RF-Amide Neuropeptide from Cone Snail Venom. J. Proteomics 2015, 114, 38–47. [Google Scholar] [CrossRef]
- Tibballs, J.; Williams, D.; Sutherland, S.K. The Effects of Antivenom and Verapamil on the Haemodynamic Actions of Chironex fleckeri (Box Jellyfish) Venom. Anaesth. Intensive Care 1998, 26, 40–45. [Google Scholar] [CrossRef]
- Ramasamy, S.; Isbister, G.K.; Seymour, J.E.; Hodgson, W.C. The in Vivo Cardiovascular Effects of Box Jellyfish Chironex fleckeri Venom in Rats: Efficacy of Pre-Treatment with Antivenom, Verapamil and Magnesium Sulphate. Toxicon 2004, 43, 685–690. [Google Scholar] [CrossRef]
- Clark, G.C.; Casewell, N.R.; Elliott, C.T.; Harvey, A.L.; Jamieson, A.G.; Strong, P.N.; Turner, A.D. Friends or Foes? Emerging Impacts of Biological Toxins. Trends Biochem. Sci. 2019, 44, 365–379. [Google Scholar] [CrossRef]
- Lee, C.H.; Ruben, P.C. Interaction between Voltage-Gated Sodium Channels and the Neurotoxin, Tetrodotoxin. Channels 2008, 2, 407–412. [Google Scholar] [CrossRef]
- Yanagihara, A.A.; Kuroiwa, J.M.Y.; Oliver, L.M.; Chung, J.J.; Kunkel, D.D. Ultrastructure of a Novel Eurytele Nematocyst of Carybdea alata Reynaud (Cubozoa, Cnidaria). Cell Tissue Res. 2002, 308, 307–318. [Google Scholar] [CrossRef]
- Lamprecht, M.R.; Sabatini, D.M.; Carpenter, A.E. CellProfilerTM: Free, Versatile Software for Automated Biological Image Analysis. BioTechniques 2018, 42, 71–75. [Google Scholar] [CrossRef]
Cell Class | Cell Subclass | Voltage Gated Channels | TRP Channels | GFP + | IB4 + | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Na | K | Cl | V1 | A1 | M8 | |||||
Glia | - | +/− | − | + | + | − | − | − | − | − | |
Large diameter neurons | L1–L4 | + | + | + | + | − | − | − | − | − | |
L5–L6 | + | + | + | + | − | − | − | + | − | ||
Medium diameter neurons | Peptidergic nociceptors | + | + | + | + | + | + | + | + | − | |
Non-peptidergic nociceptors | + | + | + | + | + | + | − | − | + | ||
Small diameter neurons | - | + | + | + | + | + | + | + | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanagihara, A.A.; Giglio, M.L.; Hurwitz, K.; Kadler, R.; Espino, S.S.; Raghuraman, S.; Olivera, B.M. Elucidation of Medusozoan (Jellyfish) Venom Constituent Activities Using Constellation Pharmacology. Toxins 2024, 16, 447. https://doi.org/10.3390/toxins16100447
Yanagihara AA, Giglio ML, Hurwitz K, Kadler R, Espino SS, Raghuraman S, Olivera BM. Elucidation of Medusozoan (Jellyfish) Venom Constituent Activities Using Constellation Pharmacology. Toxins. 2024; 16(10):447. https://doi.org/10.3390/toxins16100447
Chicago/Turabian StyleYanagihara, Angel A., Matías L. Giglio, Kikiana Hurwitz, Raechel Kadler, Samuel S. Espino, Shrinivasan Raghuraman, and Baldomero M. Olivera. 2024. "Elucidation of Medusozoan (Jellyfish) Venom Constituent Activities Using Constellation Pharmacology" Toxins 16, no. 10: 447. https://doi.org/10.3390/toxins16100447
APA StyleYanagihara, A. A., Giglio, M. L., Hurwitz, K., Kadler, R., Espino, S. S., Raghuraman, S., & Olivera, B. M. (2024). Elucidation of Medusozoan (Jellyfish) Venom Constituent Activities Using Constellation Pharmacology. Toxins, 16(10), 447. https://doi.org/10.3390/toxins16100447