Botulinum Toxin Type A (BoNT-A) Use for Post-Stroke Spasticity: A Multicenter Study Using Natural Language Processing and Machine Learning
Abstract
:1. Introduction
2. Results
2.1. Study Population and Stroke Characteristics
2.2. Spasticity-Affected Areas and Muscular Groups
2.3. BoNT-A Treatment
2.4. Other Treatments
2.5. Spasticity Monitoring Scales
2.6. EHRead® Performance Evaluation
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Design and Study Population
5.2. Data Source and Extraction
5.3. Study Variables
5.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saini, V.; Guada, L.; Yavagal, D.R. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology 2021, 97, S6–S16. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, D.; Xiao, Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef] [PubMed]
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Guzmán, J.; Egido, J.-A.; Gabriel-Sánchez, R.; Barberá-Comes, G.; Fuentes-Gimeno, B.; Fernández-Pérez, C.; on behalf of the IBERICTUS Study Investigators of the Stroke Project of the Spanish Cerebrovascular Diseases Study Group. Stroke and Transient Ischemic Attack Incidence Rate in Spain: The IBERICTUS Study. Cerebrovasc. Dis. 2012, 34, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Bavikatte, G.; Subramanian, G.; Ashford, S.; Allison, R.; Hicklin, D. Early Identification, Intervention and Management of Post-Stroke Spasticity: Expert Consensus Recommendations. J. Cent. Nerv. Syst. Dis. 2021, 13, 11795735211036576. [Google Scholar] [CrossRef] [PubMed]
- Katoozian, L.; Tahan, N.; Zoghi, M.; Bakhshayesh, B. The Onset and Frequency of Spasticity after First Ever Stroke. J. Natl. Med. Assoc. 2018, 110, 547–552. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, A.; Teasell, R.; Saikaley, M.; Miller, T. Predictors of Spasticity 3–6 Months Post Stroke: A 5-Year Retrospective Cohort Study. Am. J. Phys. Med. Rehabil. 2024. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.; Wissel, J.; Donnan, G.A. Pathophysiology of Spasticity in Stroke. Neurology 2013, 80, S20–S26. [Google Scholar] [CrossRef] [PubMed]
- Schinwelski, M.J.; Sitek, E.J.; Wąż, P.; Sławek, J.W. Prevalence and Predictors of Post-Stroke Spasticity and Its Impact on Daily Living and Quality of Life. Neurol. Neurochir. Pol. 2019, 53, 449–457. [Google Scholar] [CrossRef]
- Du, Y.-N.; Li, Y.; Zhang, T.-Y.; Jiang, N.; Wei, Y.; Cheng, S.-H.; Li, H.; Duan, H.-Y. Efficacy of Botulinum Toxin A Combined with Extracorporeal Shockwave Therapy in Post-Stroke Spasticity: A Systematic Review. Front. Neurol. 2024, 15, 1342545. [Google Scholar] [CrossRef]
- Fan, T.; Chen, R.; Wei, M.; Zhou, X.; Zheng, P.; Zhou, J.; He, P.; Zhan, X.; Xie, J.; Li, R.; et al. Effects of Radial Extracorporeal Shock Wave Therapy on Flexor Spasticity of the Upper Limb in Post-Stroke Patients: A Randomized Controlled Trial. Clin. Rehabil. 2024, 2692155241258740. [Google Scholar] [CrossRef] [PubMed]
- van Kuijk, A.A.; Hendricks, H.T.; Pasman, J.W.; Kremer, B.H.; Geurts, A.C. Are Neuroradiological or Neurophysiological Characteristics Associated with Upper-Extremity Hypertonia in Severe Ischaemia in Supratentorial Stroke? J. Rehabil. Med. 2007, 39, 38–42. [Google Scholar] [CrossRef]
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice Guideline Update Summary: Botulinum Neurotoxin for the Treatment of Blepharospasm, Cervical Dystonia, Adult Spasticity, and Headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef]
- Bohart, Z.; Dashtipour, K.; Kim, H.; Schwartz, M.; Zuzek, A.; Singh, R.; Nelson, M. Real-World Differences in Dosing and Clinical Utilization of OnabotulinumtoxinA and AbobotulinumtoxinA in the Treatment of Upper Limb Spasticity. Toxicon 2024, 241, 107678. [Google Scholar] [CrossRef] [PubMed]
- Samizadeh, S.; De Boulle, K. Botulinum Neurotoxin Formulations: Overcoming the Confusion. Clin. Cosmet. Investig. Dermatol. 2018, 11, 273–287. [Google Scholar] [CrossRef]
- Francisco, G.E.; Balbert, A.; Bavikatte, G.; Bensmail, D.; Carda, S.; Deltombe, T.; Draulans, N.; Escaldi, S.; Gross, R.; Jacinto, J.; et al. A Practical Guide to optimizing the benefits of post-stroke spasticity interventions with botulinum toxin A: An international group consensus. J. Rehabil. Med. 2020, 53, 2715. [Google Scholar] [CrossRef]
- Suputtitada, A.; Chatromyen, S.; Chen, C.P.C.; Simpson, D.M. Best Practice Guidelines for the Management of Patients with Post-Stroke Spasticity: A Modified Scoping Review. Toxins 2024, 16, 98. [Google Scholar] [CrossRef]
- van Tilborg, N.A.W.; de Groot, V.; Meskers, C.G.M. The Effectiveness of Early Interventions for Post-Stroke Spasticity: A Systematic Review. Disabil. Rehabil. 2024, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wissel, J.; Kivi, A. Post-Stroke Spastic Movement Disorder and Botulinum Toxin A Therapy: Early Detection and Early Injection. Ann. Rehabil. Med. 2023, 47, 326–336. [Google Scholar] [CrossRef]
- Cox, A.P.; Raluy-Callado, M.; Wang, M.; Bakheit, A.M.; Moore, A.P.; Dinet, J. Predictive Analysis for Identifying Potentially Undiagnosed Post-Stroke Spasticity Patients in United Kingdom. J. Biomed. Inform. 2016, 60, 328–333. [Google Scholar] [CrossRef]
- Wissel, J.; Manack, A.; Brainin, M. Toward an Epidemiology of Poststroke Spasticity. Neurology 2013, 80, S13–S19. [Google Scholar] [CrossRef] [PubMed]
- Ancochea, J.; Izquierdo, J.L.; Soriano, J.B. Evidence of Gender Differences in the Diagnosis and Management of Coronavirus Disease 2019 Patients: An Analysis of Electronic Health Records Using Natural Language Processing and Machine Learning. J. Womens Health 2021, 30, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, J.L.; Almonacid, C.; González, Y.; Del Rio-Bermudez, C.; Ancochea, J.; Cárdenas, R.; Lumbreras, S.; Soriano, J.B. The Impact of COVID-19 on Patients with Asthma. Eur. Respir. J. 2021, 57, 2003142. [Google Scholar] [CrossRef] [PubMed]
- Montoto, C.; Gisbert, J.P.; Guerra, I.; Plaza, R.; Pajares Villarroya, R.; Moreno Almazán, L.; López Martín, M.D.C.; Domínguez Antonaya, M.; Vera Mendoza, I.; Aparicio, J.; et al. Evaluation of Natural Language Processing for the Identification of Crohn Disease–Related Variables in Spanish Electronic Health Records: A Validation Study for the PREMONITION-CD Project. JMIR Med. Inform. 2022, 10, e30345. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, C.; Zhang, J.; Guan, C.; Zhao, L.; Shen, X.; Zhang, N.; Li, T.; Yang, C.; Zhou, B.; et al. Personalized Prediction of Mortality in Patients with Acute Ischemic Stroke Using Explainable Artificial Intelligence. Eur. J. Med. Res. 2024, 29, 341. [Google Scholar] [CrossRef] [PubMed]
- Wissel, J.; Verrier, M.; Simpson, D.M.; Charles, D.; Guinto, P.; Papapetropoulos, S.; Sunnerhagen, K.S. Post-Stroke Spasticity: Predictors of Early Development and Considerations for Therapeutic Intervention. PMR 2015, 7, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Garreta-Figuera, R.; Torrequebrada-Gimenez, A.; on behalf of the 5E Study Group. An assessment of the management of spasticity in Spain: The 5E Study. Rev. Neurol. 2016, 63, 289–296. [Google Scholar] [PubMed]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S.V. Stroke Risk Factors, Genetics, and Prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chapman, A.-M.; Plested, M.; Jackson, D.; Purroy, F. The Incidence, Prevalence, and Mortality of Stroke in France, Germany, Italy, Spain, the UK, and the US: A Literature Review. Stroke Res. Treat. 2012, 2012, 436125. [Google Scholar] [CrossRef]
- Lee, J.-I.; Jansen, A.; Samadzadeh, S.; Kahlen, U.; Moll, M.; Ringelstein, M.; Soncin, G.; Bigalke, H.; Aktas, O.; Moldovan, A.-S.; et al. Long-Term Adherence and Response to Botulinum Toxin in Different Indications. Ann. Clin. Transl. Neurol. 2021, 8, 15–28. [Google Scholar] [CrossRef]
- Weber, R.; Krogias, C.; Eyding, J.; Bartig, D.; Meves, S.H.; Katsanos, A.H.; Caso, V.; Hacke, W. Age and Sex Differences in Ischemic Stroke Treatment in a Nationwide Analysis of 1.11 Million Hospitalized Cases. Stroke 2019, 50, 3494–3502. [Google Scholar] [CrossRef] [PubMed]
- Kapral, M.K.; Fang, J.; Hill, M.D.; Silver, F.; Richards, J.; Jaigobin, C.; Cheung, A.M.; Investigators of the Registry of the Canadian Stroke. Network Sex Differences in Stroke Care and Outcomes: Results from the Registry of the Canadian Stroke Network. Stroke 2005, 36, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.; Karam, P.; Forestier, A.; Loze, J.-Y.; Bensmail, D. Botulinum Toxin Use in Patients with Post-Stroke Spasticity: A Nationwide Retrospective Study from France. Front. Neurol. 2023, 14, 1245228. [Google Scholar] [CrossRef] [PubMed]
- Biering-Soerensen, B.; Stevenson, V.; Bensmail, D.; Grabljevec, K.; Moreno, M.M.; Pucks-Faes, E.; Wissel, J.; Zampolini, M. Zampolini, M. European Expert Consensus on Improving Patient Selection for the Management of Disabling Spasticity with Intrathecal Baclofen and/or Botulinum Toxin Type A. J. Rehabil. Med. 2022, 54, jrm00241. [Google Scholar] [CrossRef] [PubMed]
- Rosales, R.L.; Chia, N.V.C.; Kumthornthip, W.; Goh, K.J.; Mak, C.S.; Kong, K.H.; Ng, Y.S.; Chou, L.W.; Flordelis, M.J.; Do, T.; et al. Botulinum Toxin A Injection for Post-Stroke Upper Limb Spasticity and Rehabilitation Practices from Centers across Asian Countries. Front. Neurol. 2024, 15, 1335365. [Google Scholar] [CrossRef] [PubMed]
- Vázquez Doce, A.; De León García, F.J.; Mena, A.; Ortiz-Fernández, L.; Spottorno, M.P.; Medina, F.; Maisonobe, P.; Herrera, A.; García, I.; Juan-García, F.J.; et al. Assessment of Pain Relief after Four Botulinum Toxin A Injection Cycles in Patients with Post-Stroke Lower Limb Spasticity: A Prospective, Observational Study. Rehabilitacion 2024, 58, 100856. [Google Scholar] [CrossRef]
- Săndulescu, M.I.; Cinteză, D.; Poenaru, D.; Potcovaru, C.-G.; Păunescu, H.; Coman, O.A. The Complex Role of Botulinum Toxin in Enhancing Goal Achievement for Post-Stroke Patients. Toxins 2024, 16, 172. [Google Scholar] [CrossRef] [PubMed]
- Trompetto, C.; Marinelli, L.; Mori, L.; Bragazzi, N.; Maggi, G.; Cotellessa, F.; Puce, L.; Vestito, L.; Molteni, F.; Gasperini, G.; et al. Increasing the Passive Range of Joint Motion in Stroke Patients Using Botulinum Toxin: The Role of Pain Relief. Toxins 2023, 15, 335. [Google Scholar] [CrossRef] [PubMed]
- Forsmark, A.; Rosengren, L.; Ertzgaard, P. Inequalities in Pharmacologic Treatment of Spasticity in Sweden—Health Economic Consequences of Closing the Treatment Gap. Health Econ. Rev. 2020, 10, 4. [Google Scholar] [CrossRef]
- Esquenazi, A.; Ayyoub, Z.; Verduzco-Gutierrez, M.; Maisonobe, P.; Otto, J.; Patel, A.T. AbobotulinumtoxinA Versus OnabotulinumtoxinA in Adults with Upper Limb Spasticity: A Randomized, Double-Blind, Crossover Study Protocol. Adv. Ther. 2021, 38, 5623–5633. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Brashear, A.; Maisonobe, P.; Lysandropoulos, A.; Ashford, S.; Upper Limb International Spasticity (ULIS-III) Study Group. Longitudinal Goal Attainment with Integrated Upper Limb Spasticity Management Including Repeat Injections of Botulinum Toxin A: Findings from the Prospective, Observational Upper Limb International Spasticity (ULIS-III) Cohort Study. J. Rehabil. Med. 2021, 53, jrm00157. [Google Scholar] [CrossRef] [PubMed]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Maisonobe, P.; Senturk, O.; Ashford, S. Relief of Spasticity-Related Pain with Botulinum Neurotoxin-A (Bont-A) in Real Life Practice. Post-Hoc Analysis from a Large International Cohort Series. Ann. Phys. Rehabil. Med. 2018, 61, e67–e68. [Google Scholar] [CrossRef]
- Mora, N.; Guiriguet, C.; Cantenys, R.; Méndez-Boo, L.; Marzo-Castillejo, M.; Benítez, M.; Fina, F.; Fàbregas, M.; Hermosilla, E.; Mercadé, A.; et al. Cancer Diagnosis in Primary Care after Second Pandemic Year in Catalonia: A Time-Series Analysis of Primary Care Electronic Health Records Covering about 5 Million People. Fam. Pract. 2022, 40, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Giner-Soriano, M.; de Dios, V.; Ouchi, D.; Vilaplana-Carnerero, C.; Monteagudo, M.; Morros, R. Outcomes of COVID-19 Infection in People Previously Vaccinated Against Influenza: Population-Based Cohort Study Using Primary Health Care Electronic Records. JMIR Public. Health Surveill. 2022, 8, e36712. [Google Scholar] [CrossRef] [PubMed]
- Román Ivorra, J.A.; Trallero-Araguas, E.; Lopez Lasanta, M.; Cebrián, L.; Lojo, L.; López-Muñíz, B.; Fernández-Melon, J.; Núñez, B.; Silva-Fernández, L.; Veiga Cabello, R.; et al. Prevalence and Clinical Characteristics of Patients with Rheumatoid Arthritis with Interstitial Lung Disease Using Unstructured Healthcare Data and Machine Learning. RMD Open 2024, 10, e003353. [Google Scholar] [CrossRef] [PubMed]
- Baricich, A.; Wein, T.; Cinone, N.; Bertoni, M.; Picelli, A.; Chisari, C.; Molteni, F.; Santamato, A. BoNT-A for Post-Stroke Spasticity: Guidance on Unmet Clinical Needs from a Delphi Panel Approach. Toxins 2021, 13, 236. [Google Scholar] [CrossRef]
- Giner-Soriano, M.; Marsal, J.R.; Gomez-Lumbreras, A.; Morros, R. Risk of Ischaemic Stroke Associated with Antiepileptic Drugs: A Population-Based Case-Control Study in Catalonia. BMC Neurol. 2021, 21, 208. [Google Scholar] [CrossRef] [PubMed]
- Vikström, A.; Nyström, M.; Ahlfeldt, H.; Strender, L.-E.; Nilsson, G.H. Views of Diagnosis Distribution in Primary Care in 2.5 Million Encounters in Stockholm: A Comparison between ICD-10 and SNOMED CT. Inform. Prim. Care 2010, 18, 17–29. [Google Scholar] [CrossRef]
- Bowman, S.E. Coordination of SNOMED-CT and ICD-10: Getting the Most out of Electronic Health Record Systems; American Health Information Management Association (AHIMA): Chicago, IL, USA, 2005. [Google Scholar]
- Kardas, P.; Aguilar-Palacio, I.; Almada, M.; Cahir, C.; Costa, E.; Giardini, A.; Malo, S.; Massot Mesquida, M.; Menditto, E.; Midão, L.; et al. The Need to Develop Standard Measures of Patient Adherence for Big Data: Viewpoint. J. Med. Internet Res. 2020, 22, e18150. [Google Scholar] [CrossRef]
- Canales, L.; Menke, S.; Marchesseau, S.; D’Agostino, A.; Del Rio-Bermudez, C.; Taberna, M.; Tello, J. Assessing the Performance of Clinical Natural Language Processing Systems: Development of an Evaluation Methodology. JMIR Med. Inform. 2021, 9, e20492. [Google Scholar] [CrossRef]
Overall PSS (n = 2190) | BoNT-A (n = 559) | non-BoNT-A (n = 1631) | |
---|---|---|---|
General Characteristics | |||
Demographics | |||
Gender, male | 1140 (52.1) | 245 (43.8) | 895 (54.9) |
Age, years | 69 (57, 79) | 64 (53, 74) | 71 (59, 81) |
CVD risk factors | 1549 (70.7) | 307 (54.9) | 1242 (76.1) |
Hypertension | 1319 (85.2) | 244 (79.5) | 1075 (86.6) |
Dyslipidemia | 918 (59.3) | 177 (57.7) | 741 (59.7) |
Diabetes mellitus | 611 (39.4) | 106 (34.5) | 505 (40.7) |
Obesity | 263 (17.0) | 58 (18.9) | 205 (16.5) |
Comorbidities | 995 (45.4) | 178 (31.8) | 817 (50.1) |
Valvulopathies | 546 (54.9) | 101 (56.7) | 445 (54.4) |
Atrial fibrillation | 438 (44.0) | 57 (32.0) | 381 (46.6) |
Obstructive sleep apnea | 147 (14.8) | 37 (20.8) | 110 (13.5) |
Transient ischemic attack | 132 (13.3) | 25 (14.0) | 107 (13.1) |
Atherosclerosis | 93 (9.3) | 11 (6.2) | 82 (10.0) |
Stroke characteristics * | |||
Stroke etiology & | 1826 (83.4) | 435 (77.8) | 1391 (85.2) |
Ischemic | 1154 (63.2) | 261 (60.0) | 893 (64.2) |
Hemorrhagic | 672 (36.8) | 174 (40.0) | 498 (35.8) |
Vascular territory & | 576 (26.3) | 110 (19.6) | 466 (28.5) |
Middle cerebral artery | 420 (72.9) | 84 (76.4) | 336 (72.1) |
Internal carotid artery | 102 (17.7) | 16 (14.5) | 86 (18.5) |
Posterior circulation | 34 (5.9) | 7 (6.4) | 27 (5.8) |
Anterior cerebral artery | 20 (3.5) | 3 (2.7) | 17 (3.6) |
Stroke sequelae & | 1331 (60.7) | 280 (50.0) | 1051 (64.4) |
Hemiparesis | 598 (45.0) | 130 (46.4) | 468 (44.5) |
Hemiplegia | 593 (44.5) | 120 (42.9) | 473 (45.0) |
Others | 302 (22.7) | 60 (21.4) | 242 (23.0) |
Time from stroke to spasticity, days # | 205 (32, 615) | 344 (121, 835) | 173 (23, 544) |
Overall PSS (n = 2190) | BoNT-A (n = 559) | Non-BoNT-A (n = 1631) | |
---|---|---|---|
Spasticity affected area, n (%) & | 1483 (67.7) | 391 (70.0) | 1092 (67.0) |
Upper and lower limb affected | 612 (41.3) | 171 (43.7) | 441 (40.3) |
Lower limb affected | 519 (35.0) | 81 (20.7) | 438 (40.1) |
Upper limb affected | 352 (23.7) | 139 (35.5) | 213 (19.5) |
Muscular groups affected per area | |||
Upper limb muscular groups, n (%) *& | 1131 (51.6) | 310 (55.5) | 821 (50.3) |
Elbow flexion | 552 (48.8) | 175 (56.5) | 377 (45.9) |
Others | 241 (21.3) | 112 (36.1) | 129 (15.7) |
Shoulder adduction | 119 (10.5) | 75 (24.2) | 44 (5.4) |
Thumb in palm | 72 (6.4) | 55 (17.7) | 17 (2.1) |
Claw hand muscles | 20 (1.8) | 20 (6.5) | 0 (0.0) |
Wrist flexion | 13 (1.1) | 13 (4.2) | 0 (0.0) |
Lower limb muscular groups, n (%) *& | 964 (44.0) | 252 (45.1) | 712 (43.7) |
Equinovarus foot | 331 (34.3) | 13 (5.2) | 200 (28.1) |
Hip flexion | 300 (31.1) | 93 (36.9) | 207 (29.1) |
Knee extension | 119 (12.3) | 40 (15.9) | 79 (11.1) |
Others | 11 (1.1) | 1 (0.4) | 10 (1.4) |
Overall PSS (n = 2190) | BoNT-A (n = 559) | Non-BoNT-A (n = 1631) | |
---|---|---|---|
Non-pharmacological, n (%) & | 1122 (51.2) | 285 (51.0) | 837 (51.3) |
Rehabilitation and physiotherapy | 1072 (95.5) | 261 (91.6) | 811 (96.9) |
Others | 69 (6.1) | 23 (8.1) | 46 (5.5) |
Casts | 51 (4.5) | 17 (6.0) | 34 (4.1) |
Cryotherapy | 43 (3.8) | 20 (7.0) | 23 (2.7) |
Pharmacological, n (%) & | 798 (36.4) | 252 (45.1) | 546 (33.5) |
Diazepam | 363 (45.4) | 119 (47.2) | 244 (44.7) |
Pregabalin | 271(34.0) | 77 (30.6) | 194 (35.5) |
Gabapentin | 255 (32.0) | 88 (34.9) | 167 (30.6) |
Baclofen (oral or intrathecal) | 150 (18.8) | 54 (21.4) | 96 (17.6) |
Others | 72 (9.0) | 26 (10.3) | 46 (8.4) |
Variable | Precision | Recall | F1-Score |
---|---|---|---|
Intramuscular infiltration of BoNT-A | 0.992 | 0.967 | 0.979 |
Hemorrhagic cerebrovascular accident | 0.993 | 0.772 | 0.869 |
Spasticity | 1.000 | 0.769 | 0.870 |
Equinus foot | 0.946 | 0.779 | 0.855 |
Acquired claw toes | 1.000 | 0.667 | 0.800 |
Lacunar infarct | 1.000 | 0.632 | 0.774 |
Cardioembolic cerebrovascular accident | 0.984 | 0.602 | 0.747 |
Thromboembolic cerebrovascular accident | 0.867 | 0.542 | 0.667 |
Oral baclofen | 1.000 | 0.406 | 0.578 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antón, M.J.; Molina, M.; Pérez, J.G.; Pina, S.; Tapiador, N.; De La Calle, B.; Martínez, M.; Ortega, P.; Ruspaggiari, M.B.; Tudela, C.; et al. Botulinum Toxin Type A (BoNT-A) Use for Post-Stroke Spasticity: A Multicenter Study Using Natural Language Processing and Machine Learning. Toxins 2024, 16, 340. https://doi.org/10.3390/toxins16080340
Antón MJ, Molina M, Pérez JG, Pina S, Tapiador N, De La Calle B, Martínez M, Ortega P, Ruspaggiari MB, Tudela C, et al. Botulinum Toxin Type A (BoNT-A) Use for Post-Stroke Spasticity: A Multicenter Study Using Natural Language Processing and Machine Learning. Toxins. 2024; 16(8):340. https://doi.org/10.3390/toxins16080340
Chicago/Turabian StyleAntón, María Jesús, Montserrat Molina, José Gabriel Pérez, Santiago Pina, Noemí Tapiador, Beatriz De La Calle, Mónica Martínez, Paula Ortega, María Belén Ruspaggiari, Consuelo Tudela, and et al. 2024. "Botulinum Toxin Type A (BoNT-A) Use for Post-Stroke Spasticity: A Multicenter Study Using Natural Language Processing and Machine Learning" Toxins 16, no. 8: 340. https://doi.org/10.3390/toxins16080340
APA StyleAntón, M. J., Molina, M., Pérez, J. G., Pina, S., Tapiador, N., De La Calle, B., Martínez, M., Ortega, P., Ruspaggiari, M. B., Tudela, C., Conejo, M., Leno, P., López, M., Marhuenda, C., Arias-Cabrales, C., Maisonobe, P., Herrera, A., & Candau, E. (2024). Botulinum Toxin Type A (BoNT-A) Use for Post-Stroke Spasticity: A Multicenter Study Using Natural Language Processing and Machine Learning. Toxins, 16(8), 340. https://doi.org/10.3390/toxins16080340