A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma
Abstract
:1. Introduction
2. Atmospheric Cold Plasma
2.1. Dielectric Barrier Discharge (DBD)
2.2. Atmospheric Pressure Plasma Jets
2.3. Gliding Arc Discharge
2.4. Microwave Discharge Plasma
3. Application of ACP Against Aspergillus flavus and Aflatoxins in Nuts and Grains
3.1. Nuts
3.2. Grains
Plasma Source | Sample Characteristics | Organism(s) | Treatment Conditions | Significant Findings | References |
---|---|---|---|---|---|
Fluidized bed plasma | 10 g maize | A. flavus and A. parasiticus |
|
| [50] |
Plasma jet | Brown rice bar | A. flavus |
|
| [61] |
DBD | Maize seeds | A. flavus |
|
| [64] |
Gliding arc plasma | Wheat | A. flavus and A. parasiticus |
|
| [53] |
Very Low pressure cold plasma (LPCP) | Wheat, oat, barley, corn | A. flavus |
|
| [63] |
Plasma Source | Sample Characteristics | Treatment Conditions | Detection Technique | Significant Findings | References |
---|---|---|---|---|---|
Plasma jet | 50 g rice (5.97 µg/kg AFB1) |
| HPLC |
| [49] |
Plasma jet | 50 g wheat (7.14 µg/kg AFB1) |
| HPLC |
| [49] |
Gliding arc plasma | Wheat |
| HPLC |
| [53] |
DBD | Artificially spiked 100 uL AFB1 solution in chloroform (50 μg/mL) on 25 g corn kernels |
| Lateral Flow Devices (LFDs) |
| [28] |
DBD | 20 g rice (AFB1, AFB2, AFG1, AFG2 of 20 μg/kg, 50 μg/kg, 100 μg/kg, 150 μg/kg) |
| UPLC H-Class/Xevo TQ-S |
| [69] |
DBD | Oat |
| HPLC |
| [68] |
DBD | Corn kernels inoculated with 20 µL AFB1 (33 µg/mL) |
| Not available |
| [42] |
DBD | Maize seeds spiked with 0.25 mL of AFB1 solution (1 μg/mL) |
| HPLC-HRMS |
| [64] |
4. Commercialization of ACP Technology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
Abbreviation | Full name |
ACP | Atmospheric cold plasma |
AF | Aflatoxin |
AFs | Aflatoxins |
AFB1 | Aflatoxin B1 |
AFB2 | Aflatoxin B2 |
AFG1 | Aflatoxin G1 |
AFG2 | Aflatoxin G2 |
AFM1 | Aflatoxin M1 |
AFM2 | Aflatoxin M2 |
A. flavus | Aspergillus flavus |
A. parasiticus | Aspergillus parasiticus |
CFU | Colony forming unit |
CVM | Center for Veterinary Medicine |
DBD | Dielectric barrier discharge |
DRBC | Dichloran-rose bengal-chloramphenicol |
EFSA | European food safety authority |
ELISA | Enzyme-linked immunosorbent essay |
FAO | Food and agriculture organization |
FDA | Food and drug administration |
FLD | Fluorescent detector |
GC | Gas chromatography |
HPLC | High-pressure liquid chromatography |
HRP | Horseradish peroxidase |
HVACP | High-voltage atmospheric cold plasma |
LC-MS | Liquid chromatography-mass spectrometry |
LC | Liquid chromatography |
LOD | Limit of detection |
LFIAs | Lateral flow immunoassays |
LOQ | Limit of quantification |
MLT | Maximum tolerable level |
OD | Optical density |
PDA | Photodetector array |
RASFF | Rapid alert system for food and feed |
RGS | Reactive gas species |
RH | Relative humidity |
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
TLC | Thin layer chromatography |
UV | Ultraviolet |
Terminology | Definition |
Mutagenicity | Mutagenicity is the ability of a chemical or physical agent to cause permanent changes in the structure or amount of an organism’s genetic material. These changes can affect a single gene, a block of genes, or chromosomes. |
Teratogenicity | Teratogenicity is the ability of a drug to cause fetal abnormalities or deformities. |
Acute toxicity | Acute toxicity describes the adverse effects of a substance that result either from a single exposure or from multiple exposures in a short period of time. |
Chronic toxicity | Chronic toxicity is the adverse effects that occur after long-term or repeated exposure to a toxic substance. |
Epoxidation | Epoxidation is a chemical reaction that converts a carbon-carbon double bond into an epoxide, a cyclic ether with a three-membered ring. |
Hepatocellular carcinoma | Hepatocellular carcinoma is the most common type of primary liver cancer in adults and is currently the most common cause of death in people with cirrhosis. |
Aflatoxicosis | Aflatoxicosis is a condition caused by consuming food contaminated with aflatoxins, which are toxins produced by fungi. |
Genotoxicity | Genotoxicity is the ability of chemicals to damage the genetic information within a cell resulting in mutations. |
References
- Rao, W.; Li, Y.; Dhaliwal, H.; Feng, M.; Xiang, Q.; Roopesh, M.S.; Pan, D.; Du, L. The Application of Cold Plasma Technology in Low-Moisture Foods. Food Eng. Rev. 2023, 15, 86–112. [Google Scholar] [CrossRef]
- Kutasi, K.; Recek, N.; Zaplotnik, R.; Mozetič, M.; Krajnc, M.; Gselman, P.; Primc, G. Approaches to Inactivating Aflatoxins—A Review and Challenges. Int. J. Mol. Sci. 2021, 22, 13322. [Google Scholar] [CrossRef]
- Misra, N.N.; Yadav, B.; Roopesh, M.S.; Jo, C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, And Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Jallow, A.; Xie, H.; Tang, X.; Qi, Z.; Li, P. Worldwide Aflatoxin Contamination of Agricultural Products and Foods: From Occurrence to Control. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2332–2381. [Google Scholar] [CrossRef] [PubMed]
- Waliyar, F.; Osiru, M.; Ntare, B.; Kumar, K.V.K.; Sudini, H.; Traore, A.; Diarra, B. Post-harvest Management of Aflatoxin Contamination in Groundnut. World Mycotoxin J. 2015, 8, 245–252. [Google Scholar] [CrossRef]
- Sun, X.D.; Su, P.; Shan, H. Mycotoxin Contamination of Maize in China. Compr. Rev. Food Sci. Food Saf. 2017, 16, 835–849. [Google Scholar] [CrossRef]
- Bailly, S.; Mahgubi, A.E.; Carvajal-Campos, A.; Lorber, S.; Puel, O.; Oswald, I.P.; Bailly, J.D.; Orlando, B. Occurrence and Identification of Aspergillus Section Flavi in the Context of the Emergence of Aflatoxins in French Maize. Toxins 2018, 10, 525. [Google Scholar] [CrossRef]
- Bhat, R.V.; Vasanthi, S. Mycotoxin Food Safety Risk in Developing Countries: Food Safety in Food Security and Food Trade. 2003. Available online: https://hdl.handle.net/10568/157325 (accessed on 24 October 2024).
- Callicott, K.A.; Kachapalula, P.; Edmunds, D.; Singh, P.; Jaime, R.; Islam, M.S.; Shenge, K.; Adhikari, B.N.; Arone-Maxwell, L.; Ching’anda, C.; et al. Brief Protocols for Research on Management of Aflatoxin-Producing Fungi, 2nd ed.; ARS, USDA: Phoenix, AZ, USA, 2018. [Google Scholar]
- Shabeer, S.; Asad, S.; Jamal, A.; Ali, A. Aflatoxin Contamination, its Impact and Management Strategies: An Updated Review. Toxins 2022, 14, 307. [Google Scholar] [CrossRef]
- Yilmaz, S.; Bag, H. Aflatoxin B1: Mechanism, Oxidative Stress, and Effects on Animal Health. Insights Vet. Sci. 2022, 2, 017–024. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, F. Global Burden of Aflatoxin-Induced Hepatocellular Carcinoma: A Risk Assessment. Environ. Health Perspect. 2010, 118, 818–824. [Google Scholar] [CrossRef]
- Torres, A.M.; Barros, G.G.; Palacios, S.A.; Chulze, S.N.; Battilani, P. Review on Pre- and Post-Harvest Management of Peanuts to Minimize Aflatoxin Contamination. Food Res. Int. 2014, 62, 11–19. [Google Scholar] [CrossRef]
- Laika, J.; Sabatucii, A.; Sacchetti, G.; Michele, D.A.; Hernandez, B.M.J.; Ricci, A.; Rosa, D.M.; Lopez, C.C.; Neri, L. Cold Atmospheric Plasma Inactivation of Polyphenol Oxidase: Focus on the Protective and Boosting Effect of Mono- and Disaccharides. J. Food Sci. 2024, 89, 9283–9298. [Google Scholar] [CrossRef]
- Ott, L.C.; Appleton, H.J.; Shi, H.; Keener, K.; Mellata, M. High Voltage Atmospheric Cold Plasma Treatment Inactivates Aspergillus flavus Spores and Deoxynivalenol Toxin. Food Microbiol. 2021, 95, 103669. [Google Scholar] [CrossRef]
- Zheng, H.; Wei, S.; Xu, Y.; Fan, M. Reduction of Aflatoxin B1 in Peanut Meal by Extrusion Cooking. LWT 2015, 64, 515–519. [Google Scholar] [CrossRef]
- Chen, R.; Ma, F.; Li, P.W.; Zhang, W.; Ding, X.X.; Zhang, Q.; Li, M.; Wang, Y.R.; Xu, B.C. Effect of Ozone on Aflatoxins Detoxification and Nutritional Quality of Peanuts. Food Chem. 2014, 146, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.; Shah, N.G.; Hajare, S.N.; Gautam, S.; Kumar, G. Combination of Microwaveand Gamma Irradiation for Reduction of Aflatoxin B1 and Microbiological Contamination in Peanuts (Arachis hypogaea L.). World Mycotoxin J. 2019, 12, 269–280. [Google Scholar] [CrossRef]
- Prakash, S.D.; Siliveru, K.; Zheng, Y. Emerging Applications of Cold Plasma Technology in Cereal Grains and Products. Trends Food Sci. Technol. 2023, 141, 104177. [Google Scholar] [CrossRef]
- Esmaeili, Z.; Hosseinzadeh Samani, B.; Nazari, F.; Rostami, S.; Nemati, A. The Green Technology of Cold Plasma Jet on The Inactivation of Aspergillus flavus and the Total Aflatoxin Level in Pistachio and Its Quality Properties. J. Food Process Eng. 2023, 46, e14189. [Google Scholar] [CrossRef]
- Makari, M.; Hojjati, M.; Shahbazi, S.; Askari, H. Elimination of Aspergillus flavus from Pistachio Nuts with Dielectric Barrier Discharge (DBD) Cold Plasma and Its Impacts on Biochemical Indices. J. Food Qual. 2021, 2021, 9968711. [Google Scholar] [CrossRef]
- Sohbatzadeh, F.; Mirzanejhad, S.; Shokri, H.; Nikpour, M. Inactivation of Aspergillus flavus Spores in A Sealed Package by Cold Plasma Streamers. J. Theor. Appl. Phys. 2016, 10, 99–106. [Google Scholar] [CrossRef]
- Dasan, B.G.; Mutlu, M.; Boyaci, I.H. Decontamination of Aspergillus flavus and Aspergillus parasiticus Spores on Hazelnuts via Atmospheric Pressure Fluidized Bed Plasma Reactor. Int. J. Food Microbiol. 2016, 216, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Mošovská, S.; Medvecká, V.; Gregová, M.; Tomeková, J.; Valík, Ľ.; Mikulajová, A.; Zahoranová, A. Plasma Inactivation of Aspergillus flavus on Hazelnut Surface in A Diffuse Barrier Discharge Using Different Working Gases. Food Control 2019, 104, 256–261. [Google Scholar] [CrossRef]
- Sen, Y.; Onal-Ulusoy, B.; Mutlu, M. Aspergillus Decontamination in Hazelnuts: Evaluation of Atmospheric and Low-Pressure Plasma Technology. Innov. Food Sci. Emerg. Technol. 2019, 54, 235–242. [Google Scholar] [CrossRef]
- Sen, Y.; Onal-Ulusoy, B.; Mutlu, M. Detoxification of Hazelnuts by Different Cold Plasmas and Gamma Irradiation Treatments. Innov. Food Sci. Emerg. Technol. 2019, 54, 252–259. [Google Scholar] [CrossRef]
- Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.C.; Garibaldi, A.; Gullino, M.L. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins 2016, 8, 125. [Google Scholar] [CrossRef]
- Shi, H.; Ileleji, K.; Stroshine, R.L.; Keener, K.; Jensen, J.L. Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol. 2017, 10, 1042–1052. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. Non-thermal Technologies and its Current and Future Application in the Food Industry: A Review. Int. J. Food Sci. Technol. 2019, 54, 1–13. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Keener, K.M. Cold Plasma: Background, Applications and Current Trends. Curr. Opin. Food Sci. 2017, 16, 49–52. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of Cold Plasma on Food Quality: A Review. Foods 2018, 7, 4. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Nikmaram, N.; Brückner, L.; Cramer, B.; Humpf, H.; Keener, K. Degradation Products of Aflatoxin M1 (AFM1) Formed by High Voltage Atmospheric Cold Plasma (HVACP) Treatment. Toxicon 2023, 230, 107160. [Google Scholar] [CrossRef]
- Cheng, J.A.; Yamada, T.; Rassier, E.D.; Andersson, C.D.; Westerblad, H.; Lanner, T.J. Reactive Oxygen/Nitrogen Species and Contractile Function in Skeletal Muscle during Fatigue and Recovery. J. Physiol. 2016, 18, 5149–5160. [Google Scholar] [CrossRef] [PubMed]
- Klockow, P.A.; Keener, K.M. Safety and Quality Assessment of Packaged Spinach Treated with A Novel Ozone-Generation System. LWT-Food Sci. Technol. 2009, 42, 1047–1053. [Google Scholar] [CrossRef]
- Tannenbaum, S.R. Nitrate and Nitrite: Origin in Humans. Science 1979, 205, 1332–1335. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.D.; MacLeod, J.A.; Robbins, R.C.; Goettelman, R.C.; Eldridge, R.W.; Rogers, L.H. Automatic Apparatus for Determination of Nitric Oxide and Nitrogen Dioxide in Atmosphere. Anal. Chem. 1956, 28, 1810–1816. [Google Scholar] [CrossRef]
- Dhawan, V. Reactive Oxygen and Nitrogen Species: General Considerations. In Studies on Respiratory Disorders; Springer: Berlin/Heidelberg, Germany, 2014; pp. 27–47. [Google Scholar]
- Sewraj, N.; Merbahi, N.; Gardou, J.P.; Akerreta, P.R.; Marchal, F. Electric and Spectroscopic Analysis of a Pure Nitrogen Mono-Filamentary Dielectric Barrier Discharge (MF-DBD) at 760 Torr. J. Phys. D Appl. Phys. 2011, 44, 145201. [Google Scholar] [CrossRef]
- Sies, H.; Stahl, W. Vitamins E and C, Beta-carotene, and Other Carotenoids as Antioxidants. Am. J. Clin. Nutr. 1995, 62, 1315S–1321S. [Google Scholar] [CrossRef]
- Gavahian, M.; Cullen, P. Cold Plasma as An Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Rev. Int. 2020, 36, 193–214. [Google Scholar] [CrossRef]
- Hojnik, N.; Modic, M.; Žigon, D.; Kovač, J.; Jurov, A.; Dickenson, A.; Walsh, J.L.; Cvelbar, U. Cold Atmospheric Pressure Plasma-Assisted Removal of Aflatoxin B1 from Contaminated Corn Kernels. Plasma Process. Polym. 2021, 18, 202000163. [Google Scholar] [CrossRef]
- Birania, S.; Attkan, K.A.; Kumar, S.; Kumar, N.; Singh, K.V. Cold Plasma in Food Processing and Preservation: A Review. J. Food Process Eng. 2022, 45, e14110. [Google Scholar] [CrossRef]
- Tang, L.; Huang, H.; Hao, H.; Zhao, K. Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal. J. Electrostat 2013, 71, 839–847. [Google Scholar] [CrossRef]
- Winter, J.; Brandenburg, R.; Weltman, K.D. Atmospheric Pressure Plasma Jets: An Overview of Devices and New Directions. Plasma Sources Sci. Technol. 2015, 24, 064001. [Google Scholar] [CrossRef]
- Lu, X.; Laroussi, M.; Puech, V. On Atmospheric-Pressure Non-Equilibrium Plasma Jets and Plasma Bullets. Plasma Sources Sci. Technol. 2012, 21, 260. [Google Scholar] [CrossRef]
- Laroque, A.D.; Seo, T.S.; Valencia, A.G.; Laurindo, B.J.; Carciofi, A.M.B. Cold Plasma in Food Processing: Design, Mechanisms, and Application. J. Food Eng. 2022, 312, 110748. [Google Scholar] [CrossRef]
- Misra, N.N.; Schlüter, O.; Cullen, P.J. Cold Plasma in Food and Agriculture: Fundamental and Applications; Elsevier: London, UK, 2016. [Google Scholar]
- Puligundla, P.; Lee, T.; Mok, C. Effect of Corona Discharge Plasma Jet Treatment on the Degradation of Aflatoxin B1 on Glass Slides and in Spiked Food Commodities. LWT 2020, 124, 108333. [Google Scholar] [CrossRef]
- Dasan, B.G.; Boyaci, I.H.; Mutlu, M. Inactivation of Aflatoxigenic fungi (Aspergillus spp.) on Granular Food Model, Maize, in An Atmospheric Pressure Fluidized Bed Plasma System. Food Control 2016, 70, 1–8. [Google Scholar] [CrossRef]
- Hadinoto, K.; Niemira, A.B.; Trujillo, J.F. A Review on Plasma-activated Water and Its Application in the Meat Industry. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4993–5019. [Google Scholar] [CrossRef] [PubMed]
- Fridman, A.; Nester, S.; Kennedy, A.L.; Saveliev, A.A.; Mutaf-Yardimci, O. Gliding arc gas discharge. Prog. Energy Combust. Sci. 1999, 25, 211–231. [Google Scholar] [CrossRef]
- Rahnavard, M.A.; Zare, D.; Nassiri, S.M.; Taghvaei, H.; Fazaeli, M. Impact of Gliding Arc Cold Plasma on Deactivating of Aflatoxin and Post-Treatment Fungal Growth on Wheat Grains. Food Control 2024, 164, 110597. [Google Scholar] [CrossRef]
- Du, C.M.; Wang, J.; Zhang, L.; Li, H.X.; Liu, H.; Xiong, Y. The Application of A Non-Thermal Plasma Generated by Gas–Liquid Gliding Arc Discharge in Sterilization. New J. Phys. 2012, 14, 13010. [Google Scholar] [CrossRef]
- Bardos, L.; Barankova, H. Microwave Plasma Sources and Methods in Processing Technology; Wiley-IEEE Press: New York, NY, USA, 2022. [Google Scholar]
- Szőke, C.; Nagy, Z.; Gierczik, K.; Székely, A.; Spitkól, T.; Zsuboril, Z.T.; Galiba, G.; Marton, C.L.; Kutasi, K. Effect of the afterglows of Low Pressure Ar/N2-O2 Surface-wave Microwave Discharges on Barley and Maize Seeds. Plasma Process. Polym. 2018, 15, 1700138. [Google Scholar] [CrossRef]
- Tang, L.; Cao, W.; Keener, M.K. Effect of Dielectric Barrier Discharge High Voltage Atmospheric Cold Plasma on Aspergillus flavus Inactivation and Aflatoxin B1 Degradation on Inoculated Raw Peanuts. Innov. Food Sci. Emerg. Technol. 2024, 97, 103820. [Google Scholar] [CrossRef]
- Lin, C.M.; Patel, A.K.; Chiu, Y.C.; Hou, C.Y.; Kuo, C.H.; Dong, C.D.; Chen, H.L. The Application of Novel Rotary Plasma Jets to Inhibit the Aflatoxin-Producing Aspergillus flavus and the Spoilage Fungus, Aspergillus Niger on Peanuts. Innov. Food Sci. Emerg. Technol. 2022, 78, 102994. [Google Scholar] [CrossRef]
- Intanon, W.; Vichiansan, N.; Leksakul, K.; Boonyawan, D.; Kumla, J.; Suwannarach, N.; Lumyong, S. Inhibition of the Aflatoxin-Producing Fungus Aspergillus flavus by A Plasma Jet System. J. Food Process. Preserv. 2021, 45, e15045. [Google Scholar] [CrossRef]
- Devi, Y.; Thirumdas, R.; Sarangapani, C.; Deshmukh, R.R.; Annapure, U.S. Influence of Cold Plasma on Fungal Growth and Aflatoxins Production on Groundnuts. Food Control 2017, 77, 187–191. [Google Scholar] [CrossRef]
- Rathod, R.H.; Chaudhari, S.R.; Patil, A.S.; Shirkhedkar, A.A. Ultra-high Performance Liquid Chromatography-MS/MS (UHPLC MS/MS) in Practice: Analysis of Drugs and Pharmaceutical Formulations. Future J. Pharm. Sci. 2019, 5, 6. [Google Scholar] [CrossRef]
- Iqdiam, B.M.; Abuagela, M.O.; Boz, Z.; Marshall, S.M.; Goodrich-Schneider, R.; Sims, C.A.; Marshall, M.R.; MacIntosh, A.J.; Welt, B.A. Effects of Atmospheric Pressure Plasma Jet Treatment on Aflatoxin Level, Physiochemical Quality, and Sensory Attributes of Peanuts. J. Food Process. Preserv. 2020, 44, e14305. [Google Scholar] [CrossRef]
- Selcuk, M.; Oksuz, L.; Basaran, P. Decontamination of Grains and Legumes Infected with Aspergillus spp. and Penicillum spp. by Cold Plasma Treatment. Bioresour. Technol. 2008, 99, 5104–5109. [Google Scholar] [CrossRef]
- Somma, S.; Masiello, M.; Haidukowski, M.; Ciasca, B.; Sardella, E.; Favia, P.; Palumbo, F.; Roggio, M.; Moretti, A. Decontamination of Maize Kernels and Degradation of Mycotoxins by Means of Cold Plasmas. LWT 2025, 215, 117205. [Google Scholar] [CrossRef]
- Suhem, K.; Matan, N.; Nisoa, M.; Matan, N. Inhibition of Aspergillus flavus on Agar Media and Brown Rice Cereal Bars using Cold Atmospheric Plasma Treatment. Int. J. Food Microbiol. 2013, 161, 107–111. [Google Scholar] [CrossRef]
- Panrapee, I.; Phakpoom, K.; Thanapoom, M.; Nampeung, A.; Warapa, M. Exposure to Aflatoxin B1 in Thailand by Consumption of Brown and Color Rice. Mycotoxin Res. 2016, 32, 19–25. [Google Scholar] [CrossRef]
- Kim, D.; Hong, H.; Kang, S.Y.; Cho, J.W.; Lee, S.M.; Lee, T.K.; Chung, S.H. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins 2017, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Dousti, M.; Bashiry, M.; Zohrabi, P.; Siahpoush, V.; Ghaani, A.; Abdolmaleki, K. The Effect of Dielectric Barrier Discharge (DBD) Cold Plasma Treatment on the Reduction of Aflatoxin B1 and the Physicochemical Properties of Oat. Appl. Food Res. 2024, 4, 100515. [Google Scholar] [CrossRef]
- Zhi, A.; Shi, S.; Li, Q.; Shen, F.; He, X.; Fang, Y.; Hu, Q.; Jiang, X. Aflatoxins Degradation and Quality Evaluation in Naturally Contaminated Rice by Dielectric Barrier Discharge Cold Plasma. Innov. Food Sci. Emerg. Technol. 2023, 88, 103426. [Google Scholar] [CrossRef]
- Cold Plasma Global Market Report 2025. Available online: https://www.thebusinessresearchcompany.com/report/cold-plasma-global-market-report (accessed on 20 January 2025).
- Nanoguard Technologies Inc. Bringing Clean & Fresh Food to Your Dining Table. Available online: https://nanoguardtechnologies.com/ (accessed on 20 January 2025).
- Cold Plasma Group Inc. Cold Plasma Sterilization Technologies. Available online: https://www.coldplasmagroup.ca/products (accessed on 16 November 2024).
Reactive Species | Half-Life | References |
---|---|---|
ONOO•− (peroxynitrite) | 5–20 milliseconds | [34] |
O2•− (superoxide) | ~1 microseconds | [34] |
H2O2 (hydrogen peroxide) | seconds to minutes | [34] |
O3 (ozone) | 99 min under refrigeration | [35] |
NO3 (nitrate) | 5–8 h (human blood) | [36] |
NO2 (nitrogen dioxide) | 13 min (when O3 < 1.0 ppm) | [37] |
NO (nitric oxide) | 15 s | [38] |
N2 (C3πu) | 38 nanoseconds | [39] |
N2 (B3πg) | 13 nanoseconds | [39] |
OH• (hydroxyl radical) | ~10−9 s | [40] |
Plasma Source | Sample Characteristics | Organism(s) | Treatment Conditions | Significant Findings | References |
---|---|---|---|---|---|
Plasma jet | 10 pieces pistachio kernels | A. flavus |
|
| [20] |
Plasma jet | 10 g hazelnuts | A. flavus and A. parasiticus |
|
| [23] |
Plasma jet | 10 g hazelnuts | A. flavus and A. parasiticus |
|
| [23] |
Plasma jet | 15 g peanuts | A. flavus and A. niger |
|
| [58] |
Plasma jet | 1 g peeled peanuts | A. flavus |
|
| [59] |
DBD | 4 g raw pistachio | A. flavus |
|
| [21] |
DBD | Pistachio | A. flavus |
|
| [22] |
DBD | 35 g hazelnuts | A. flavus |
|
| [24] |
DBD | 10 g raw groundnuts | A. flavus and A. parasiticus |
|
| [60] |
DBD | 10 g raw peanut kernels | A. flavus |
|
| [57] |
Plasma Source | Sample Characteristics | Treatment Conditions | Detection Technique | Significant Findings | References |
---|---|---|---|---|---|
Plasma jet | 5 g hazelnut (3 µg/kg AFB1) |
| HPLC |
| [26] |
Plasma jet | 10 pistachio kernels (20 µg/kg aflatoxins) |
| Not avaliable |
| [20] |
Atmospheric pressure plasma jet (APPJ) | 15 g raw peanuts |
| ELISA |
| [62] |
DBD | 10 g groundnuts |
| HPLC |
| [23] |
DBD | 20 ng/g of AFB1 sprayed on 40 g raw hazelnuts |
| HPLC-MS/MS |
| [27] |
DBD | 4 g of unskinned and milled pistachio sample was contaminated with AFB1 (383.19 µg/kg) |
| HPLC |
| [21] |
DBD | 60 μL of 50 μg/mL AFB1 stock solution spot-inoculated on 15 g raw peanut kernels |
| ELISA |
| [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, M.; Cao, W.; Tang, L.; Keener, K.M. A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma. Toxins 2025, 17, 129. https://doi.org/10.3390/toxins17030129
Javed M, Cao W, Tang L, Keener KM. A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma. Toxins. 2025; 17(3):129. https://doi.org/10.3390/toxins17030129
Chicago/Turabian StyleJaved, Miral, Wei Cao, Linyi Tang, and Kevin M. Keener. 2025. "A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma" Toxins 17, no. 3: 129. https://doi.org/10.3390/toxins17030129
APA StyleJaved, M., Cao, W., Tang, L., & Keener, K. M. (2025). A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma. Toxins, 17(3), 129. https://doi.org/10.3390/toxins17030129