Toxic Cyanopeptides Monitoring in Thermal Spring Water by Capillary Electrophoresis Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Electrophoretic Separation
2.2. Optimization of Detection Parameters
2.3. Optimization of the On-Line Preconcentration Strategy
2.4. Salting-Out Liquid–Liquid Extraction (SALLE) Protocol
2.5. Method Characterization in Thermal Spring Water
2.5.1. Calibration Curves and Analytical Performance Characteristics of the Method
2.5.2. Matrix Effect, Recoveries, and Precision Assays
2.6. Analysis of Thermal Spring Water Samples
2.7. Greenness and Practicability Evaluation
3. Conclusions
4. Materials and Methods
4.1. Reagents and Materials
4.2. Instrumentation
4.3. Sample Collection
4.4. SALLE
4.5. CE Separation
4.6. MS/MS Parameters
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamed, I. The evolution and versatility of microalgal biotechnology: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1104–1123. [Google Scholar] [CrossRef] [PubMed]
- Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef] [PubMed]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef] [PubMed]
- Cirés, S.; Casero, M.C.; Quesada, A. Toxicity at the edge of life: A review on cyanobacterial toxins from extreme environments. Mar. Drugs 2017, 15, 233. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Zhang, S.; Zhou, L. Acetylacetone effectively controlled the secondary metabolites of Microcystis aeruginosa under simulated sunlight irradiation. J. Environ. Sci. 2024, 135, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Plaas, H.E.; Paerl, H.W. Toxic cyanobacteria: A growing threat to water and air quality. Environ. Sci. Technol. 2020, 55, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Bernard, C.; Ballot, A.; Thomazeau, S.; Maloufi, S.; Furey, A.; Mankiewicz-Boczek, J.; Pawlik-Skowronska, B.; Capelli, C.; Salmaso, N. Appendix 2: Cyanobacteria associated with the production of cyanotoxins. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Wiley: Hoboken, NJ, USA, 2016; pp. 501–525. [Google Scholar] [CrossRef]
- WHO. World Health Organisation Report. Cyanobacterial Toxins: Microcystin-LR in Drinking Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2003. Available online: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/cyanobacterial-toxins-background-document.pdf?sfvrsn=46de6339_4 (accessed on 5 November 2024).
- Janssen, E.M.L. Cyanobacterial peptides beyond microcystins—A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res. 2019, 151, 488–499. [Google Scholar] [CrossRef]
- Van Apeldoorn, M.E.; Van Egmond, H.P.; Speijers, G.J.; Bakker, G.J. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60. [Google Scholar] [CrossRef] [PubMed]
- Cirés, S.; Alvarez-Roa, C.; Wood, S.A.; Puddick, J.; Loza, V.; Heimann, K. First report of microcystin-producing Fischerella sp. (Stigonematales, Cyanobacteria) in tropical Australia. Toxicon 2014, 88, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Codd, G.A.; Meriluoto, J.; Metcalf, J.S. Introduction: Cyanobacteria, cyanotoxins, their human impact, and risk management. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Wiley: Hoboken, NJ, USA, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Fontanillo, M.; Köhn, M. Microcystins: Synthesis and structure–activity relationship studies toward PP1 and PP2A. Bioorg. Med. Chem. 2018, 26, 1118–1126. [Google Scholar] [CrossRef]
- Massey, I.Y.; Yang, F.; Ding, Z.; Yang, S.; Guo, J.; Al-Osman, M.; Boukem Kamegni, R.; Zeng, W. Exposure routes and health effects of microcystins on animals and humans: A mini-review. Toxicon 2018, 151, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, Z.; Deng, X.; Wang, J.; Sun, L.; Fan, L.; Zhang, Y. Polyphyllin VII induces mitochondrial apoptosis by regulating the PP2A/AKT/DRP1 signaling axis in human ovarian cancer. Oncol. Rep. 2021, 45, 513–522. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 94, v. [Google Scholar]
- Hernandez, B.Y.; Zhu, X.; Nagata, M.; Loo, L.; Chan, O.; Wong, L.L. Cyanotoxin exposure and hepatocellular carcinoma. Toxicology 2023, 487, 153470. [Google Scholar] [CrossRef] [PubMed]
- Lenz, K.A.; Miller, T.R.; Ma, H. Anabaenopeptins and cyanopeptolins induce systemic toxicity effects in a model organism the nematode Caenorhabditis elegans. Chemosphere 2019, 214, 60–69. [Google Scholar] [CrossRef]
- Christensen, V.G.; Olds, H.T.; Norland, J.; Khan, E. Phytoplankton community interactions and cyanotoxin mixtures in three recurring surface blooms within one lake. J. Hazard. Mater. 2022, 427, 128142. [Google Scholar] [CrossRef] [PubMed]
- Krienitz, L.; Ballot, A.; Kotut, K.; Wiegand, C.; Pütz, S.; Metcalf, J.S.; Codd, G.A.; Stephan, P. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol. Ecol. 2003, 43, 141–148. [Google Scholar] [CrossRef]
- Cobo, F.; Barca, S.; Flores, C.; Caixach, J.; Cobo, M.C.; Vieira-Lanero, R. Can cyanotoxins explain the clinical features of the thermal crisis in balneotherapy? Harmful Algae 2022, 115, 102240. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mesa, M.; Moreno-González, D.; Lara, F.J.; Dervilly, G.; García-Campaña, A.M. Chemical Food Safety Applications of Capillary Electrophoresis Methodologies. Capill. Electrophor. Food Anal. 2022, 2, 388. [Google Scholar]
- Stolz, A.; Jooß, K.; Höcker, O.; Römer, J.; Schlecht, J.; Neusüß, C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2019, 40, 79–112. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gong, Q.; Liu, W.; Tan, S.; Xiao, J.; Chen, C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical, and food analysis (2019–2021). J. Sep. Sci. 2022, 45, 1918–1941. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zheng, X.; Zhang, N.; Guo, Y.; Liu, M. Overview of sixteen green analytical chemistry metrics for evaluation of the greenness of analytical methods. TrAC Trends Anal. Chem. 2023, 166, 117211. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Wojnowski, W.; Płotka-Wasylka, J.; Samanidou, V. Blue applicability grade index (BAGI) and software: A new tool for the evaluation of method practicality. Green Chem. 2023, 25, 7598–7604. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White analytical chemistry: An approach to reconcile the principles of green analytical chemistry and functionality. TrAC Trends Anal. Chem. 2021, 138, 116223. [Google Scholar] [CrossRef]
- Ranasinghe, M.; Quirino, J.P. Can we replace liquid chromatography with the greener capillary electrophoresis? Curr. Opin. Green Sustain. Chem. 2021, 31, 100515. [Google Scholar] [CrossRef]
- Thenuwara, S.I.; Westrick, J.A.; Isailovic, D. Novel in-source fragments used to identify linear microcystins with C-terminal arginine by UHPLC-ESI-MS/MS. Int. J. Mass Spectrom. 2024, 500, 117221. [Google Scholar] [CrossRef]
- Van Hassel, W.H.R.; Huybrechts, B.; Masquelier, J.; Wilmotte, A.; Andjelkovic, M. Development, validation and application of a targeted LC-MS method for quantification of microcystins and nodularin: Towards a better characterization of drinking water. Water 2022, 14, 1195. [Google Scholar] [CrossRef]
- Carmona-Molero, R.; Aparicio-Muriana, M.M.; Lara, F.J.; García-Campaña, A.M.; del Olmo-Iruela, M. Capillary electrophoresis tandem mass spectrometry to determine multiclass cyanotoxins in reservoir water and spinach samples. J. Chromatogr. A 2024, 1717, 464666. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Muriana, M.M.; Carmona-Molero, R.; Lara, F.J.; García-Campaña, A.M.; del Olmo-Iruela, M. Multiclass cyanotoxin analysis in reservoir waters: Tandem solid-phase extraction followed by zwitterionic hydrophilic interaction liquid chromatography-mass spectrometry. Talanta 2022, 237, 122929. [Google Scholar] [CrossRef]
- Devasurendra, A.M.; Palagama, D.S.; Rohanifar, A.; Isailovic, D.; Kirchhoff, J.R.; Anderson, J.L. Solid-phase extraction, quantification, and selective determination of microcystins in water with a gold-polypyrrole nanocomposite sorbent material. J. Chromatogr. A 2018, 1560, 1–9. [Google Scholar] [CrossRef]
- Zervou, S.K.; Christophoridis, C.; Kaloudis, T.; Triantis, T.M.; Hiskia, A. New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. J. Hazard. Mater. 2017, 323, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Munoz, G.; Duy, S.V.; Roy-Lachapelle, A.; Husk, B.; Sauvé, S. Analysis of individual and total microcystins in surface water by on-line preconcentration and desalting coupled to liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2017, 1516, 9–20. [Google Scholar] [CrossRef]
- Hemmati, M.; Tejada-Casado, C.; Lara, F.J.; García-Campaña, A.M.; Rajabi, M.; del Olmo-Iruela, M. Monitoring of cyanotoxins in water from hypersaline microalgae colonies by ultra high performance liquid chromatography with diode array and tandem mass spectrometry detection following salting-out liquid-liquid extraction. J. Chromatogr. A 2019, 1608, 460409. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Mou, X. A brief review of the structure, cytotoxicity, synthesis, and biodegradation of microcystins. Water 2021, 13, 2147. [Google Scholar] [CrossRef]
- Bouaïcha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural diversity, characterization and toxicology of microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef]
- Carbonell-Rozas, L.; Horstkotte, B.; García-Campaña, A.M.; Lara, F.J. Sweeping-micellar electrokinetic chromatography with tandem mass spectrometry as an alternative methodology to determine neonicotinoid and boscalid residues in pollen and honeybee samples. J. Chromatogr. A 2022, 1672, 463023. [Google Scholar] [CrossRef]
- Kitagawa, F.; Soma, Y. Recent applications of dynamic on-line sample preconcentration techniques in capillary electrophoresis. Chromatography 2022, 43, 93–99. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, K.; Wang, L.; Tong, W.; Chen, D.D. Quantitative analysis of microcystin variants by capillary electrophoresis mass spectrometry with dynamic pH barrage junction focusing. Electrophoresis 2019, 40, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Tong, P.; Zhang, L.; He, Y.; Tang, S.; Cheng, J.; Chen, G. Analysis of microcystins by capillary zone electrophoresis coupling with electrospray ionization mass spectrometry. Talanta 2010, 82, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Réveillon, D.; Des Aulnois, M.G.; Savar, V.; Robert, E.; Caruana, A.M.; Briand, E.; Bormans, M. Extraction and analysis by liquid chromatography–Tandem mass spectrometry of intra-and extracellular microcystins and nodularin to study the fate of cyanobacteria and cyanotoxins across the freshwater-marine continuum. Toxicon 2024, 237, 107551. [Google Scholar] [CrossRef]
- Roy-Lachapelle, A.; Duy, S.V.; Munoz, G.; Dinh, Q.T.; Bahl, E.; Simon, D.F.; Sauvé, S. Analysis of multiclass cyanotoxins (microcystins, anabaenopeptins, cylindrospermopsin and anatoxins) in lake waters using on-line SPE liquid chromatography high-resolution Orbitrap mass spectrometry. Anal. Methods 2019, 11, 5289–5300. [Google Scholar] [CrossRef]
- Tokodi, N.; Drobac, D.; Lazić, G.; Petrović, T.; Marinović, Z.; Lujić, J.; Malešević, T.P.; Meriluoto, J.; Svirčev, Z. Screening of cyanobacterial cultures originating from different environments for cyanotoxicity and cyanotoxins. Toxicon 2018, 154, 1–6. [Google Scholar] [CrossRef] [PubMed]
Analytes | Linear Range (µg/L) | LOQ (µg/L) | LOD (µg/L) | R2 |
---|---|---|---|---|
MCYR | 0.02–0.32 | 0.02 | 0.01 | 0.995 |
[D-Asp3]MCLR | 0.03–0.32 | 0.03 | 0.01 | 0.996 |
MCHtyR | 0.04–0.64 | 0.04 | 0.01 | 0.992 |
AP B | 0.05–0.64 | 0.05 | 0.01 | 0.994 |
MCHilR | 0.05–0.64 | 0.05 | 0.01 | 0.993 |
MCLW | 0.05–0.64 | 0.05 | 0.01 | 0.993 |
MCRR | 0.06–0.64 | 0.06 | 0.02 | 0.994 |
MCWR | 0.05–0.96 | 0.05 | 0.02 | 0.993 |
MCLR | 0.06–0.96 | 0.06 | 0.02 | 0.995 |
MCLA | 0.07–0.96 | 0.07 | 0.02 | 0.992 |
MCLY | 0.09–1.60 | 0.09 | 0.03 | 0.995 |
NOD | 0.09–1.60 | 0.09 | 0.03 | 0.995 |
AP A | 0.11–1.60 | 0.11 | 0.03 | 0.993 |
MCLF | 0.12–1.60 | 0.12 | 0.04 | 0.992 |
Analytes | Recoveries (%) | Matrix Effect (%) | Intra-day Precision (RSD, %) | Inter-day Precision (RSD, %) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L1 * | RSD (%) (L1) | L2 * | RSD (%) (L2) | L1 * | RSD (%) (L1) | L2 * | RSD (%) (L2) | n = 9 | n = 15 | |||
L1 * | L2 * | L1 * | L2 * | |||||||||
MCRR | 85.7 | 8.3 | 88.4 | 8.9 | −10.8 | 9.9 | 4.6 | 7.6 | 8.3 | 8.3 | 11.7 | 14.1 |
AP B | 91.3 | 12.2 | 94.6 | 12.6 | −11.7 | 5.9 | −7.5 | 10.5 | 11.0 | 10.0 | 10.6 | 14.9 |
MCWR | 95.2 | 10.6 | 94.7 | 11.3 | −7.5 | 9.8 | −8.2 | 7.3 | 9.4 | 9.8 | 13.7 | 12.5 |
MCLR | 97.2 | 8.7 | 98.6 | 8.4 | −8.2 | 3.2 | −6.1 | 7.4 | 7.3 | 6.8 | 6.5 | 13.7 |
MCHilR | 98.4 | 11.8 | 89.5 | 9.1 | 8.3 | 10.1 | 7.0 | 9.0 | 9.4 | 7.9 | 11.8 | 11.9 |
[D-Asp3] MCLR | 96.4 | 9.7 | 95.9 | 3.6 | 0.6 | 5.4 | −7.2 | 6.8 | 9.7 | 5.5 | 9.6 | 14.4 |
NOD | 99.0 | 8.8 | 86.3 | 8.5 | −6.8 | 7.8 | 2.9 | 4.3 | 10.4 | 8.1 | 12.7 | 6.6 |
MCHtyR | 90.0 | 8.0 | 93.9 | 10.6 | −8.4 | 6.3 | −3.6 | 8.8 | 9.3 | 9.6 | 12.3 | 7.1 |
MCYR | 100.6 | 11.8 | 87.6 | 8.0 | −10.9 | 10.0 | −8.9 | 10.4 | 13.0 | 14.0 | 13.7 | 7.5 |
AP A | 97.0 | 8.3 | 96.0 | 12.0 | −3.3 | 5.5 | −4.3 | 11.0 | 9.8 | 10.1 | 14.2 | 14.6 |
MCLW | 86.7 | 14.2 | 94.8 | 4.6 | −7.8 | 11.9 | −3.8 | 5.7 | 11.8 | 9.4 | 10.0 | 15.1 |
MCLF | 99.8 | 12.2 | 93.0 | 3.3 | −2.6 | 12.4 | −2.2 | 2.9 | 13.1 | 6.0 | 12.9 | 15.1 |
MCLA | 95.4 | 11.0 | 101.7 | 9.1 | 2.7 | 11.5 | −0.1 | 9.6 | 10.5 | 9.2 | 14.8 | 14.9 |
MCLY | 93.6 | 9.4 | 94.1 | 7.3 | −6.7 | 7.7 | −5.0 | 4.5 | 5.8 | 5.9 | 9.0 | 9.1 |
Sample Prep. | CTXs | Sample (mL) | Extraction Solvent (mL) | TAT (min) | Separation/Detection Technique | AGREE Score | BAGI Score | Ref. |
---|---|---|---|---|---|---|---|---|
SALLE | 9 | Saline water (4) | MeCN (2) | 12 | UHPLC-MS/MS | [38] | ||
SALLE | 14 | Thermal water (7.5) | MeCN (2) | 7 | CZE-MS/MS | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Molero, R.; Carbonell-Rozas, L.; García-Campaña, A.M.; Olmo-Iruela, M.d.; Lara, F.J. Toxic Cyanopeptides Monitoring in Thermal Spring Water by Capillary Electrophoresis Tandem Mass Spectrometry. Toxins 2025, 17, 63. https://doi.org/10.3390/toxins17020063
Carmona-Molero R, Carbonell-Rozas L, García-Campaña AM, Olmo-Iruela Md, Lara FJ. Toxic Cyanopeptides Monitoring in Thermal Spring Water by Capillary Electrophoresis Tandem Mass Spectrometry. Toxins. 2025; 17(2):63. https://doi.org/10.3390/toxins17020063
Chicago/Turabian StyleCarmona-Molero, Rocío, Laura Carbonell-Rozas, Ana M. García-Campaña, Monsalud del Olmo-Iruela, and Francisco J. Lara. 2025. "Toxic Cyanopeptides Monitoring in Thermal Spring Water by Capillary Electrophoresis Tandem Mass Spectrometry" Toxins 17, no. 2: 63. https://doi.org/10.3390/toxins17020063
APA StyleCarmona-Molero, R., Carbonell-Rozas, L., García-Campaña, A. M., Olmo-Iruela, M. d., & Lara, F. J. (2025). Toxic Cyanopeptides Monitoring in Thermal Spring Water by Capillary Electrophoresis Tandem Mass Spectrometry. Toxins, 17(2), 63. https://doi.org/10.3390/toxins17020063