Deoxynivalenol Determination Using Innovative Lateral Flow Device Technology
Abstract
:1. Introduction
2. Results
2.1. Validation Parameters of a RIDA®QUICK DON Method Combined with the RIDA®SMART APP
2.2. Comparison Between RIDA®QUICK DON RQS ECO in Combination with the RIDA®SMART BOX and the RIDA®SMART APP and the LC-MS/MS Method
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Sample Preparation and Test Procedure for DON Determination Using the RIDA®QUICK DON RQS ECO Lateral Flow Device with the RIDA®SMART APP and the RIDA®SMART BOX
4.3. Validation of the RIDA®QUICK DON RQS ECO Lateral Flow Device with the RIDA®SMART APP
4.4. Sample Preparation for DON Determination Using LC-MS/MS Analysis
4.5. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leonard, K.; Bushell, W. Fusarium Head Blight of Wheat and Barley; The American Phytopathological Society: St. Paul, MN, USA, 2003. [Google Scholar]
- Parry, D.W.; Jenkinson, P.; Mc Leod, L. Fusarium ear blight (scab) in small grain cereals? A review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Moretti, A.; Logrieco, A.; Visconti, A.; Bottalico, A. An overview of mycotoxins and toxigenic fungi in Italy. In An Overview of Mycotoxins and Toxigenic Fungi in Europe; Logrieco, A., Visconti, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 141–160. [Google Scholar]
- Bertuzzi, T.; Camardo Leggieri, M.; Battilani, P.; Pietri, A. Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009–2011. Food Addit. Contam. Part B 2014, 7, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Haidukowski, M.; Somma, S.; Ghionna, V.; Cimmarusti, M.T.; Masiello, M.; Logrieco, A.; Moretti, A. Deoxynivalenol and T-2 Toxin as Major Concerns in Durum Wheat from Italy. Toxins 2022, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Aureli, G.; Belocchi, A.; Pascale, M.; Amoriello, T.; D’Egidio, M.G.; Desiderio, E. Progetto Interregionale MICOCER: Monitoraggio dei Livelli di Deossinivalevolo Nella granella di Frumento Duro (Triticum durum Desf.). In I Georgofili: Quaderni IV—Micotossine Nei Cereali; Risultati del Progetto Interregionale Micocer: Firenze, Italy, 2008; pp. 57–68. [Google Scholar]
- Pascale, M.; Bottalico, A.; Pancaldi, D.; Perrone, G.; Visconti, A. Occurrence of deoxynivalenol in cereals from experimental fields in various Italian regions. In Proceedings of the European Commission activities: Human Potential Programme—High-level Scientific Conference-Sustainable Systems of Cereal Crop Protection against Fungal Diseases as the Way of Reduction of Toxin Occurrence in Food Webs-Healthy Cereals, Kromeriz, Czech Republic, 2–6 July 2001; pp. 101–105. [Google Scholar]
- Morgavi, D.; Riley, R.T. An historical overview of field disease outbreaks known or suspected to be caused by consumption of feeds contaminated with Fusarium toxins. Anim. Feed Sci. Technol. 2007, 137, 201–212. [Google Scholar] [CrossRef]
- Lemos, G.A.A.; Gerez, J.R.; Costa, J.B.; Venâncio, E.J.; Souza, M.; Favaron, P.O.; Greghi, J.R.; Gloria, E.M.D.; Staurengo-Ferrari, L.; Verri, W.A.; et al. Deoxynivalenol induces ovarian damage and uterine changes in prepubertal and adult mice. Toxicon 2024, 251, 108123. [Google Scholar] [CrossRef]
- Qingbo Zhao, Q.; Siyi Zhang, S.; Weili Feng, W.; Ao Zhou, A.; Liangyu Shi, L.; Jing Zhang, J. Deoxynivalenol-mediated kidney injury via endoplasmic reticulum stress in mice. Ecotoxicol. Environ. Saf. 2024, 286, 117243. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2024/1022 of 8 April 2024 amending Regulation (EU) 2023/915 as regards maximum levels of deoxynivalenol in food. Off J. L. 2024, pp. 1–4. Available online: http://data.europa.eu/eli/reg/2024/1022/oj (accessed on 27 February 2025).
- European Recommendation. Commission Recommendation (EC) No 576/2006 of 17 August 2006. Off J. L 2006, 229, 7–9. [Google Scholar]
- Lattanzio, V.M.T.; Pascale, M.; Visconti, A. Current analytical methods for trichothecene mycotoxins in cereals. TrAC Trends Analyt. Chem. 2009, 28, 758–768. [Google Scholar] [CrossRef]
- Ran, R.; Wang, C.; Han, Z.; Wu, A.; Zhang, D.; Shi, J. Determination of deoxynivalenol (don) and its derivatives: Current status of analytical methods. Food Control 2013, 34, 138–148. [Google Scholar] [CrossRef]
- Nomura, M.; Shidara, K.; Yasuda, I. Inter-laboratory study on simultaneous quantification of ten trichothecenes in feed. Mycotoxin Res. 2023, 39, 95–108. [Google Scholar] [CrossRef]
- Macri, A.M.; Nagy, A.L.; Daina, S.; Toma, D.; Pop, I.D.; Nadas, G.C.; Catoi, A.F. Occurrence of Types A and B Trichothecenes in Cereal Products Sold in Romanian Markets. Toxins 2023, 15, 466. [Google Scholar] [CrossRef]
- Ji, X.; He, Y.; Xiao, Y.; Liang, Y.; Yang, W.; Xiong, L.; Guo, C.; Zhang, J.; Wang, X.; Yang, H. Distribution and safety evaluation of deoxynivalenol and its derivatives throughout the wheat product processing chain. Food Res. Int. 2024, 192, 114784. [Google Scholar] [CrossRef]
- Kelman, M.J.; Miller, J.D.; Renaud, J.B.; Baskova, D.; Sumarah, M.W. A Multi-Year Study of Mycotoxin Co-Occurrence in Wheat and Corn Grown in Ontario, Canada. Toxins 2024, 16, 372. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, B.; Wang, J.; He, Y.; Chen, Z.; Chang, W.; Xie, X.; Zhu, H. Cu2O nanoparticles with morphology-dependent peroxidase mimic activity: A novel colorimetric biosensor for deoxynivalenol detection. Microchim. Acta 2024, 191, 588. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Liu, X.; Chen, C.; Wang, X. Iron-copper nanozyme mimicking laccase for colorimetric determination of deoxynivalenol in feed. Microchem. J. 2024, 202, 110757. [Google Scholar] [CrossRef]
- Lu, N.; Ma, J.; Lin, Y.; Cheng, J.H.; Sun, D.W. A fluorescent Aptasensor based on magnetic-separation strategy with goldnanoclusters for Deoxynivalenol (DON) detection. Food Chem. 2024, 459, 140341. [Google Scholar] [CrossRef]
- Feng, X.; Xu, Q.; Liu, Y.; Wang, S.; Cao, Y.; Zhao, C.; Peng, S. Smartphone-enabled colorimetric immunoassay for deoxynivalenol based on Mn2+-mediated aggregation of AuNPs. Anal. Biochem. 2024, 692, 115572. [Google Scholar] [CrossRef]
- Saini, D.K.; Rana, A.; Halder, I.; Billah, M.M.; Gill, H.S.; Zhang, J.; Thapa, S.; Ali, S.; Turnipseed, B.; Glover, K.; et al. Rapid estimation of DON content in wheat flour using close-range hyperspectral imaging and machine learning. Plant Phenome J. 2024, 7, e70001. [Google Scholar] [CrossRef]
- Yang, H.; Du, L.; Geng, L.; Liu, X.; Xu, Z.; Liu, R.; Liu, W. A novel yeast-based biosensor for the quick determination of Deoxynivalenol. Anal. Chim. Acta 2024, 1315, 342760. [Google Scholar] [CrossRef]
- Almoujahed, M.B.; Apolo-Apolo, O.E.; Alhussein, M.; Kazlauskas, M.; Kriauciunien, Z.; Sarauskis, E.; Mouazen, A.M.; Zuo, H.; Chen, Z.; Wang, X.; et al. Prediction of Deoxynivalenol contamination in wheat kernels and flour based on visible near-infrared spectroscopy, feature selection and machine learning modelling. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 330, 125718. [Google Scholar] [CrossRef]
- Meng, J.; Li, R.; Chen, X.; Wang, X.; Huang, Q.; Nie, D.; Guo, D.; Zhao, Z.; Han, Z. Magnetic beads-based double-stranded DNA fluorescent aptasensor biosensor for deoxynivalenol detection. Food Chem. 2025, 473, 143042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, G.; Chen, J.; Luo, K.; Zhai, W.; Chen, Z.; Lai, X.; Lai, W.; Peng, J. Sensitive lateral flow immunoassay based on integrated green pretreatment for detection of three mycotoxins in maize and wheat. Food Biosci. 2025, 64, 105908. [Google Scholar] [CrossRef]
- Öner, T.; Thiam, P.; Kos, G.; Krska, R.; Schwenker, F.; Mizaikoff, B. Machine learning algorithms for the automated classification of contaminated maize at regulatory limits via infrared attenuated total reflection spectroscopy. World Mycotoxin J. 2019, 12, 113–122. [Google Scholar] [CrossRef]
- Hasija, Y. Statistical Methods in Bioinformatics; All About Bioinformatics; Academic Press: Cambridge, MA, USA, 2023; Chapter 3; pp. 43–75. [Google Scholar]
- Skaik, Y. The bread and butter of statistical analysis “t-test”: Uses and misuses. Pak. J. Med. Biosci. 2015, 31, 1558–1559. [Google Scholar] [CrossRef] [PubMed]
No of Total Tests | Mean Value [mg/kg] | SD | LOD [mg/kg] | LOQ [mg/kg] | |
---|---|---|---|---|---|
Lot 1 | n = 324 | 0.092 | 0.011 | 0.125 | 0.190 |
Lot 2 | 0.049 | 0.010 | 0.080 | 0.142 | |
Lot 3 | 0.124 | 0.013 | 0.162 | 0.239 |
Trilogy®control a | D-W-1207 b (0.5 mg/kg) | D-W-159 (0.7 mg/kg) | D-W-177 (1.6 mg/kg) | ||||||
mg/kg | Recovery | CV c | mg/kg | Recovery | CV | mg/kg | Recovery | CV | |
Lot 1 | 0.57 | 114% | 8.0% | 0.67 | 96% | 0.9% | 1.64 | 102 | 3.0% |
Lot 2 | 0.51 | 103% | 8.8% | 0.65 | 92% | 5.4% | 1.61 | 100 | 5.6% |
Trilogy®control | D-W-193 (2.3 mg/kg) | D-W-192 (2.9 mg/kg) | D-W-169 (3.5 mg/kg) | ||||||
mg/kg | Recovery | CV | mg/kg | Recovery | CV | mg/kg | Recovery | CV | |
Lot 1 | 2.27 | 99% | 4.6% | 2.74 | 95% | 2.1% | 3.50 | 100% | 2.2% |
Lot 2 | 2.31 | 100% | 3.5% | 2.46 | 85% | 8.7% | 3.24 | 92% | 5.2% |
Trilogy®control | D-W-176 (4.0 mg/kg) | D-W-196 (5.4 mg/kg) | D-W-179 (8.9 mg/kg) | ||||||
mg/kg | Recovery | CV | mg/kg | Recovery | CV | mg/kg | Recovery | CV | |
Lot 1 | 3.77 | 94% | 8.2% | 5.40 | 100% | 4.7% | 9.15 | 103 | 6.1% |
Lot 2 | 3.55 | 89% | 5.1% | 4.92 | 91% | 7.2% | 8.45 | 95 | 6.7% |
Trilogy®control | D-W-197 (9.3 mg/kg) | D-W-189 (28.9 mg/kg) | D-W-1208 (36.3 mg/kg) | ||||||
mg/kg | Recovery | CV | mg/kg | Recovery | CV | mg/kg | Recovery | CV | |
Lot 1 | 9.00 | 97 | 3.2% | 24.83 | 86 | 1.4% | 29.75 | 82 | 1.5% |
Lot 2 | 7.80 | 84 | 6.7% | 27.63 | 96 | 6.1% | 35.42 | 98 | 13.5% |
Sample | LC-MS/MS | Kit (LFD) | Sample | LC-MS/MS | Kit LFD a |
---|---|---|---|---|---|
1 | 8.22 | 8.45 | 26 | <0.05 | <0.25 |
2 | 3.77 | 3.25 | 27 | <0.05 | <0.25 |
3 | 1.77 | 1.59 | 28 | <0.05 | <0.25 |
4 | <0.05 | <0.25 | 29 | 4.44 | 4.1 |
5 | 6.55 | 7.26 | 30 | 1.78 | 1.89 |
6 | 15.48 | 15.06 | 31 | 0.2 | <0.25 |
7 | 7.66 | 7.19 | 32 | 0.29 | <0.25 |
8 | 5.93 | 5.97 | 33 | 0.61 | 0.5 |
9 | 0.65 | 0.57 | 34 | 1.3 | 1.37 |
10 | 0.99 | 0.68 | 35 | 0.69 | 0.64 |
11 | 1.72 | 1.8 | 36 | <0.05 | <0.25 |
12 | 3.45 | 3.36 | 37 | 1.92 | 2.06 |
13 | 2.16 | 2.15 | 38 | 2.62 | 2.57 |
14 | 2.97 | 2.45 | 39 | 0.99 | 0.96 |
15 | 0.73 | 0.55 | 40 | 2.01 | 1.79 |
16 | 0.79 | 0.81 | 41 | 3.32 | 2.96 |
17 | 1.14 | 1.44 | 42 | 1.75 | 1.53 |
18 | 0.33 | <0.25 | 43 | 0.46 | 0.38 |
19 | 0.61 | 0.58 | 44 | 1.37 | 1.09 |
20 | 0.43 | 0.25 | 45 | 1.34 | 1.16 |
21 | 0.31 | <0.25 | 46 | 1.19 | 1.05 |
22 | 3.06 | 3.02 | 47 | 1.3 | 1.14 |
23 | 0.52 | 0.44 | 48 | 1.07 | 0.69 |
24 | 1.45 | 1.38 | 49 | 1.1 | 0.81 |
25 | <0.05 | <0.25 | 50 | 1 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delphine, H.; Paola, G.; Erica, B.; Terenzio, B. Deoxynivalenol Determination Using Innovative Lateral Flow Device Technology. Toxins 2025, 17, 123. https://doi.org/10.3390/toxins17030123
Delphine H, Paola G, Erica B, Terenzio B. Deoxynivalenol Determination Using Innovative Lateral Flow Device Technology. Toxins. 2025; 17(3):123. https://doi.org/10.3390/toxins17030123
Chicago/Turabian StyleDelphine, Halberstadt, Giorni Paola, Barato Erica, and Bertuzzi Terenzio. 2025. "Deoxynivalenol Determination Using Innovative Lateral Flow Device Technology" Toxins 17, no. 3: 123. https://doi.org/10.3390/toxins17030123
APA StyleDelphine, H., Paola, G., Erica, B., & Terenzio, B. (2025). Deoxynivalenol Determination Using Innovative Lateral Flow Device Technology. Toxins, 17(3), 123. https://doi.org/10.3390/toxins17030123