Utility of Cry1Ja for Transgenic Insect Control
Abstract
:1. Introduction
2. Results
2.1. Characterization of Cry1JP578V Binding in Three Lepidopteran Species
2.2. Activity of Cry1J against Cry1Fa-Resistant Spodoptera frugiperda
2.3. In Planta Efficacy of Cry1J against Three Lepidopteran Species
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Protein Identification, Production and Preparation
5.2. BBMV Preparation
5.3. Competition Binding Assays
5.4. In Planta Efficacy Evaluation
5.5. Insect Bioassays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture. Recent Trends in GE Adoption. Available online: https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-u-s/recent-trends-in-ge-adoption/ (accessed on 29 August 2024).
- ISAAA, Inc. Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier, Executive Summary. Available online: https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.asp (accessed on 29 August 2024).
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef]
- Carzoli, A.K.; Aboobucker, S.I.; Sandall, L.L.; Lübberstedt, T.T.; Suza, W.P. Risks and opportunities of GM crops: Bt maize example. Glob. Food Secur. 2018, 19, 84–91. [Google Scholar] [CrossRef]
- Romeis, J.; Naranjo, S.E.; Meissle, M.; Shelton, A.M. Genetically engineered crops help support conservation biological control. Biol. Control 2019, 130, 136–154. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. Farm income and production impacts of using GM crop technology 1996–2016. GM Crops Food 2018, 9, 59–89. [Google Scholar] [CrossRef]
- Bawa, A.S.; Anilakumar, K.R. Genetically modified foods: Safety, risks and public concerns-a review. J. Food Sci. Technol. 2013, 50, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, W.D.; Burkness, E.C.; Mitchell, P.D.; Moon, R.D.; Leslie, T.W.; Fleischer, S.J.; Abrahamson, M.; Hamilton, K.L.; Steffey, K.L.; Gray, M.E.; et al. Areawide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers. Science 2010, 330, 222–225. [Google Scholar] [CrossRef]
- Roush, R.T. Two–toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not? Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 1998, 353, 1777–1786. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Cao, J.; Collins, H.L.; Bates, S.L.; Roush, R.T.; Earle, E.D.; Shelton, A.M. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8426–8430. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar] [CrossRef]
- Fatoretto, J.C.; Michel, A.P.; Silva Filho, M.C.; Silva, N. Adaptive Potential of Fall Armyworm (Lepidoptera: Noctuidae) Limits Bt Trait Durability in Brazil. J. Integr. Pest Manag. 2017, 8, 17. [Google Scholar] [CrossRef]
- Ferré, J.; Van Rie, J. Biochemistry and Genetics of Insect Resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2002, 47, 501–533. [Google Scholar] [CrossRef] [PubMed]
- Abad, A.; Dong, H.; Rice, J.; Shi, X. Insecticidal Polypeptides Having Broad Spectrum Activity and Uses Thereof. U.S. Patent 10,519,200 B2, 31 December 2019. [Google Scholar]
- Labute, P. The generalized Born/volume integral implicit solvent model: Estimation of the free energy of hydration using London dispersion instead of atomic surface area. J. Comput. Chem. 2008, 29, 1693–1698. [Google Scholar] [CrossRef]
- Vélez, A.; Spencer, T.; Alves, A.; Moellenbeck, D.; Meagher, R.; Chirakkal, H.; Siegfried, B. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae). Bull. Entomol. Res. 2013, 103, 700–713. [Google Scholar]
- Hu, X.T.; Owens, M.A. Multiplexed protein quantification in maize leaves by liquid chromatography coupled with tandem mass spectrometry: An alternative tool to immunoassays for target protein analysis in genetically engineered crops. J. Agric. Food Chem. 2011, 59, 3551–3558. [Google Scholar] [PubMed]
- Liu, L.; Schepers, E.; Lum, A.; Rice, J.; Yalpani, N.; Gerber, R.; Jiménez-Juárez, N.; Haile, F.; Pascual, A.; Barry, J.; et al. Identification and Evaluations of Novel Insecticidal Proteins from Plants of the Class Polypodiopsida for Crop Protection against Key Lepidopteran Pests. Toxins 2019, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Johnson, K.W.; Engleman, J.T.; Baum, J.A. Cross-Resistance to Bacillus thuringiensis Toxin Cry1Ja in a Strain of Diamondback Moth Adapted to Artificial Diet. J. Invertebr. Pathol. 2000, 76, 81–83. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Liu, Y.-B.; De Maagd, R.A.; Dennehy, T.J. Cross-Resistance of Pink Bollworm (Pectinophora gossypiella) to Bacillus thuringiensis Toxins. Appl. Environ. Microbiol. 2000, 66, 4582–4584. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Malvar, T.; Liu, Y.B.; Finson, N.; Borthakur, D.; Shin, B.S.; Park, S.H.; Masson, L.; De Maagd, R.A.; Bosch, D. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 1996, 62, 2839–2844. [Google Scholar] [CrossRef]
- Iracheta, M.A.M.; Pereyra-Alférez, B.; Galán-Wong, L.; Ferré, J. Screening for Bacillus thuringiensis Crystal Proteins Active against the Cabbage Looper, Trichoplusia ni. J. Invertebr. Pathol. 2000, 76, 70–75. [Google Scholar] [CrossRef]
- Herrero, S.; Gonzalez-Cabrera, J.; Tabashnik, B.E.; Ferre, J. Shared binding sites in lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins. Appl. Environ. Microbiol. 2001, 67, 5729–5734. [Google Scholar] [CrossRef]
- Bel, Y.; Sheets, J.J.; Tan, S.Y.; Narva, K.E.; Escriche, B. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Appl. Environ. Microbiol. 2017, 83, e00326-17. [Google Scholar] [CrossRef]
- Mushtaq, R.; Shakoori, A.; Jurat-Fuentes, J. Domain III of Cry1Ac Is Critical to Binding and Toxicity against Soybean Looper (Chrysodeixis includens) but Not to Velvetbean Caterpillar (Anticarsia gemmatalis). Toxins 2018, 10, 95. [Google Scholar] [CrossRef]
- Bel, Y.; Zack, M.; Narva, K.; Escriche, B. Specific binding of Bacillus thuringiensis Cry1Ea toxin, and Cry1Ac and Cry1Fa competition analyses in Anticarsia gemmatalis and Chrysodeixis includens. Sci. Rep. 2019, 9, 18201. [Google Scholar] [CrossRef]
- Hernandez, C.S.; Ferre, J. Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Appl. Environ. Microbiol. 2005, 71, 5627–5629. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Riazuddin, S.; Gould, F.; Dean, D.H. Determination of Receptor Binding Properties of Bacillus thuringiensis δ-Endotoxins to Cotton Bollworm (Helicoverpa zea) and Pink Bollworm (Pectinophora gossypiella) Midgut Brush Border Membrane Vesicles. Pestic. Biochem. Physiol. 2000, 67, 198–216. [Google Scholar] [CrossRef]
- Estela, A.; Escriche, B.; Ferre, J. Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 2004, 70, 1378–1384. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, C.S.; Hernández-Martínez, P.; Van Rie, J.; Escriche, B.; Ferré, J. Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE 2013, 8, e68164. [Google Scholar] [CrossRef]
- Raeman, R.; Hua, G.; Zhang, Q.; Adang, M.J. Fluorescent analyses of Bacillus thuringiensis Cry1Fa and Cry1Ab toxin binding sites on brush border membrane vesicles of Ostrinia nubilalis (Hübner), Diatraea grandiosella (Dyar), and Helicoverpa zea (Boddie) larvae. Pestic. Biochem. Physiol. 2020, 167, 104592. [Google Scholar] [CrossRef]
- Bernardi, D.; Salmeron, E.; Horikoshi, R.J.; Bernardi, O.; Dourado, P.M.; Carvalho, R.A.; Martinelli, S.; Head, G.P.; Omoto, C. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil. PLoS ONE 2015, 10, e0140130. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Adang, M.J. Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Appl. Environ. Microbiol 2001, 67, 323–329. [Google Scholar] [CrossRef]
- Zack, M.D.; Sopko, M.S.; Frey, M.L.; Wang, X.; Tan, S.Y.; Arruda, J.M.; Letherer, T.T.; Narva, K.E. Functional characterization of Vip3Ab1 and Vip3Bc1: Two novel insecticidal proteins with differential activity against lepidopteran pests. Sci. Rep. 2017, 7, 11112. [Google Scholar] [CrossRef] [PubMed]
- Wolfersberger, M.; Luethy, P.; Maurer, A.; Parenti, P.; Sacchi, F.V.; Giordana, B.; Hanozet, G.M. Preparation and partial characterization of amino-acid transporting brush-border membrane-vesicles from the larval midgut of the cabbage butterfly (pieris-brassicae). Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 1987, 86, 301–308. [Google Scholar] [CrossRef]
- Smith, P.E.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Grefen, C.; Donald, N.; Hashimoto, K.; Kudla, J.; Schumacher, K.; Blatt, M.R. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 2010, 64, 355–365. [Google Scholar] [CrossRef]
- Cho, H.-J.; Castle, L.A.; Klein, T.M.; Minh, T.; Moy, Y. Cultivation Medium for Agrobacterium-Mediated Transformation of Dicot Plants. U.S. Patent 8,962,328 B2, 24 February 2015. [Google Scholar]
- Finer, J.J.; McMullen, M.D. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. Vitr. Cell. Dev. Biol. Plant 1991, 27, 175–182. [Google Scholar] [CrossRef]
- Stewart Jr, C.N.; Adang, M.J.; All, J.N.; Boerma, H.R.; Cardineau, G.; Tucker, D.; Parrott, W.A. Genetic Transformation, Recovery, and Characterization of Fertile Soybean Transgenic for a Synthetic Bacillus thuringiensis cryIAc Gene. Plant Physiol. 1996, 112, 121–129. [Google Scholar] [CrossRef]
- Samoylov, V.M.; Tucker, D.M.; Thibaud-Nissen, F.; Parrott, W.A. A liquid-medium-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep. 1998, 18, 49–54. [Google Scholar] [CrossRef]
- Normand, S.L.T. Meta-analysis: Formulating, evaluating, combining, and reporting. Stat. Med. 1999, 18, 321–359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathis, J.P.; Clark, C.; Sethi, A.; Ortegon, B.; Rauscher, G.; Booth, R.; Coder, S.; Nelson, M.E. Utility of Cry1Ja for Transgenic Insect Control. Toxins 2024, 16, 384. https://doi.org/10.3390/toxins16090384
Mathis JP, Clark C, Sethi A, Ortegon B, Rauscher G, Booth R, Coder S, Nelson ME. Utility of Cry1Ja for Transgenic Insect Control. Toxins. 2024; 16(9):384. https://doi.org/10.3390/toxins16090384
Chicago/Turabian StyleMathis, John P., Catherine Clark, Amit Sethi, Benchie Ortegon, Gilda Rauscher, Russ Booth, Samuel Coder, and Mark E. Nelson. 2024. "Utility of Cry1Ja for Transgenic Insect Control" Toxins 16, no. 9: 384. https://doi.org/10.3390/toxins16090384
APA StyleMathis, J. P., Clark, C., Sethi, A., Ortegon, B., Rauscher, G., Booth, R., Coder, S., & Nelson, M. E. (2024). Utility of Cry1Ja for Transgenic Insect Control. Toxins, 16(9), 384. https://doi.org/10.3390/toxins16090384