Quantification of Staphylococcal Enterotoxin A Variants at Low Level in Dairy Products by High-Resolution Top-Down Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Production and Characterization of 15N Isotope-Labeled SEA3 for Protocol Normalization
2.2. Optimization of the Top-Down Analytical Protocol for Maximum Sensitivity
2.3. Evaluation of the Final Protocol in Dairy Food Matrices
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals and Reagents
5.2. Safety Precaution
5.3. SEA Sequence Information
5.4. Production of the 15N Labeled SEA3
5.5. Food Samples
5.6. SE Extraction from Solid Food Matrices
5.7. Ultrafiltration, Preparation of mAb-Coated Beads and Immuno-Affinity Extraction of SEA
5.8. Liquid Chromatography−High-Resolution Mass Spectrometry for Top-Down Quantification
5.9. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The European Union One Health 2022 Zoonoses Report|EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/8442 (accessed on 25 July 2024).
- Hennekinne, J.-A.; De Buyser, M.-L.; Dragacci, S. Staphylococcus aureus and Its Food Poisoning Toxins: Characterization and Outbreak Investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [PubMed]
- Fetsch, A.; Contzen, M.; Hartelt, K.; Kleiser, A.; Maassen, S.; Rau, J.; Kraushaar, B.; Layer, F.; Strommenger, B. Staphylococcus aureus Food-Poisoning Outbreak Associated with the Consumption of Ice-Cream. Int. J. Food Microbiol. 2014, 187, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Schmid, D.; Fretz, R.; Winter, P.; Mann, M.; Höger, G.; Stöger, A.; Ruppitsch, W.; Ladstätter, J.; Mayer, N.; de Martin, A.; et al. Outbreak of Staphylococcal Food Intoxication after Consumption of Pasteurized Milk Products, June 2007, Austria. Wien. Klin. Wochenschr. 2009, 121, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Erdoğan, A.; Turgut, T.; Adigüzel, M.C. A Review on the Presence of Staphylococcus aureus in Cheese. Turk. J. Nat. Sci. 2017, 6, 100–105. [Google Scholar]
- Simeão do Carmo, L.; Dias, R.S.; Linardi, V.R.; José de Sena, M.; Aparecida dos Santos, D.; Eduardo de Faria, M.; Pena, E.C.; Jett, M.; Heneine, L.G. Food Poisoning Due to Enterotoxigenic Strains of Staphylococcus Present in Minas Cheese and Raw Milk in Brazil. Food Microbiol. 2002, 19, 9–14. [Google Scholar] [CrossRef]
- Johler, S.; Tichaczek-Dischinger, P.S.; Rau, J.; Sihto, H.-M.; Lehner, A.; Adam, M.; Stephan, R. Outbreak of Staphylococcal Food Poisoning Due to SEA-Producing Staphylococcus aureus. Foodborne Pathog. Dis. 2013, 10, 777–781. [Google Scholar] [CrossRef]
- Osman, K.M.; Pires, Á.D.S.; Franco, O.L.; Orabi, A.; Hanafy, M.H.; Marzouk, E.; Hussien, H.; Alzaben, F.A.; Almuzaini, A.M.; Elbehiry, A. Enterotoxigenicity and Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Raw Buffalo and Cow Milk. Microb. Drug Resist. 2020, 26, 520–530. [Google Scholar] [CrossRef]
- Dicks, J.; Turnbull, J.D.; Russell, J.; Parkhill, J.; Alexander, S. Genome Sequencing of a Historic Staphylococcus aureus Collection Reveals New Enterotoxin Genes and Sheds Light on the Evolution and Genomic Organization of This Key Virulence Gene Family. J. Bacteriol. 2021, 203, 10.1128/jb.00587-20. [Google Scholar] [CrossRef]
- Merda, D.; Felten, A.; Vingadassalon, N.; Denayer, S.; Titouche, Y.; Decastelli, L.; Hickey, B.; Kourtis, C.; Daskalov, H.; Mistou, M.-Y.; et al. NAuRA: Genomic Tool to Identify Staphylococcal Enterotoxins in Staphylococcus aureus Strains Responsible for FoodBorne Outbreaks. Front. Microbiol. 2020, 11, 1483. [Google Scholar] [CrossRef]
- Kuang, H.; Wang, W.; Xu, L.; Ma, W.; Liu, L.; Wang, L.; Xu, C. Monoclonal Antibody-Based Sandwich ELISA for the Detection of Staphylococcal Enterotoxin A. Int. J. Environ. Res. Public. Health 2013, 10, 1598–1608. [Google Scholar] [CrossRef]
- Tarisse, C.F.; Goulard-Huet, C.; Nia, Y.; Devilliers, K.; Marcé, D.; Dambrune, C.; Lefebvre, D.; Hennekinne, J.-A.; Simon, S. Highly Sensitive and Specific Detection of Staphylococcal Enterotoxins SEA, SEG, SEH, and SEI by Immunoassay. Toxins 2021, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Chen, P.; Chen, X.; Shen, X.; Huang, X.; Xiong, Y.; Su, Y. Aggregation-Induced Red Emission Nanoparticle-Based Lateral Flow Immunoassay for Highly Sensitive Detection of Staphylococcal Enterotoxin A. Toxins 2023, 15, 113. [Google Scholar] [CrossRef] [PubMed]
- Sospedra, I.; Soler, C.; Mañes, J.; Soriano, J.M. Rapid Whole Protein Quantitation of Staphylococcal Enterotoxins A and B by Liquid Chromatography/Mass Spectrometry. J. Chromatogr. A 2012, 1238, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, D.; Blanco-Valle, K.; Feraudet-Tarisse, C.; Merda, D.; Simon, S.; Fenaille, F.; Hennekinne, J.-A.; Nia, Y.; Becher, F. Quantitative Determination of Staphylococcus aureus Enterotoxins Types A to I and Variants in Dairy Food Products by Multiplex Immuno-LC-MS/MS. J. Agric. Food Chem. 2021, 69, 2603–2610. [Google Scholar] [CrossRef]
- Bogdanow, B.; Zauber, H.; Selbach, M. Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides. Mol. Cell. Proteom. 2016, 15, 2791–2801. [Google Scholar] [CrossRef]
- Lefebvre, D.; Fenaille, F.; Merda, D.; Blanco-Valle, K.; Feraudet-Tarisse, C.; Simon, S.; Hennekinne, J.-A.; Nia, Y.; Becher, F. Top-Down Mass Spectrometry for Trace Level Quantification of Staphylococcal Enterotoxin A Variants. J. Proteome Res. 2022, 21, 547–556. [Google Scholar] [CrossRef]
- Evenson, M.L.; Ward Hinds, M.; Bernstein, R.S.; Bergdoll, M.S. Estimation of Human Dose of Staphylococcal Enterotoxin A from a Large Outbreak of Staphylococcal Food Poisoning Involving Chocolate Milk. Int. J. Food Microbiol. 1988, 7, 311–316. [Google Scholar] [CrossRef]
- Asao, T.; Kumeda, Y.; Kawai, T.; Shibata, T.; Oda, H.; Haruki, K.; Nakazawa, H.; Kozaki, S. An Extensive Outbreak of Staphylococcal Food Poisoning Due to Low-Fat Milk in Japan: Estimation of Enterotoxin A in the Incriminated Milk and Powdered Skim Milk. Epidemiol. Infect. 2003, 130, 33–40. [Google Scholar] [CrossRef]
- Ikeda, T.; Tamate, N.; Yamaguchi, K.; Makino, S. Mass Outbreak of Food Poisoning Disease Caused by Small Amounts of Staphylococcal Enterotoxins A and H. Appl. Environ. Microbiol. 2005, 71, 2793–2795. [Google Scholar] [CrossRef]
- Ercoli, L.; Gallina, S.; Nia, Y.; Auvray, F.; Primavilla, S.; Guidi, F.; Pierucci, B.; Graziotti, C.; Decastelli, L.; Scuota, S. Investigation of a Staphylococcal Food Poisoning Outbreak from a Chantilly Cream Dessert, in Umbria (Italy). Foodborne Pathog. Dis. 2017, 14, 407–413. [Google Scholar] [CrossRef]
- Cupp-Sutton, K.A.; Wu, S. High-Throughput Quantitative Top-down Proteomics. Mol. Omics 2020, 16, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Lebert, D.; Picard, G.; Beau-Larvor, C.; Troncy, L.; Lacheny, C.; Maynadier, B.; Low, W.; Mouz, N.; Brun, V.; Klinguer-Hamour, C.; et al. Absolute and Multiplex Quantification of Antibodies in Serum Using PsaqTM Standards and LC-MS/MS. Bioanalysis 2015, 7, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, A.; Hennekinne, J.-A.; Garin, J.; Brun, V. Protein Standard Absolute Quantification (PSAQ) for Improved Investigation of Staphylococcal Food Poisoning Outbreaks. Proteomics 2008, 8, 4633–4636. [Google Scholar] [CrossRef] [PubMed]
- Picard, G.; Lebert, D.; Louwagie, M.; Adrait, A.; Huillet, C.; Vandenesch, F.; Bruley, C.; Garin, J.; Jaquinod, M.; Brun, V. PSAQTM Standards for Accurate MS–Based Quantification of Proteins: From the Concept to Biomedical Applications. J. Mass Spectrom. 2012, 47, 1353–1363. [Google Scholar] [CrossRef]
- Gavage, M.; Van Vlierberghe, K.; Van Poucke, C.; De Loose, M.; Gevaert, K.; Dieu, M.; Renard, P.; Arnould, T.; Filee, P.; Gillard, N. Comparative Study of Concatemer Efficiency as an Isotope-Labelled Internal Standard for Allergen Quantification. Food Chem. 2020, 332, 127413. [Google Scholar] [CrossRef]
- Kilpatrick, E.L.; Liao, W.-L.; Camara, J.E.; Turko, I.V.; Bunk, D.M. Expression and Characterization of 15N-Labeled Human C-Reactive Protein in Escherichia Coli and Pichia Pastoris for Use in Isotope-Dilution Mass Spectrometry. Protein Expr. Purif. 2012, 85, 94–99. [Google Scholar] [CrossRef]
- Berkmen, M. Production of Disulfide-Bonded Proteins in Escherichia coli. Protein Expr. Purif. 2012, 82, 240–251. [Google Scholar] [CrossRef]
- Gilquin, B.; Louwagie, M.; Jaquinod, M.; Cez, A.; Picard, G.; El Kholy, L.; Surin, B.; Garin, J.; Ferro, M.; Kofman, T.; et al. Multiplex and Accurate Quantification of Acute Kidney Injury Biomarker Candidates in Urine Using Protein Standard Absolute Quantification (PSAQ) and Targeted Proteomics. Talanta 2017, 164, 77–84. [Google Scholar] [CrossRef]
- Carr, S.A.; Abbatiello, S.E.; Ackermann, B.L.; Borchers, C.; Domon, B.; Deutsch, E.W.; Grant, R.P.; Hoofnagle, A.N.; Hüttenhain, R.; Koomen, J.M.; et al. Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-Based Assay Development Using a Fit-for-Purpose Approach. Mol. Cell. Proteom. 2014, 13, 907–917. [Google Scholar] [CrossRef]
- McAlister, G.; Goodwin, M.; Earley, L.; Mathur, R.; Lange, O.; Huguet, R.; Zabrouskov, V.; Senko, M. Modifying the Ion Optics and Scan Sequences on a Tribrid MS to Improve Sensitivity, Duty Cycle, and Overall Instrument Ease-of-Use. In ASMS Poster; Thermo Fisher Scientific: San Jose, CA, USA; Bremen, Germany, 2019. [Google Scholar]
- Nia, Y.; Lombard, B.; Gentil, S.; Neveux, L.; Mutel, I.; Guillier, F.; Messio, S.; Pairaud, S.; Herbin, S.; Guillier, L.; et al. Development and Validation of the Standard Method EN ISO 19020—Microbiology of the Food Chain—Horizontal Method for the Immunoenzymatic Detection of Staphylococcal Enterotoxins in Foodstuffs. Int. J. Food Microbiol. 2021, 354, 109319. [Google Scholar] [CrossRef]
- Bennett, S.D.; Walsh, K.A.; Gould, L.H. Foodborne Disease Outbreaks Caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus—United States, 1998–2008. Clin. Infect. Dis. 2013, 57, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Grispoldi, L.; Karama, M.; Armani, A.; Hadjicharalambous, C.; Cenci-Goga, B.T. Staphylococcus aureus Enterotoxin in Food of Animal Origin and Staphylococcal Food Poisoning Risk Assessment from Farm to Table. Ital. J. Anim. Sci. 2021, 20, 677–690. [Google Scholar] [CrossRef]
- Compton, P.D.; Zamdborg, L.; Thomas, P.M.; Kelleher, N.L. On the Scalability and Requirements of Whole Protein Mass Spectrometry. Anal. Chem. 2011, 83, 6868–6874. [Google Scholar] [CrossRef]
- Melby, J.A.; Roberts, D.S.; Larson, E.J.; Brown, K.A.; Bayne, E.F.; Jin, S.; Ge, Y. Novel Strategies to Address the Challenges in Top-Down Proteomics. J. Am. Soc. Mass Spectrom. 2021, 32, 1278–1294. [Google Scholar] [CrossRef] [PubMed]
- Lorey, M.; Adler, B.; Yan, H.; Soliymani, R.; Ekström, S.; Yli-Kauhaluoma, J.; Laurell, T.; Baumann, M. Mass-Tag Enhanced Immuno-Laser Desorption/Ionization Mass Spectrometry for Sensitive Detection of Intact Protein Antigens. Anal. Chem. 2015, 87, 5255–5262. [Google Scholar] [CrossRef]
- Piquet, P.; Saadi, J.; Fenaille, F.; Kalb, S.R.; Becher, F. Rapid Detection of Ricin at Trace Levels in Complex Matrices by Asialofetuin-Coated Beads and Bottom-up Proteomics Using High-Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2024, 416, 5145–5153. [Google Scholar] [CrossRef]
- Boyer, A.E.; Gallegos-Candela, M.; Lins, R.C.; Kuklenyik, Z.; Woolfitt, A.; Moura, H.; Kalb, S.; Quinn, C.P.; Barr, J.R. Quantitative Mass Spectrometry for Bacterial Protein Toxins—A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis. Molecules 2011, 16, 2391–2413. [Google Scholar] [CrossRef]
- Duriez, E.; Fenaille, F.; Tabet, J.-C.; Lamourette, P.; Hilaire, D.; Becher, F.; Ezan, E. Detection of Ricin in Complex Samples by Immunocapture and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Proteome Res. 2008, 7, 4154–4163. [Google Scholar] [CrossRef]
- Jabbour, R.E.; Snyder, A.P. Mass Spectrometry-Based Proteomics Techniques for Biological Identification. In Biological Identification; Schaudies, R.P., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 370–430. ISBN 978-0-85709-501-5. [Google Scholar]
- Andjelković, U.; Josić, D. Mass Spectrometry Based Proteomics as Foodomics Tool in Research and Assurance of Food Quality and Safety. Trends Food Sci. Technol. 2018, 77, 100–119. [Google Scholar] [CrossRef]
- Muratovic, A.Z.; Hagström, T.; Rosén, J.; Granelli, K.; Hellenäs, K.-E. Quantitative Analysis of Staphylococcal Enterotoxins A and B in Food Matrices Using Ultra High-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). Toxins 2015, 7, 3637–3656. [Google Scholar] [CrossRef]
- Catherman, A.D.; Skinner, O.S.; Kelleher, N.L. Top Down Proteomics: Facts and Perspectives. Biochem. Biophys. Res. Commun. 2014, 445, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.M.; Souda, P.; Bassilian, S.; Ujwal, R.; Zhang, J.; Abramson, J.; Ping, P.; Durazo, A.; Bowie, J.U.; Hasan, S.S.; et al. Post-Translational Modifications of Integral Membrane Proteins Resolved by Top-down Fourier Transform Mass Spectrometry with Collisionally Activated Dissociation. Mol. Cell. Proteom. 2010, 9, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Dou, L.; Zhang, Y.; Luo, L.; Yang, H.; Wen, K.; Yu, X.; Shen, J.; Wang, Z. A Comprehensive Review on the Detection of Staphylococcus aureus Enterotoxins in Food Samples. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13264. [Google Scholar] [CrossRef] [PubMed]
- Fanali, C.; Dugo, L.; Rocco, A. Nano-Liquid Chromatography in Nutraceutical Analysis: Determination of Polyphenols in Bee Pollen. J. Chromatogr. A 2013, 1313, 270–274. [Google Scholar] [CrossRef]
- Do Carmo, L.S.; Dias, R.S.; Linardi, V.R.; de Sena, M.J.; Santos, D.A. dos An Outbreak of Staphylococcal Food Poisoning in the Municipality of Passos, MG, Brazil. Braz. Arch. Biol. Technol. 2003, 46, 581–586. [Google Scholar] [CrossRef]
- Kérouanton, A.; Hennekinne, J.A.; Letertre, C.; Petit, L.; Chesneau, O.; Brisabois, A.; De Buyser, M.L. Characterization of Staphylococcus aureus Strains Associated with Food Poisoning Outbreaks in France. Int. J. Food Microbiol. 2007, 115, 369–375. [Google Scholar] [CrossRef]
- Lippens, G.; Wieruszeski, J.-M.; Leroy, A.; Smet, C.; Sillen, A.; Buée, L.; Landrieu, I. Proline-Directed Random-Coil Chemical Shift Values as a Tool for the NMR Assignment of the Tau Phosphorylation Sites. Chembiochem Eur. J. Chem. Biol. 2004, 5, 73–78. [Google Scholar] [CrossRef]
- Costopoulou, D.; Leondiadis, L.; Czarnecki, J.; Ferderigos, N.; Ithakissios, D.S.; Livaniou, E.; Evangelatos, G.P. Direct ELISA Method for the Specific Determination of Prothymosin Alpha in Human Specimens. J. Immunoass. Immunochem. 1998, 19, 295–316. [Google Scholar] [CrossRef]
- Spriestersbach, A.; Kubicek, J.; Schäfer, F.; Block, H.; Maertens, B. Chapter One—Purification of His-Tagged Proteins. In Methods in Enzymology; Lorsch, J.R., Ed.; Laboratory Methods in Enzymology: Protein Part D; Academic Press: Cambridge, MA, USA, 2015; Volume 559, pp. 1–15. [Google Scholar]
SEA3 Added (ng/g) | Interpolated Concentration (ng/g) | Recovery (%) | Measured Mass (Da) | Mass Difference (Da) * | Identified Variant | |
---|---|---|---|---|---|---|
Roquefort_1 | 8.00 | 6.87 | 86 | 27,090.37 | 2.15 | SEA3 |
Roquefort_2 | 0 | <LOD | NA | NA | NA | NA |
Rocamandour_1 | 8.00 | 6.66 | 83 | 27,090.00 | 2.52 | SEA3 |
Rocamandour_2 | 0 | <LOD | NA | NA | NA | NA |
Vanilla ice cream_1 | 8.00 | 7.28 | 91 | 27,090.79 | 1.73 | SEA3 |
Vanilla ice cream_2 | 0 | <LOD | NA | NA | NA | NA |
Emmental_1 | 8.00 | 5.32 | 66 | 27,089.69 | 2.83 | SEA3 |
Emmental_2 | 0 | <LOD | NA | NA | NA | NA |
Mozzarella_1 | 8.00 | 4.94 | 62 | 27,092.46 | 0.06 | SEA3 |
Mozzarella_2 | 0 | <LOD | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aveilla, N.; Feraudet-Tarisse, C.; Marcé, D.; Fatihi, A.; Fenaille, F.; Hennekinne, J.-A.; Simon, S.; Nia, Y.; Becher, F. Quantification of Staphylococcal Enterotoxin A Variants at Low Level in Dairy Products by High-Resolution Top-Down Mass Spectrometry. Toxins 2024, 16, 535. https://doi.org/10.3390/toxins16120535
Aveilla N, Feraudet-Tarisse C, Marcé D, Fatihi A, Fenaille F, Hennekinne J-A, Simon S, Nia Y, Becher F. Quantification of Staphylococcal Enterotoxin A Variants at Low Level in Dairy Products by High-Resolution Top-Down Mass Spectrometry. Toxins. 2024; 16(12):535. https://doi.org/10.3390/toxins16120535
Chicago/Turabian StyleAveilla, Nina, Cécile Feraudet-Tarisse, Dominique Marcé, Abdelhak Fatihi, François Fenaille, Jacques-Antoine Hennekinne, Stéphanie Simon, Yacine Nia, and François Becher. 2024. "Quantification of Staphylococcal Enterotoxin A Variants at Low Level in Dairy Products by High-Resolution Top-Down Mass Spectrometry" Toxins 16, no. 12: 535. https://doi.org/10.3390/toxins16120535
APA StyleAveilla, N., Feraudet-Tarisse, C., Marcé, D., Fatihi, A., Fenaille, F., Hennekinne, J. -A., Simon, S., Nia, Y., & Becher, F. (2024). Quantification of Staphylococcal Enterotoxin A Variants at Low Level in Dairy Products by High-Resolution Top-Down Mass Spectrometry. Toxins, 16(12), 535. https://doi.org/10.3390/toxins16120535