Effect of a Yeast β-Glucan on the Performance, Intestinal Integrity, and Liver Function of Broiler Chickens Fed a Diet Naturally Contaminated with Fusarium Mycotoxins
Abstract
:1. Introduction
2. Results
2.1. Production Performance
2.2. Jejunum and Ileum Morphometry and Morphological Scores
2.3. mRNA Expression of Markers of Gut Integrity and Liver Function
2.4. Bacterial Translocation
2.5. Macroscopic Findings
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Experimental Design
5.2. Production Performance
5.3. Histological Analysis
5.4. mRNA Expression of Markers of Gut Integrity and Liver Function
5.5. Bacterial Translocation
5.6. Statistical Analysis
5.7. Declaration of AI-Assisted Technology in the Writing Process
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-ADON | 3-Acetyl-deoxynivalenol |
15-DON | 15-Acetyl-deoxynivalenol |
ACTB | Beta actin |
ANOVA | Analysis of variance |
BW | Body weight |
BWG | Body weight gain |
CD | Crypt depth |
CLDN1 | Claudin 1 |
CLDN5 | Claudin 5 |
CPT1 | Carnitine palmitoyltransferase 1 |
DON | Deoxynivalenol |
DON-3G | Deoxynivalenol-3-glucoside |
EU | European union |
FCR | Feed conversion ratio |
FI | Feed intake |
FUM | Fumonisin |
GLUT1 | Glucose transporter 1 |
GOI | Gene of interest |
HKG | Housekeeping gene |
HMGCR | 3-Hydroxy-3-methylglutaryl-CoA reductase |
HMOX | Heme oxygenase |
HPRT | Hypoxanthine phosphoribosyltransferase |
IFNg | Interferon gamma |
IL-10 | Interleukin 10 |
IL-12 | Interleukin 12 |
IL-6 | Interleukin 6 |
IL-8 | Interleukin 8 |
iNOS | Inducible nitric oxide synthase |
LC-MS/MS | Liquid chromatography with tandem mass spectrometry |
LEAP2 | Liver-expressed antimicrobial peptide 2 |
LOAEL | Lowest observed adverse effect level |
LSD | Least significant difference |
MUC2 | Mucin 2 |
NOAEL | No observable adverse effect level |
PAS | Periodic acid–Schiff |
PEPT1 | Peptide transporter 1 |
qRT-PCR | Quantitative reverse-transcription polymerase chain reaction |
SREBP2 | Sterol regulatory element binding transcription factor 2 |
VH | Villus height |
VH:CD ratio | Villus height:crypt depth ratio |
VIL1 | Villin 1 |
XOR | Xanthine oxidoreductase |
ZEN | Zearalenone |
References
- Adugna, C.; Wang, K.; Du, J.; Li, C. Deoxynivalenol mycotoxin dietary exposure on broiler performance and small intestine health: A comprehensive meta-analysis. Poult. Sci. 2024, 103, 104412. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.C.S.; Galli, G.M.; Alba, D.F.; Griss, L.G.; Gebert, R.R.; Souza, C.F.; Baldissera, M.D.; Gloria, E.M.; Mendes, R.E.; Zanelato, G.O.; et al. Pathogenic effects of feed intake containing of fumonisin (Fusarium verticillioides) in early broiler chicks and consequences on weight gain. Microb. Pathog. 2020, 147, 104247. [Google Scholar] [CrossRef]
- Liu, J.; Applegate, T. Zearalenone (ZEN) in livestock and poultry: Dose, toxicokinetics, toxicity and estrogenicity. Toxins 2020, 12, 377. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, O.; Graham, A.; Donaldson, C.; Owens, B.; Abia, W.A.; Meneely, J.; Alcorn, M.J.; Connolly, L.; Elliott, C.T. Low doses of mycotoxin mixtures below EU regulatory limits can negatively affect the performance of broiler chickens: A longitudinal study. Toxins 2020, 12, e433. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.R.; van Eerden, E. Impaired performance of broiler chickens fed diets naturally contaminated with moderate levels of deoxynivalenol. Toxins 2021, 13, 170. [Google Scholar] [CrossRef]
- Santos, R.R.; Oosterveer-van der Doelen, M.A.M.; Tersteeg-Zijderveld, M.H.G.; Molist, F.; Mezes, M.; Gehring, R. Susceptibility of broiler chickens to deoxynivalenol exposure via artificial or natural dietary contamination. Animals 2021, 11, 989. [Google Scholar] [CrossRef]
- Pinton, P.; Tsybulskyy, D.; Lucioli, J.; Laffitte, J.; Callu, P.; Lyazhri, F.; Grosjean, F.; Bracarense, A.P.; Kolf-Clauw, M.; Oswald, I.P. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: Differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol. Sci. 2012, 130, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Osselaere, A.; Santos, R.; Hautekiet, V.; De Backer, P.; Chiers, K.; Ducatelle, R.; Croubels, S. Deoxynivalenol Impairs Hepatic and Intestinal Gene Expression of Selected Oxidative Stress, Tight Junction and Inflammation Proteins in Broiler Chickens, but Addition of an Adsorbing Agent Shifts the Effects to the Distal Parts of the Small Intestine. PLoS ONE 2013, 8, e69014. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Ruhnau, D.; Hess, C.; Doupovec, B.; Schatzmayr, D.; Hess, M. Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch. Toxicol. 2019, 93, 2057–2064. [Google Scholar] [CrossRef]
- Ruhnau, D.; Hess, C.; Grenier, B.; Doupovec, B.; Schatzmayr, D.; Hess, M.; Awad, W.A. The mycotoxin deoxynivalenol (DON) promotes Campylobacter jejuni multiplication in the intestine of broiler chickens with consequences on bacterial translocation and gut integrity. Front. Vet. Sci. 2020, 7, 573894. [Google Scholar] [CrossRef]
- Azizi, T.; Daneshyar, M.; Allymehr, M.; Jalali, A.S.; Behroozyar, H.K.; Tukmechi, A. The impact of deoxynivalenol contaminated diet on performance, immune response, intestine morphology and jejunal gene expression in broiler chicken. Toxicon 2021, 199, 72–78. [Google Scholar] [CrossRef]
- Yunus, A.W.; Blajet-Kosicka, A.; Kosicki, R.; Khan, M.Z.; Rehman, H.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poult. Sci. 2012, 91, 852–861. [Google Scholar] [CrossRef]
- Antonissen, G.; Immerseel, F.V.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F.; Timbermont, L.; Verlinden, M.; Jules Janssens, G.P.; Eeckhaut, V.; Eeckhout, M.; et al. The Mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS ONE 2014, 9, e108775. [Google Scholar] [CrossRef] [PubMed]
- Kovalsky, P.; Kos, G.; Nährer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize—An extensive survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef]
- Liu, J.D.; Doupovec, B.; Schatzmayr, D.; Murugesan, G.R.; Bortoluzzi, C.; Villegas, A.M.; Applegate, T.J. The impact of deoxynivalenol, fumonisins, and their combination on performance, nutrient, and energy digestibility in broiler chickens. Poult. Sci. 2020, 99, 272–279. [Google Scholar] [CrossRef]
- Santos, R.R.; Molist, F. Effect of different dietary levels of corn naturally contaminated with DON and its derivatives 3 + 15 Ac-DON and DON-3-glucoside on the performance of broilers. Heliyon 2020, 6, e05257. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain); Knutsen, H.-K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Scientific opinion on the risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, e04851. [Google Scholar] [PubMed]
- Stier, H.; Ebbeskotte, V.; Gruenwald, J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr. J. 2014, 13, 38. [Google Scholar] [CrossRef]
- Lee, C.; Verma, R.; Byun, S.; Jeun, E.J.; Kim, G.C.; Lee, S.; Kang, H.J.; Kim, C.J.; Sharma, G.; Lahiri, A.; et al. Structural specificities of cell surface β-glucan polysaccharides determine commensal yeast mediated immune-modulatory activities. Nat. Comm. 2021, 12, 3611. [Google Scholar] [CrossRef]
- Ganda Mall, J.P.; Casado-Bedmar, M.; Winberg, M.E.; Brummer, R.J.; Schoultz, I.; Keita, A.V. A β-glucan-based dietary fiber reduces mast cell-induced hyperpermeability in ileum from patients with crohn’s disease and control subjects. Inflamm. Bowel Dis. 2017, 24, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Broekaert, N.; Devreese, M.; van Bergen, T.; Schauvliege, S.; De Boevre, M.; De Saeger, S.; Vanhaecke, L.; Berthiller, F.; Michlmayr, H.; Malachová, A.; et al. In vivo contribution of deoxynivalenol-3-β-D-glucoside to deoxynivalenol exposure in broiler chickens and pigs: Oral bioavailability, hydrolysis and toxicokinetics. Arch. Toxicol. 2017, 91, 699–712. [Google Scholar] [CrossRef]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstranc, C.; Leblanc, J.C.; Nielsen, E.; et al. Scientific Opinion on the assessment of information as regards the toxicity of fumonisins for pigs, poultry and horses. EFSA J. 2022, 20, e07534. [Google Scholar]
- Wan, S.; Sun, N.; Li, H.; Khan, A.; Zheng, X.; Sun, Y.; Fan, R. Deoxynivalenol damages the intestinal barrier and biota of the broiler chickens. BMC Vet. Res. 2022, 18, 311. [Google Scholar] [CrossRef]
- Ding, B.; Zheng, J.; Wang, X.; Zhang, L.; Sun, D.; Xing, Q.; Pirone, A.; Fronte, B. Effects of dietary yeast beta-1,3-1,6-glucan on growth performance, intestinal morphology and chosen immunity parameters changes in Haidong chicks. Asian-Australas. J. Anim. Sci. 2019, 32, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Bar-Dagan, H.; Gover, O.; Cohen, N.A.; Vetvicka, V.; Rozenboim, I.; Schwartz, B. Beta-glucans induce cellular immune training and changes in intestinal morphology in poultry. Front. Vet. Sci. 2023, 9, 2022. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Shao, Y.; Wang, Z.; Guo, Y. Effects of dietary yeast -glucans supplementation on growth performance, gut morphology, intestinal Clostridium perfringens population and immune response of broiler chickens challenged with necrotic enteritis. Anim. Feed Sci. Technol. 2016, 215, 144–155. [Google Scholar] [CrossRef]
- Santos, R.R.; Awati, A.; Roubos-van den Hil, P.; Tersteeg-Zijderveld, M.H.G.; Koolmees, P.A.; Fink-Gremmels, J. Quantitative histo-morphometric Analysis of Heat Stress Related Damage in the Small Intestines of Broiler Chickens. Avian Pathol. 2015, 44, 19–22. [Google Scholar] [CrossRef]
- Adesso, S.; Autore, G.; Quaroni, A.; Popolo, A.; Severino, L.; Marzocco, S. The food contaminants nivalenol and deoxynivalenol induce inflammation in intestinal epithelial cells by regulating reactive oxygen species release. Nutrients 2017, 9, 1343. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, Y.; Duan, Y.; Wang, F.; Guo, F.; Yan, F.; Yang, X.; Yang, X. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. J. Anim. Sci. Biotechnol. 2018, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Riahi, I.; Marquis, V.; Ramos, A.J.; Brufau, J.; Esteve-Garcia, E.; Pérez-Vendrell, A.M. Effects of deoxynivalenol-contaminated diets on productive, morphological, and physiological indicators in broiler chickens. Animals 2020, 10, 1795. [Google Scholar] [CrossRef]
- Goel, A.; Ncho, C.M.; Choi, Y.H. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 2021, 12, 11. [Google Scholar] [CrossRef]
- Daniel, H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 2004, 66, 361–384. [Google Scholar] [CrossRef]
- Pinton, P.; Oswald, I.P. Effect of deoxynivalenol and other type B trichothecenes on the intestine: A review. Toxins 2014, 6, 1615–1643. [Google Scholar] [CrossRef]
- Kono, T.; Nishida, M.; Nishiki, Y.; Seki, Y.; Sato, K.; Akiba, Y. Characterisation of glucose transporter (GLUT) gene expression in broiler chickens. Br. Poult. Sci. 2005, 46, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Townes, C.L.; Michailidis, G.; Nile, C.J.; Hall, J. Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infect. Immun. 2004, 72, 6987–6993. [Google Scholar] [CrossRef] [PubMed]
- Milanova, A.; Santos, R.R.; Lashev, L.; Koinarski, V.; Fink-Gremmels, J. Influence of experimentally induced Eimeria tenella infection on gene expression of some host response factors in chickens. Bulg. J. Vet. Med. 2016, 19, 47–56. [Google Scholar] [CrossRef]
- Harrison, R. Structure and function of xanthine oxidoreductase: Where are we now? Free Radical. Biol. Med. 2002, 33, 774–797. [Google Scholar] [CrossRef] [PubMed]
- Cano, P.M.; Seeboth, J.; Meurens, F.; Cognie, J.; Abrami, R.; Oswald, I.P. Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: An emerging hypothesis through possible modulation of Th17-mediated response. PLoS ONE 2013, 8, e53647. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.A.; Soodoi, C.; Sasgary, S.; Strasser, A.; Böhm, J. Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PLoS ONE 2013, 8, e71492. [Google Scholar] [CrossRef]
- Teng, P.Y.; Kim, W.K. Review: Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef]
- Schwartz, B.; Vetvicka, V. Review: β-glucans as effective antibiotic alternatives in poultry. Molecules 2021, 26, 3560. [Google Scholar] [CrossRef]
- Zhai, X.; Qiu, Z.; Wang, L.; Luo, Y.; He, W.; Yang, J. Possible toxis mechanisms of deoxynivalenol (DON) exposure to intestinal barrier damage and dysbiosis of the gut microbiota in laying hens. Toxins 2022, 14, 682. [Google Scholar] [CrossRef] [PubMed]
- Gharib-Naseri, K.; Kheravii, S.; Keergin, C.; Swick, R.A.; Choct, M.; Wu, S.B. Differential expression of intestinal genes in necrotic enteritis challenged broiler chickens with 2 different Clostridium perfringens strains. Poult. Sci. 2021, 100, 100886. [Google Scholar] [CrossRef]
- Guan, X.; Martinez, A.R.; Fernandez, M.; Molist, F.; Wells, J.M.; Santos, R.R. The Mycotoxins T-2 and Deoxynivalenol Facilitate the Translocation of Streptococcus suis across Porcine Ileal Organoid Monolayers. Toxins 2024, 16, 382. [Google Scholar] [CrossRef] [PubMed]
- Quaedackers, J.S.; Beuk, R.J.; Bennet, L.; Charlton, A.; Oude Egbrink, M.G.; Gunn, A.J.; Heineman, E. An evaluation of methods for grading histologic injury following ischemia/reperfusion of the small bowel. Transplant. Proc. 2000, 32, 1307–1310. [Google Scholar] [CrossRef]
- Santos, R.R.; Awati, A.; Roubos-van den Hil, P.J.; van Kempen, T.A.T.G.; Tersteg-Zijderveld, M.H.G.; Koolmees, P.A.; Smits, C.; Fink-Gremmels, J. Effects of a feed additive blend on broilers challenged with heat stress. Avian Pathol. 2019, 48, 582–601. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Varasteh, S.; Braber, S.; Akbari, P.; Garssen, J.; Fink-Gremmels, J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS ONE 2015, 10, e0138975. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Scheenstra, M.R.; van Harten, R.M.; Haagsman, P.; Veldhuizen, E.J.A. The immunomodulatory effect of cathelicidin-B1 on chicken macrophages. Vet. Res. 2020, 51, 122. [Google Scholar] [CrossRef]
- Haritova, A.M.; Stanilova, S.A. Enhanced expression of IL-10 in contrast to IL-12B mRNA in poultry with experimental coccidiosis. Exp. Parasitol. 2012, 132, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Forder, R.E.; Nattrass, G.S.; Geier, M.S.; Hughes, R.J.; Hynd, P.I. Quantitative analyses of genes associated with mucin synthesis of broiler chickens with induced necrotic enteritis. Poult. Sci. 2012, 91, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Dridi, S.; Decuypere, E.; Buyse, J. Cerulenin upregulates heat shock protein-70 gene expression in chicken muscle. Poult. Sci. 2013, 92, 2745–2753. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, Y.; Ding, Z.; Lv, L.; Sui, Y.; Sun, Q.; Abobaker, H.; Cai, D.; Zhao, R. Maternal betaine supplementation decreases hepatic cholesterol deposition in chicken offspring with epigenetic modulation of SREBP2 and CYP7A1 genes. Poult. Sci. 2020, 99, 3111–3120. [Google Scholar] [CrossRef]
- Galarza-Seeber, R.; Latorre, J.D.; Bielke, L.R.; Kuttappan, V.A.; Wolfenden, A.D.; Hernandez-Velasco, X.; Merino-Guzman, R.; Vicente, J.L.; Donoghue, A.; Cross, D.; et al. Leaky gut and mycotoxins: Aflatoxin B1 does not increase gut permeability in broiler chickens. Front. Vet. Sci. 2016, 3, 10. [Google Scholar] [CrossRef] [PubMed]
Control | Fusarium Mycotoxins | p-Value | LSD | ||
---|---|---|---|---|---|
No Additive | Yeast β-Glucan | ||||
d0-13 | |||||
BW d13 | 382 | 385 | 389 | 0.81 | 23.2 |
BWG (g) | 339 | 341 | 356 | 0.22 | 20.9 |
FI (g) | 417 | 415 | 424 | 0.54 | 18.3 |
FCR (g/g) | 1.232 | 1.218 | 1.193 | 0.49 | 0.0681 |
Mortality (%) | 1.3 | 0.0 | 1.3 | NA | NA |
d13-28 | |||||
BW d28 | 1322 | 1319 | 1344 | 0.72 | 69.6 |
BWG (g) | 928 | 937 | 955 | 0.61 | 57.2 |
FI (g) | 1338 | 1329 | 1389 | 0.12 | 61.0 |
FCR (g/g) | 1.442 | 1.420 | 1.455 | 0.28 | 0.0454 |
Mortality (%) | 1.3 | 0.0 | 0.0 | NA | NA |
d0-28 | |||||
BWG (g) | 1279 | 1256 | 1307 | 0.28 | 64.8 |
FI (g) | 1776 | 1751 | 1819 | 0.26 | 85.0 |
FCR (g/g) | 1.389 | 1.394 | 1.392 | 0.97 | 0.0376 |
Mortality (%) | 2.6 | 0.0 | 1.3 | 0.14 | 2.94 |
Control | Fusarium Mycotoxins | p-Value | LSD | ||
---|---|---|---|---|---|
No Additive | Yeast β-Glucan | ||||
d13 | |||||
Villus height (µm) | 826 b | 742 a | 795 ab | 0.048 | 66.3 |
Crypt depth (µm) | 192 b | 159 a | 203 b | <0.001 | 14.1 |
VH:CD | 4.6 | 4.2 | 4.2 | 0.38 | 0.67 |
Villus area (mm2) | 0.13 | 0.08 | 0.12 | 0.07 | 0.040 |
Score | 0.16 | 0.31 | 0.12 | 0.47 | 0.342 |
d28 | |||||
Villus height (µm) | 822 | 926 | 951 | 0.48 | 235.5 |
Crypt depth (µm) | 238 | 231 | 229 | 0.94 | 55.5 |
VH:CD | 3.6 a | 4.1 ab | 4.5 b | 0.02 | 0.58 |
Villus area (mm2) | 0.16 | 0.12 | 0.14 | 0.57 | 0.080 |
Score | 2.53 | 2.86 | 2.37 | 0.63 | 1.086 |
Control | Fusarium Mycotoxins | p-Value | LSD | ||
---|---|---|---|---|---|
No Additive | Yeast β-Glucan | ||||
d13 | |||||
Villus height (µm) | 469 | 522 | 520 | 0.13 | 58.0 |
Crypt depth (µm) | 163 | 172 | 167 | 0.81 | 0.40 |
VH:CD | 2.9 | 3.2 | 3.3 | 0.14 | 0.40 |
Villus area (mm2) | 0.05 | 0.05 | 0.05 | 0.25 | 0.010 |
Score | 1.43 | 1.52 | 1.19 | 0.16 | 0.358 |
d28 | |||||
Villus height (µm) | 594 | 623 | 645 | 0.70 | 125.9 |
Crypt depth (µm) | 192 | 193 | 202 | 0.76 | 31.2 |
VH:CD | 3.4 | 3.3 | 3.3 | 0.87 | 0.47 |
Villus area (mm2) | 0.13 b | 0.10 a | 0.08 a | <0.001 | 0.020 |
Score | 0.51 | 0.41 | 0.28 | 0.53 | 0.433 |
Control | Fusarium Mycotoxins | p-Value | LSD | ||
---|---|---|---|---|---|
No Additive | Yeast β-Glucan | ||||
d13 | |||||
Enterobacteriaceae | 2.81 | 3.11 | 3.22 | 0.97 | 4.287 |
E. coli | 4.28 | 2.17 | 3.00 | 0.60 | 4.430 |
d28 | |||||
Enterobacteriaceae | 0.61 | 2.11 | 0.93 | 0.48 | 2.686 |
E. coli | 0.28 a | 3.87 b | 2.11 ab | 0.049 | 2.802 |
Control | Fusarium Mycotoxins | ||
---|---|---|---|
No Additive | Yeast β-Glucan | ||
d13 | |||
Blood spots | 2/18 | 10/18 | 4/18 |
Pale areas | 1/18 | 10/18 | 1/18 |
Pale liver | 0/18 | 3/18 | 0/18 |
Total | 3/18 | 11/18 | 5/18 |
d28 | |||
Blood spots | 0/18 | 11/18 | 0/18 |
Pale areas | 1/18 | 9/18 | 2/18 |
Pale liver | 0/18 | 0/18 | 0/18 |
Total | 1/18 | 11/18 | 2/18 |
Starter (d0-13) | Grower (d13-28) | |
---|---|---|
Ingredient (%) | ||
Maize | 45.00 | 45.00 |
Soybean meal | 34.91 | 30.73 |
Wheat | 13.79 | 17.39 |
Soybean oil | 0.00 | 0.76 |
Poultry fat | 2.79 | 3.00 |
Salt | 0.33 | 0.24 |
Limestone | 0.83 | 0.83 |
Monocalcium phosphate | 1.26 | 0.89 |
Sodium bicarbonate | 0.00 | 0.10 |
Lysine HCl | 0.23 | 0.22 |
DL-methionine | 0.30 | 0.27 |
Threonine | 0.06 | 0.07 |
Valine | 0.01 | 0.00 |
Vitamin and mineral premix | 0.50 | 0.50 |
Nutrients | ||
Energy (kcal/kg) | 2900 | 3000 |
DM, g/kg | 878 | 878 |
Ash, g/kg | 53.99 | 47.63 |
Crude protein, g/kg | 222 | 206 |
Crude fat, g/kg | 57.9 | 67.1 |
Crude fiber, g/kg | 21.9 | 21.3 |
Ca, g/kg | 6.46 | 5.72 |
P, g/kg | 6.46 | 5.47 |
K, g/kg | 9.69 | 8.92 |
Na, g/kg | 1.40 | 1.30 |
Cl, g/kg | 3.00 | 2.43 |
Mycotoxin (mg/kg) | Control | DON | DON + Yeast β-Glucan |
---|---|---|---|
d0-13 | |||
DON | 0.136 | 3.38 | 3.64 |
3+15 ADON | 0.042 | 0.046 | |
DON-3G | 0.022 | 0.550 | 0.610 |
Nivalenol | 0.066 | ||
Zearalenone | 0.040 | 0.440 | 0.480 |
d13-28 | |||
DON | 0.089 | 3.24 | 3.34 |
3+15 ADON | 0.065 | 0.061 | |
DON-3G | 0.023 | 0.570 | 0.820 |
Nivalenol | 0.108 | ||
FB1+FB2 | 0.077 | 0.113 | |
Zearalenone | 0.540 | 0.600 |
Genes | Primer Sequence | Annealing T° | Role | Reference |
---|---|---|---|---|
HKG | ||||
HPRT | F:CGTTGCTGTCTCTACTTAAGCAG R:GATATCCCACACTTCGAGGAG | 65 | - | [46] |
ACTB | F:ATGTGGATCAGCAAGCAGGAGTA R:TTTATGCGCATTTATGGGTTTTGT | 61 | - | [48] |
GOI | ||||
Jejunum and liver | ||||
HMOX | F:CTTGGCACAAGGAGTGTTAAC R:CATCCTGCTTGTCCTCTCAC | 63 | Oxidative stress | [46] |
iNOS | F:GGACAAGGGCCATTGCACCA R:TCCATCAGCGCTGCGCACAA | 61 | Oxidative stress | [36] |
XOR | F:GTGTCGGTGTACAGGATACAGAC R:CCTTACTATGACAGCATCCAGTG | 61 | Oxidative stress | [46] |
IFNg | F:CAAGCTCCCGATGAACGAC R:GCAATTGCATCTCCTCTGAGAC | 64 | Inflammation | [36] |
IL-6 | F:GCTCGCCGGCTTCGA R:GGTAGGTCTGAAAGGCGAACAG | 59 | Inflammation | [48] |
IL-8 | F:CACGTTCAGCGATTGAACTC R:GACTTCCACATTCTTGCAGTG | 64 | Inflammation | [36] |
IL-10 | F:CATGCTGCTGGGCCTGAA R:CGTCTCCTTGATCTGCTTGATG | 60 | Inflammation | [49] |
IL-12 | F:TCAAGGAGATGTAACCTGCAG R:CTTCGGCAAATGGACAGTAG | 60 | Inflammation | [50] |
LEAP2 | F:CTCAGCCAGGTGTACTGTGCTT R:CGTCATCCGCTTCAGTCTCA | 65 | Metabolism | [36] |
GLUT | F:TTGCTGGCTTTGGGTTGTG R:GGAGGTTGAGGGCCAAAGTC | 57 | Nutrient transporters | [48] |
PEPT1 | F:CCCCTGAGGAGGATCACTGTT R:CAAAAGAGCAGCAGCAACGA | 59 | Nutrient transporters | [46] |
CLDN1 | F:CTGATTGCTTCCAACCAG R:CAGGTCAAACAGAGGTACAAG | 58 | Tight junctions | [46] |
CLDN5 | F:CATCACTTCTCCTTCGTCAGC R:GCACAAAGATCTCCCAGGTC | 58 | Tight junctions | [46] |
MUC-2 | F:ATGCGATGTTAACACAGGACTC R:GTGGAGCACAGCAGACTTTG | 61 | Intestinal damage | [51] |
VIL-1 | F:GGCACCAACGAGTACAACACCA R:CAATTGCATCTCCTCTGAGAC | 61 | Intestinal damage | [48] |
Liver | ||||
CPT-1 | F:AAGGGTACAGCAAAGAAGATCCA R:CCACAGGTGTCCAACAATAGGAG | 61 | Metabolism | [52] |
HMGCR | F:TTGGATAGAGGGAAGAGGGAAG R:CTCGTAGTTGTATTCGGTAA | 61 | Metabolism | [53] |
SREBP2 | F:CCCAGAACAGCAAGCAAGG R:GCGAGGACAGGAAAGAGAGTG | 61 | Metabolism | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marquis, V.; Schulthess, J.; Molist, F.; Santos, R.R. Effect of a Yeast β-Glucan on the Performance, Intestinal Integrity, and Liver Function of Broiler Chickens Fed a Diet Naturally Contaminated with Fusarium Mycotoxins. Toxins 2025, 17, 51. https://doi.org/10.3390/toxins17020051
Marquis V, Schulthess J, Molist F, Santos RR. Effect of a Yeast β-Glucan on the Performance, Intestinal Integrity, and Liver Function of Broiler Chickens Fed a Diet Naturally Contaminated with Fusarium Mycotoxins. Toxins. 2025; 17(2):51. https://doi.org/10.3390/toxins17020051
Chicago/Turabian StyleMarquis, Virginie, Julie Schulthess, Francesc Molist, and Regiane R. Santos. 2025. "Effect of a Yeast β-Glucan on the Performance, Intestinal Integrity, and Liver Function of Broiler Chickens Fed a Diet Naturally Contaminated with Fusarium Mycotoxins" Toxins 17, no. 2: 51. https://doi.org/10.3390/toxins17020051
APA StyleMarquis, V., Schulthess, J., Molist, F., & Santos, R. R. (2025). Effect of a Yeast β-Glucan on the Performance, Intestinal Integrity, and Liver Function of Broiler Chickens Fed a Diet Naturally Contaminated with Fusarium Mycotoxins. Toxins, 17(2), 51. https://doi.org/10.3390/toxins17020051