Ochratoxin A in Ruminants–A Review on Its Degradation by Gut Microbes and Effects on Animals
Abstract
:1. Introduction
2. Occurrence of Ochratoxin A in Ruminant Feeds
2.1. Concentrates
Country and year | Feed | n | Positive samples | OTA content (µg/kg) | Ref. |
---|---|---|---|---|---|
Poland (1975–1979) | Barley | 137 | 19 (14%) | 2–200 | [37] |
Wheat | 125 | 15 (12%) | 5–100 | [37] | |
Rye | 83 | 15 (18%) | 4–200 | [37] | |
Denmark (1986–1992) | Wheat | 520 | 165 (32%) | 0.05–51 | [4] |
Rye | 616 | 256 (42%) | 0.05–121 | [4] | |
Oats | 92 | 40 (43%) | 0.05–6 | [4] | |
Barley | 61 | 17 (28%) | 0.05–14 | [4] | |
United States (1999) | Wheat | 383 | 56 (15%) | 0.03–31 | [38] |
Barley | 103 | 11(10%) | 0.1–17 | [38] | |
United Kingdom (1992) | Wheat | 50 | 10 (22%) | 1–02 | [39] |
Barley | 45 | 12 (26%) | 1–20 | [39] | |
Canada (1981–1983) | Wheat | 440 | 5 (<1%) | 10–51 | [40] |
Germany (1991–1993) | Cereals | 514 | 10 (2%) | 3–60 | [41] |
Germany (1982–1987) | Barley | 68 | 10 (15%) | 0.1–206 | [26] |
Oats | 93 | 12 (135%) | 0.1–58 | [26] | |
Wheat | 64 | 8 (13%) | 0.1–137 | [26] | |
Maize | 40 | 3 (8%) | 1.7–82 | [26] | |
Netherlands (1988–1989) | Cereal grains | 44 | 2 (25%) | 6–120 | [42] |
Legumes | 35 | 10 (28%) | 2–37 | [42] | |
Egypt (1995) | Maize | 54 | 8 (14%) | 4800 | [43] |
Soybean | 17 | 3 (17%) | 1600 | [43] | |
Wheat | 26 | 2 (8%) | 800 | [43] | |
Germany (1982–1987) | Mixed feed | 630 | 89 (14%) | 0.2–12 | [26] |
India (1985–1987) | Cattle cake | 143 | 6 (4%) | n.g. | [44] |
2.2. Forages
3. Degradation of Ochratoxin A in Ruminants
3.1. Principle of enzymatic OTA degradation
3.2. Degradation by different microbial populations
3.3. Degradation by rumen microbes
3.3.1. OTA degradation by the rumen microbial population
OTA dose [μg/kg bw] | Diet | Ruminal OTA disappearance parameters | Ref. |
---|---|---|---|
500 | 100% forage (hay) | half life 0.65 h, back to zero after app. 6 h | [72] |
500 | 100% concentrate | half life 1.30 h (30% intake), 3.38 h (100% intake); not back to zero after app. 10 h | [72] |
500 | 100% forage (hay) | half life 0.63 h, back to zero after app. 6 h | [73] |
500 | 100% concentrate | half life 2.67 h, not back to zero after 12 h | [73] |
9.5, 19.0 and 28.5 | 70% concentrate | half lives 2.60, 3.76 and 3.82 h, back to zero after app. 10–13 h | [11] |
14.3 | 70% roughage | back to zero after app. 6 h | [104] |
14.3 | 70% concentrate | back to zero after app. 13 h | [104] |
27.6 | 70% concentrate | half life 4.1–5.1 h; back to zero between 10 and 24 h | [105] |
OTA in rumen fluid [mg/L] | Diet of donor animals | In vitro treatment | OTA degradation parameters | Ref. |
---|---|---|---|---|
~0.5 | rumen fluid from slaughterhouse | - | After 15 min 50% degraded; after 4 h only 5% left | [68] |
0.24–4.6 | not given | - | 0.06–0.52 mg/(h*L) | [99] |
2.5 | 100% hay | - | 0.345 mg/(h*L) | [72] |
2.5 | 100% conc. | - | 0.073 mg/(h*L) | [72] |
0.2 | 100% hay | - | Half life 12.7 h; reduced, but not back to zero at 48 h | [107] |
0.2 | 80% hay | - | Half life 4.1 h; back to zero at app. 24 h | [107] |
0.2 | 50% hay | - | Half life 5.7 h; back to zero at app. 24 h | [107] |
0.2 | 40% hay | - | Half life 3.9 h; back to zero at app. 24 h | [107] |
0.2 | 40% hay | - | Half life 3.4 h; back to zero at app. 12 h | [107] |
0.2 | 40% hay | + starch | Half life 2.0 h; back to zero at app. 32 h | [107] |
0.2 | 7–8 kg DM hay, 5–6.6 kg DM conc. | - | Half life 0.88 h; k = 0.34 h-1; back to zero at app. 6 h | [100] |
0.2 | 7 kg DM hay, 4 kg DM conc. | - | Half life 1.33 h; k = 0.23 h-1; back to zero at app. 6.5 h | [100] |
0.2 | Grass ad libitum, 3 kg DM conc. | - | Half life 0.17 h; k = 1.75 h-1; back to zero at app. 1.5 h | [100] |
0.2 | Grass ad libitum, 2 kg DM conc. | - | Half life 0.51 h; k = 0.58 h-1; back to zero at app. 4 h | [100] |
0.2 | 72% grass/18% grass hay, 10% conc. | - | k = 0.38 h-1 ± 0.13 | [108] |
0.2 | 32% grass/18% grass hay, 50% conc. | - | k = 0.49 h-1 ± 0.07 | [108] |
0.2 | 90% grass silage, 10% conc. | - | k = 0.21 h-1 ± 0.06 | [108] |
0.2 | 50% grass silage, 50% conc. | - | k = 0.29 h-1 ± 0.16 | [108] |
0.2 | 90% grass hay, 10% conc. | - | k = 0.22 h-1± 0.07 | [108] |
0.2 | 50% grass hay, 50% conc. | - | k = 0.38 h-1 ± 0.15 | [108] |
0.2 | 40% hay, 60% conc. | - | Half life 3.7 h; back to zero at app. 32 h | [106] |
0.2 | 100% hay | - | Half life 4.5 h; back to zero at app. 32 h | [106] |
0.2 | not given | + starch | Half life 1.9 h; back to zero at app. 32 h | [106] |
0.2 | Diet with monensin | - | Half life 20.1 h; not back to zero after 32 h | [106] |
0.07 | not given | - | Half life 3.23 h (wheat OTA); back to almost zero at 12 h; Half life 3.06 h (crystalline OTA); back to zero at 12 h | [109] |
3.3.2. OTA degradation capacity of different microbial groups
OTA in rumen fluid | Microbial fraction | Degradation rate OTA | Ref. |
---|---|---|---|
~12.5 mg/L | Protozoa1 | 54% degraded after 24 h | [69] |
~12.5 mg/L | Heavy bacteria1 | 13% degraded after 24 h | [69] |
~12.5 mg/L | Light bacteria1 | No degradation after 24 h | [69] |
0.2 mg/L | Protozoa + heavy bacteria (200 g; 10 min) | app. 90% degraded after 4 h | [99] |
0.2 mg/L | Bacteria (supernatant) | app. 10% degraded after 4 h | [99] |
0.2 mg/L | Rumen fluid minus protozoa2 | app. 15% degraded after 4 h | [99] |
1250 mg/L | particulate fraction (centrifugation 10 min at 150 g) | 201 μg/(h*L) (hay diet) | [72] |
1250 mg/L | supernatant centrifugation | 17 μg/(h*L) (hay diet) | [72] |
0.2 mg/L | Protozoa fraction | Half life 2.44 h; back to zero at app. 32 h | [106] |
0.2 mg/L | Bacteria fraction | Half life 99.4 h; not back to zero after 32 h | [106] |
Not given | Rumen bacteria | Able to degrade OTA | [98] |
3.3.3. Influence of diet composition on OTA degradation
3.3.4. Further aspects of rumen microbial degradation of OTA
4. Systemic Occurrence and Excretion of OTA in Ruminants
4.1. OTA in pre-ruminating ruminants
4.2. OTA in functional ruminants
OTA dose [µg/(kg bw*d)] | Dosing method | Duration | Animal age | n | Clinical effects; systemic presence of OTA + OTα | Excretion of OTA + OTα in urine and faeces | Detection limit chemi-cal analysis | Diet | Ref. |
---|---|---|---|---|---|---|---|---|---|
500 | ST | Single dose | 16–21 d (60 kg) | 2 | Both calves survived; no suppressive effect on feeding; serum contents app 0.2–0.4 µg OTA/mL (still 5 d after dosing) | Dose recovery 97%; 88% as OTα and 3.4% as OTA in urine; 9.2% as OTA in faeces | 50 ng/mL HPLC | Milk | [9] |
1000 | ST | Single dose | 10–15 d | 2 | 1 calf dead within 12 h, 1 calf survived; labored beathing, severe diarrhea, prostration; cessation of feeding for 4 h in the surviving calf | - | - | Milk | [9] |
4000 | ST | Single dose | 10–15 d | 2 | Dead within 24 h; labored beathing, severe diarrhea, prostration; refused to feed for 4 h | - | - | Milk | [9] |
11000 | ST | Single dose | 35 d | 1 | Dead within 24 h (epicardial hemorrhages) | - | - | Not given | [126] |
25000 | ST | Single dose | 35 d | 1 | Dead within 24 h (epicardial hemorrhages) | - | - | Not given | [126] |
100, 500 | CA | 30 days | 2 month | 1+1 | Polyuria on app. day 20; tended to revert to normal at the end of experiment; necropsy: pale kidney, mild enteritis, mild tubular kidney degeneration | - | - | Start of roughage feeding at start experimental period | [127] |
1000, 2000 | CA | 30 days | 2 month | 1+1 | Polyuria, depressed (on day 14 in the low and day 2 in the high dose), dehydrated; symptoms tended to revert to normal at the end of experiment); necropsy: pale kidney, mild enteritis, mild tubular kidney degeneration | - | - | Shift milk replacer to pellets first month of age; start roughage feeding at start experimental period | [127] |
OTA dose [µg/(kg bw*d)] | Animal, age, bw | n | Clinical effects; systemic presence of OTA + OTα | Excretion of OTA + OTα in urine and faeces | Detection limit/chemical analysis | Diet | Ref. |
---|---|---|---|---|---|---|---|
200 | Sheep, adult, 50 kg | 4 | Seemed normal; urine volume increased; maximal 4 µg OTA/mL in blood serum | Dose recovery (6 d) 57–61%; excretion in urine 93% as OTA and 3.2% as OTα, in faeces 4.4% as OTα | 50 ng/mL, HPLC | Hay | [73] |
250 | Cattle, not lactating or pregnant, 400 kg | 1 | Not mentioned | Only OTA in urine, no OTα | TLC | Dairy ration | [130] |
250 | Calves, 19–20 d, 44 kg | 2 | 1 dead after 31 h; 1 survived; no cessation of feed intake; serum OTA from 3.0 to 0.1 µg OTA/mL during 5 d | Dose recovery 70%; excretion in urine 36% as OTA; in faeces 64% as OTA; no OTα in urine or faeces | 50 ng/mL, HPLC | milk at 10% bw (over night fast) | [9] |
1000 | Sheep, 135days pregnant | 2 | Dead after 12 and 24 h; pulmonary congestion and edema; liver necrosis; serum OTA from 7–8 to 1–3 µg OTA/mL during 12 h | - | not given | not given | [128] |
4.2.1. Pathological findings and systemic occurrence
OTA dose [µg/(kg bw*d)] | Study duration | Animal, age, bw | n | Clinical and pathological effects; systemic presence of OTA + OTα | Excretion of OTA + OTα in faeces and urine | Detection limit/ chemical analysis | Diet | Ref. |
---|---|---|---|---|---|---|---|---|
9.5 | 29 d | Sheep, 1 year, 39 kg | 3 | No overt illness; food intake not influenced; blood serum OTA 1.5–6.0 ng/mL, OTα 0.4–0.8 ng/mL | Dose recovery 80% (7 d); 1.9% OTA and 20.4% OTα in faeces, 7.8% OTA and 70% OTα in urine | 0.2 ng/mL (HPLC) | 70% conc. + 30% grass silage | [11] |
14 | 31 d | Sheep, adult, 58 kg | 3 | No overt illness; food intake not influenced; blood serum OTA 2–4 ng/mL | Dose recovery 81% (7 d); 1.5% OTA and 11.2% OTα in faeces, 4.4% OTA and 82.9% OTα in urine | 0.2 ng/mL (HPLC) | 70% roughage | [104] |
14 | 31 d | Sheep, adult, 58 kg | 3 | No overt illness; food intake not influenced; blood serum OTA 4–9 ng/mL (tendency to accumulate). | Dose recovery 78% (7 d); 0.9% OTA and 18.5% OTα in faeces, 5.8% OTA and 75% OTα in urine. | 0.2 ng/mL (HPLC) | 70% conc. | [104] |
14.7–16.5 | 87 d | Cattle, 12 weeks, 80 kg | 6 | No liver, kidney, skeletal or heart muscle damage; 3 calves with some OTA in kidney | no OTA in urine but some OTα | - | 1.5 kg hay + 1.5–2.7 kg conc. | [70] |
12.0–16.01 | 87 d | Cattle, 12 weeks, 80 kg | 6 | No liver, kidney, skeletal or heart muscle damage; 2 calves with some OTA in kidney | no OTA in urine but some OTα | - | 1.5 kg hay + 1.5- 2.7 kg conc. | [70] |
~18 | 77 d | Cattle, adult, app. 400 kg | 2 | Clinically normal; lesions on kidneys, subacute interstitial nephritis; some OTA detected in kidneys of one animal; no OTA or OTα in milk, muscle or liver reported | No OTA or OTα detected in urine. | - | 9 kg hay + 10 kg conc. | [135] |
19 | 29 d | Sheep, 1 year, 39 kg | 3 | No overt illness, food intake not influenced; blood serum OTA 4.6–12.4 ng/mL, OTα 0.7–2.3 ng/mL | Dose recovery 78% (7 d); OTA 7.7% in urine and 1.9% in faeces; OTα 20.7% in faeces and 70% in urine | 0.2 ng/mL (HPLC) | 70% conc.+ 30% grass silage | [11] |
22 | 28 d | Sheep, adult, 66 kg | 4 | No overt illness; food intake not influenced; normal weight gain; blood serum OTA 8.2–10.8 ng/mL, OTα 2.0–3.4 ng/mL | Dose recovery 75%; OTA 5.1% in urine and 1.1% in faeces; OTα 13% in faeces and 81% in urine | HPLC | 70% conc.+ 30% hay | [10] |
28.5 | 29 d | Sheep, 1 year, 39 kg | 3 | No overt illness; food intake not influenced; blood serum OTA 6.4–18.2 ng/mL, OTα 0.7–1.6 ng/mL | Dose recovery 74% (7 d); OTA 12% in urine and 3.4% in faeces; OTα 36% in faeces and 49% in urine | 0.2 ng/mL (HPLC) | 70% conc. + 30% grass silage | [11] |
55 | 28 d | Sheep, adult, 66 kg | 4 | No overt illness; food intake not influenced; normal weight gain; blood serum OTA 67.0–111.7 ng/mL, OTα 12.0–18.5 ng/mL | Dose recovery 84%; OTA 4.8% in urine and 0.59% in faeces; OTα 16% in faeces and 91% in urine | HPLC | 70% conc. + 30% hay | [10] |
225 | 14 d | Sheep, adult | n.g. | Reduction in feed intake (toxicosis); blood serum OTA 36 ng/mL, OTα 15 ng/mL | - | HPLC | 70% conc. + 30% hay | [10] |
1000, 2000 | 14 d | Goat, adult, 59 kg | 1,1 | No clinical signs besides diarrhoea and polyuria promoting haemoconcentration (urea N up, minimal microscopic kidney changes) | - | - | Lucerne hay + conc. | [126] |
Dose [µg/(kg bw*d)] | OTA appl. | Duration | Animal, age, bw | n | Clinical and pathological effects; systemic presence of OTA + OTα | Excretion of OTA+OTα in faeces and urine | Detection limit/method | Diet | Ref. |
---|---|---|---|---|---|---|---|---|---|
22 (4 d) + 55 (2 d) | FE | 4+2 d | Sheep, adult, 50 kg | 1 | Not commented on; no OTA and OTα in serum 1 h after dose | - | n.g. | Not given | [99] |
27.6 | FE | Single dose | Sheep, adult, 89 kg | 6 | No overt illness; blood serum OTA max 14.4 ng/mL | Dose recovery 86%; OTA 6.5% in urine and 3.7% in faeces; OTα 34% in faeces and 56% in urine | 0.2 ng/mL HPLC | 70% conc.+ 30% grass silage | [105] |
200 | FE | 4 d | Cattle, lactating, not pregnant, 500 kg | 1 | No overt clinical signs; delivery of normal calves; no OTA and OTα up to 200 μg/kg DM in milk (back to zero 1.5 d after last dose) | No OTA and up to 8 μg/mL OTα in urine | TLC | Dairy cattle ration | [126,130] |
250 | ST | Single dose | Cattle, not pregnant or lactating, 400 kg | 1 | No overt clinical signs | No OTA and up to 2 μg/mL OTα in urine | TLC | Dairy cattle ration | [130] |
500 | CA | Single dose | Goat, adult, 45 kg | 2 | Not commented on; 6% in milk and 2% in serum (in the latter 3 dominantly as undetermined metabolites) | Excretion of OTA dose: >90% within 7 days, excretion 54% in faeces (dominantly as OTA), 38% in urine | TLC | Hay | [103] |
500 | CA | Single dose | Goat, adult, 45 kg | 2 | Not commented on; 1.5% and 0.5% of total dose found in liver and kidney 6 h after dose | - | TLC | Hay | [103] |
500 | RC | Single dose | Sheep, adult, 60 kg | 2 | No overt illness; notion of increased urine volume; in blood serum OTA up to 400 ng/mL at 100% intake and 150 ng/mL at 30% intake 4 h after dose | Dose recovery 67%; OTA 1.2–2.8% in urine and 0.28–0.29% in faeces; OTα 7.6–18% in faeces and 81–89% in urine | HPLC | 100% grain | [73] |
500 | RC | Single dose | Sheep, adult, 60 kg | 2 | No overt illness; notion of increased urine volume; in blood serum OTA up to 100 ng/mL 4 h after dose | Dose recovery 58%; OTA 0.56% in urine and 0.93% in faeces; OTα 24% in faeces and 75% in urine | HPLC | 100% hay | [73] |
500 | RC | Single dose | Sheep, adult, 20 kg | 4 | No overt illness; area-under-the-curve (AUC) blood serum OTA 6495 (ng*h/mL) and OTα 196 (ng*h/mL) | - | HPLC | 100% grain | [73] |
500 | RC | Single dose | Sheep, adult, 20 kg | 4 | No overt illness; area-under-the-curve (AUC) blood serum OTA 1456 (ng*h/mL) and OTα 494 (ng*h/mL) | - | HPLC | 100% hay | [73] |
750 | ST | 5 d | Cattle, 3 mon pregnant, not lactating, 600 kg | 1 | Delivery of normal calves; in milk no OTA, but traces of OTα | Traces of OTα in urine | TLC | Dairy cattle ration | [126,130] |
1660 | ST | 5 d | Cattle, 6 mon pregnant, lactating, 600 kg | 1 | Delivery of normal calves; in milk OTA app. 100 μg/kg DM on day 3,4 and 5; back to zero 2 days after dose; OTα 750 μg/kg DM on day 1–6 | Traces of OTα in urine | TLC | Dairy cattle ration | [126,130] |
2000 | ST | Single dose | Cattle, 46–69 d, 68–100 kg | 4 | No overt illness; in blood serum OTA 2.0–0.1 ng/mL (decrease over 5 d) and OTα 0.1–0.2 ng/mL | Dose recovery 92%; excretion as OTA 0.4% in urine and 1.9% in faeces; as OTα 82% in urine and 16% in faeces | 50 ng/mL | Barley + hay | [9] |
3000 | ST | 5 d | Goat, adult, pregnant, 59 kg | 1 | Dead after 5 days; diarrhea, dehydration; no gross lesions; microscopical lesions confined to centrolobular swelling of liver | - | - | Lucerne hay + conc. | [126] |
13300 | ST | Single dose | Cattle, lactating, 6 months pregnant, 600 kg | 1 | Difficulty in arising, diarrhea, anorexia 1–4 d after dosing; drastic reduction of milk production; in milk OTA up to 640 μg/kg DM, OTα 4500 μg/kg DM after one day | Traces of OTα in urine | TLC | Dairy cattle ration | [126,130] |
4.2.2. Excretion via urine and faeces
4.2.3. Particularities influencing OTA toxicity and degradation in ruminants
4.3. Occurrence of OTA in ruminant tissues (meat)/products
4.4. Occurrence and transfer of OTA into ruminant milk
5. Concluding Remarks and Considerations
Acknowledgements
References and Notes
- Krogh, P. Ochratoxin in foods. In Mycotoxins in Food; Krogh, P., Ed.; Academic Press: London, UK, 1987; pp. 97–121. [Google Scholar]
- Frisvad, J.C.; Samson, R.A. Mycotoxins produced in species of Penicillium and Aspergillus occurring in cereals. In Cereal Grain Mycotoxins, Fungi and Quality in Drying and Storage; Chelkowski, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 441–476. [Google Scholar]
- Dwivedi, P.; Burns, R.B. The natural occurrence of ochratoxin A and its effects in poultry. A review. Part I: Epidemiology and toxicology. World´s Poult. Sci. J. 1986, 42, 32–47. [Google Scholar] [CrossRef]
- Jørgensen, K.; Rasmussen, G.; Thorup, I. Ochratoxin A in Danish cereals 1986–1992 and daily intake by the Danish population. Food Addit. Contam. 1996, 13, 95–104. [Google Scholar]
- Kuiper-Goodmann, T.; Scott, P.M. Risk assessment of the mycotoxin ochratoxin A. Biomed. Environ. Sci. 1989, 2, 179–240. [Google Scholar]
- Blank, R. Die Bedeutung von Lebensmitteln tierischer Herkunft für die Mykotoxinaufnahme beim Menschen. Z. Umweltchem. Oekotox. 2002, 14, 104–109. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on Contaminants in Food Chain on a request from the Commission related to ochratoxin A (OTA) as undesirable substance in animal feed. EFSA J. 2004, 101, 1–36.
- Freeland, W.J.; Janzen, D.H. Strategies in herbivory by mammals: the role of plants secondary compounds. Am. Nat. 1974, 108, 269–289. [Google Scholar]
- Sreemannarayana, O.; Frohlich, A.A.; Vitti, T.G.; Marquardt, R.R.; Abramson, D. Studies of tolerance and disposition of ochratoxin A in young calves. J. Anim. Sci. 1988, 66, 1703–1711. [Google Scholar]
- Höhler, D.; Südekum, K.-H.; Wolffram, S.; Frohlich, A.A.; Marquardt, R.R. Metabolism and excretion of ochratoxin A fed to sheep. J. Anim. Sci. 1999, 77, 1217–1223. [Google Scholar]
- Blank, R.; Rolfs, J.P.; Südekum, K.-H.; Frohlich, A.A.; Marquardt, R.R.; Wolffram, S. Effects of chronic ingestion of ochratoxin A on blood level and excretion of the mycotoxin in sheep. J. Agric. Food Chem. 2003, 51, 6899–6905. [Google Scholar]
- Schuh, M.; Schweighardt, H. Ochratoxin A - ein nephrotoxisch wirkendes Mycotoxin. Uebers. Tierernaehr. 1981, 9, 33–70. [Google Scholar]
- Marquardt, R.R.; Frohlich, A.A. A review of recent advances in understanding ochratoxicosis. J. Anim. Sci. 1992, 70, 3968–3988. [Google Scholar]
- Höhler, D. Ochratoxin A in food and feed: occurrence, legislation and mode of action. Z. Ernaehrungswiss. 1998, 37, 2–12. [Google Scholar]
- Blank, R.; Höhler, D.; Wolffram, S. Ochratoxin A in der Nahrungskette - Vorkommen, Toxizität und Dekontamination. Uebers. Tierernaehr. 1999, 27, 123–163. [Google Scholar]
- Petzinger, E.; Weidenbach, A. Mycotoxins in the food chain: the role of ochratoxins. Livest. Prod. Sci. 2002, 76, 245–250. [Google Scholar]
- Marquardt, R.R.; Frohlich, A.A.; Abramson, D. Ochratoxin A - An important Western Canadian storage mycotoxin. Can. J. Physiol. Pharmacol. 1990, 68, 991–999. [Google Scholar]
- Galtier, P. Biological fate of mycotoxins in animals. Rev. Med. Vet. (Toulouse) 1998, 149, 549–554. [Google Scholar]
- Pfohl-Leszkowicz, A.; Manderville, R. Review on ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–69. [Google Scholar]
- Mandeville, R.; Pfohl-Leszkowicz, A. Bioactivation and DNA adduction as a rationale of ochratoxin A carcinogenisis. World Mycotoxin J. 2008, 1, 357–367. [Google Scholar]
- Clark, H.A.; Snedeker, S.M. Ochratoxin A: Its cancer risk and potential for exposure. J. Toxicol. Environ. Health B 2006, 9, 265–296. [Google Scholar]
- Kuiper-Goodmann, T. Uncertainties in the risk assessment of three mycotoxins: aflatoxin, ochratoxin, and zearalenon. Can. J. Physiol. Pharmacol. 1990, 68, 1017–1024. [Google Scholar]
- Valenta, H. Ochratoxin A. Möglichkeiten der Dekontamination von "Unerwünschten Stoffen". Landbauforsch. Voelkenrode 2006, Sonderheft 294, 150–168. [Google Scholar]
- Amézqueta, S.; González-Penas, E.; Murillo-Arbizu, M.; de Cerain, A.L. Ochratoxin A decontamination: A review. Food Control 2009, 20, 326–333. [Google Scholar]
- Fink-Gremmels, J. The role of mycotoxins in the health and performance of dairy cows. Vet. J. 2008, 176, 84–92. [Google Scholar]
- Bauer, J.; Gareis, M. Ochratoxin A in der Nahrungsmittelkette. J. Vet. Med. B 1987, 34, 613–627. [Google Scholar]
- Bacha, H.; Hadidane, R.; Creppy, E.E.; Regnault, C.; Ellouze, F.; Dirheimer, G. Monitoring and identification of fungal toxins in food products, animal feeds and cereals in Tunisia. J. Stored Products Res. 1988, 4, 199–206. [Google Scholar]
- Bauer, J.; Niemiec, J.; Scholtyssek, S. Ochratoxin A im Legehennenfutter. 2. Mitteilung: Rückstände in Serum, Leber und Ei. Arch. Gefluegelkd. 1988, 52, 71–79. [Google Scholar]
- Jelinek, F.C.; Poland, A.E.; Wood, G.E. World occurrence of mycotoxins in food and feeds, an update. J. AOAC Int. 1989, 72, 223–230. [Google Scholar]
- Frank, H.J. Food contamination by ochratoxin A in Germany. In Mycotoxins, Endemic Nephropathy and Urinary Tract Tumours; Castegnaro, M., Plestina, R., Dirheimer, G., Chernozemsky, I.N., Bartsch, H., Eds.; International Agency for Research on Cancer: Lyon, France, 1991; pp. 177–182. Publ. No.115. [Google Scholar]
- Hald, B.; Wood, G.M.; Boenke, A.; Schurer, B.; Finglas, P. Ochratoxin A in wheat: An intercomparison of procedures. Food Addit. Contam. 1993, 10, 185–207. [Google Scholar]
- MAFF, Mycotoxins. Third report. In Food Surveillance Paper No. 36; HMSO: London, UK, 1993; pp. 46–50.
- WHO, Selected mycotoxins: ochratoxins, trichothecenes, ergot. In Environmental Health Criteria; WHO (Ed.) Geneva, Switzerland, 1990; pp. 71–164.
- Thalmann, A. Vorkommen von Ochratoxin A in Getreide und daraus gewonnenen Lebens- und Futtermitteln. In Proceedings 16. Mycotoxin Workshop und Symposium, Stuttgart-Hohenheim, Germany, 16-18 May, 1994; pp. 57–59.
- Scudamore, K.A. Ochratoxin A in animal feed - effects of processing. Food Addit. Contam. 1996, 13, 39–42. [Google Scholar]
- Czerwiecki, L.; Czajkowska, D.; Witkowska-Gwiazdowska, A. On ochratoxin A and fungal flora in Polish cereals from conventional and ecological farms - Part 1: Occurrence of ochratoxin A and fungi in cereals in 1997. Food Addit. Contam. 2002, 19, 470–477. [Google Scholar]
- Juszkiewicz, T.; Piskorska-Pliszcynska, J. Occurrence of mycotoxins in animal feeds. J. Environ. Pathol. Toxicol. 1992, 11, 211–215. [Google Scholar]
- Trucksess, M.W.; Giler, J.; Young, K.; White, K.D.; Page, S.W. Determination and survey of ochratoxin A in wheat, barley and coffee. J. AOAC Int. 1999, 82, 85–89. [Google Scholar]
- Scudamore, K.A.; Hetmanski, M.T.; Chan, H.K.; Collins, S. Occurrence of mycotoxins in raw ingredients used for animal feeding stuffs in the United Kingdom in 1992. Food Addit. Contam. 1997, 14, 157–173. [Google Scholar]
- Sinha, R.N.; Muir, W.E.; Sanderson, D.B. Quality assessment of stored wheat during drying with near-ambient temperature air. Can. J. Plant Sci. 1985, 65, 849–866. [Google Scholar]
- Richter, W.; Schuster, M. Occurrence of zearalenone and ochratoxin A in feed grain stored on farms. In Proceedings 17 Mykotoxin-WorkshopSelbstverlag Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL), Braunschweig, Germany, 15-17 May 1995; pp. 27–30.
- Veldman, A.; Borggreve, G.J.; Mulders, E.J.; van de Lagemaat, D. Occurrence of the mycotoxins ochratoxin A, zearalenone and deoxynivalenol in feed components. Food Addit. Contam. 1992, 9, 647–655. [Google Scholar]
- Refai, M.K.; Aziz, N.H.; El-Far, F.; Hassan, A.A. Detection of ochratoxin produced by A. ochraceus in feedstuffs and its control by gamma radiation. Appl. Radiat. Isot. 1996, 47, 617–621. [Google Scholar] [CrossRef]
- Ranjan, K.S.; Sinha, A.K. Occurrence of mycotoxigenic fungi and mycotoxins in animal feed from Bihar, India. J. Sci. Food Agric. 1991, 56, 39–47. [Google Scholar]
- Curtui, V.; Usleber, E.; Dietrich, R.; Lepschy, J.; Märtlbauer, E. A survey on the occurrence of mycotoxins in wheat and maize from western Romania. Mycopathologia 1998, 143, 97–103. [Google Scholar]
- Rosa, C.A.; Cavaglieri, L.R.; Ribeiro, J.M.M.; Keller, K.M.; Alonso, V.A.; Chiacchiera, S.M.; Dalcero, A.M.; Lopes, C.W.G. Mycobiota and naturally occuring ochratoxin A in dairy cattle feed from Rio de Janeiro State, Brazil. World Mycotoxin J. 2008, 1, 195–201. [Google Scholar]
- Elzupir, A.O.; Makawi, S.Z.A.; Elhussein, A.M. Determination of aflatoxins and ochratoxin A in dairy cattle feed and milk in Wad Medani, Sudan. J. Anim. Vet. Adv. 2009, 8, 2508–2511. [Google Scholar]
- Driehuis, F.; Spanjer, M.C.; Scholten, J.M.; Giffel, M.C. Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. Food Addit. Contam. B 2008, 1, 41–50. [Google Scholar]
- Mngadi, P.T.; Govinden, R.; Odhav, B. Co-occuring mycotoxins in animal feeds. Afr. J. Biotech. 2008, 7, 2239–2243. [Google Scholar]
- Fink-Gremmels, J. Mycotoxins in forage. In The Mycotoxin Blue Book; Diaz, D., Ed.; Nottingham University Press: Nottingham, UK, 2005; pp. 249–268. [Google Scholar]
- Driehuis, F.; Spanjer, M.C.; Scholten, J.M.; Giffel, M.C. Occurrence of mycotoxins in feedstuffs of dairy cows and estimation of total dietary intakes. J. Dairy Sci. 2008, 91, 4261–4271. [Google Scholar]
- Oldenburg, E. Mycotoxins in conserved forage. In Forage Conservation towards 2000. Landbauforschung Völkenrode Sonderheft 123; Pahlow, G., Honig, H., Eds.; Bundesforschungsanstalt für Landwirtschaft Braunschweig (FAL): Braunschweig, Germany, 1991; pp. 191–205. [Google Scholar]
- Garon, D.; Richard, E.; Sage, L.; Bouchart, V.; Pottier, D.; Lebailly, P. Mycoflora and multimycotoxin detection in corn silage: Experimental study. J. Agric. Food Chem. 2006, 54, 3479–3484. [Google Scholar]
- Richard, E.; Heutte, N.; Bouchart, V.; Garon, D. Evaluation of fungal contamination and mycotoxin production in maize silage. Anim. Feed Sci. Technol. 2009, 148, 309–320. [Google Scholar]
- Richard, E.; Heutte, N.; Sage, L.; Pottier, D.; Bouchart, V.; Garon, P. Toxigenic fungi and mycotoxins in mature corn silage. Food Chem. Toxicol. 2007, 45, 2420–2425. [Google Scholar]
- Ulbrich, M.; Hoffmann, M.; Drochner, W. Fütterung und Tiergesundheit; Ulmer: Stuttgart, Germany, 2004. [Google Scholar]
- Kämpfe, K. Ergebnisse von Mykotoxinuntersuchungen in Korngetreide und Futtermitteln. Kongreßband Halle/S. 1999. VDLUFA Schriftenreihe 1999, 52, 313–316. [Google Scholar]
- Skrinjar, M.; Stubblefield, R.D.; Vujicic, I.F. Ochratoxigenic moulds and ochratoxin A in forages and grain feeds. Acta. Vet. Hung. 1992, 40, 185–190. [Google Scholar]
- Scudamore, K.A.; Livesey, C.T. Occurrence and significance of mycotoxins in forage crops and silage: a review. J. Sci. Food Agric. 1998, 77, 1–17. [Google Scholar]
- Auerbach, H.; Geissler, C. Mycotoxine in Rauh- und Saftfuttermitteln für Wiederkäuer. Uebers. Tierernaehr. 1992, 20, 167–208. [Google Scholar]
- Le Bars, J.; Escoula, L. Champignons toxinogènes des forrages secs et ensilés. Bull. Off. Int. Epizoot. 1973, 79, 1213–1246. [Google Scholar]
- Yiannikouris, A.; Jouany, J.P. Mycotoxins in feeds and their fate in animals: A review. Anim. Res. 2002, 51, 81–99. [Google Scholar]
- Buckley, T.; Creighton, A.; Fogarty, U. Analysis of Canadian and Irish forage, oats and commercially available equine concentrate feed for pathogenic fungi and mycotoxins. Ir. Vet. J. 2007, 60, 231–236. [Google Scholar]
- Sondermann, S.; Schollenberger, M.; Drochner, W.; Rohweder, D.; Valenta, H.; Dänicke, S.; Hartung, K.; Piepho, K.-H. A survey of Fusarium toxins and ochratoxin A in cereal straws from Germany. Proc. Soc. Nutr. Physiol. 2010, 19, 147. [Google Scholar]
- Bata, Á.; Lásztity, R. Detoxification of mycotoxin-contaminated food and feed by microorganisms. Trends Food Sci. Technol. 1999, 10, 223–228. [Google Scholar]
- Blank, R. Strategien zur Entgiftung von mycotoxinbelasteten Futtermitteln in der Tierernährung. Schriftenr. Agrar- und Ernaehrungswiss. Fak. Univ. Kiel 2008, 113, 151–160. [Google Scholar]
- Abrunhosa, L.; Santos, L.; Venâncio, A. Degradation of ochratoxin A by proteases and by a crude enzyme of Aspergillus niger. Food Biotech. 2006, 20, 231–242. [Google Scholar]
- Hult, K.; Telling, A.; Gatenbeck, S. Degradation of ochratoxin A in ruminants. Appl. Environ. Microbiol. 1976, 32, 443–444. [Google Scholar]
- Galtier, P.; Alvinerie, M. In vitro transformation of ochratoxin A by animal microbial floras. Ann. Rech. Vet. 1976, 7, 91–98. [Google Scholar]
- Patterson, D.S.P.; Shreeve, B.J.; Roberts, B.A.; Berrett, S.; Brush, P.J.; Glancy, E.M. Effect on calves of barley naturally contaminated with ochratoxin A and groundnut meal contaminated with low concentrations of aflatoxin B1. Res. Vet. Sci. 1981, 31, 213–218. [Google Scholar]
- West, W.; Lingens, F. Bacterial degradation of ochratoxin A. FEMS Microbiol. Lett. 1983, 17, 341–344. [Google Scholar]
- Xiao, H.; Marquardt, R.R.; Frohlich, A.A.; Philips, G.D.; Vitti, T.G. Effect of hay and grain diet on the rate of hydrolysis of ochratoxin A in the rumen of sheep. J. Anim. Sci. 1991, 69, 3706–3714. [Google Scholar]
- Xiao, H.; Marquardt, R.R.; Frohlich, A.A.; Philips, G.D.; Vitti, T.G. Effect of hay and grain diet on the bioavailability of ochratoxin A in the rumen of sheep. J. Anim. Sci. 1991, 69, 3715–3723. [Google Scholar]
- Stryer, L. Biochemistry; Freeman: New York, NY, USA, 1995. [Google Scholar]
- Pitout, M.J. The hydrolysis of ochratoxin A by some proteolytic enzymes. Biochem. Pharmacol. 1969, 18, 485–491. [Google Scholar]
- Doster, R.C.; Sinnhuber, R.O. Comparative rates of hydrolysis of ochratoxin A and B in vitro. Food Cosmet. Toxicol. 1972, 10, 389–394. [Google Scholar]
- Deberghes, P.; Betbeder, A.M.; Biosard, F.; Blanc, R.; Delaby, J.F.; Krivobok, S.; Steiman, R.; Seigle Murandi, F.; Creppy, E.E. Detoxification of ochratoxin A, a food contaminant: prevention of growth of Aspergillus ochraceus and its production of ochratoxin A. Mycotoxin Res. 1995, 11, 37–47. [Google Scholar]
- Stander, M.A.; Bornscheuer, U.T.; Henke, E.; Steyn, P.S. Screening of commercial hydrolases for the degradation of ochratoxin A. J. Agric. Food Chem. 2000, 48, 5736–5739. [Google Scholar]
- Bornscheuer, U.T.; Kazlaukas, R.J. Hydrolases in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Kumagai, S.; Aibara, K. Intestinal absorption and secretion of ochratoxin A in the rat. Toxicol. Appl. Pharmacol. 1982, 64, 94–102. [Google Scholar]
- Heller, K.; Schultz, C.; Löser, R.; Röschenthaler, R. The inhibition of bacterial growth by ochratoxin A. Can. J. Microbiol. 1975, 21, 972–979. [Google Scholar]
- Hwang, C.A.; Draughon, F.A. Degradation of ochratoxin A by Acinetobacter calcoaaceticus. J. Food Prot. 1994, 57, 410–414. [Google Scholar]
- Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmueller, S. Detoxification of patulin and ochratoxin A, two abundant mycotoxins by lactic acid bacteria. Food Chem. Toxicol. 2008, 46, 1398–1407. [Google Scholar]
- Péteri, Z.; Téren, J.; Vágvölgyi, C.; Varga, J. Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. Food Microbiol. 2007, 24, 205–210. [Google Scholar]
- Varga, B.; Tóth, B.; Téren, J. Mycotoxin producing fungi and mycotoxins in foods in Hungary. Acta Aliment. 2005, 34, 267–275. [Google Scholar]
- Varga, J.; Rigo, K.; Téren, J. Degradation of ochratoxin A by Aspergillus species. Int. J. Food Microbiol. 2000, 59, 1–7. [Google Scholar]
- Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Biodegradation of ochratoxin A by Aspergillus section Nigri species isolated from French grapes: a potential means of ochratoxin A decontamination in grape juices and musts. FEMS Microbiol. Lett. 2006, 255, 203–208. [Google Scholar]
- Abrunhosa, L.; Serra, R.; Venancio, A. Biodegradation of ochratoxin A by fungi isolated from grapes. J. Agric. Food Chem. 2002, 50, 7493–7496. [Google Scholar]
- Abrunhosa, L.; Venancio, E. Isolation and purification of an enzyme hydrolyzing ochratoxin A from Aspergillus niger. Biotechnol. Lett. 2007, 29, 1909–1914. [Google Scholar]
- Engelhardt, G. Degradation of ochratoxin A and B by the white rot fungus Pleurotus ostreatus. Mycotoxin Res. 2002, 18, 37–43. [Google Scholar]
- Schatzmayr, G.; Heidler, D.; Fuchs, E.; Nitsch, S.; Mohnl, M.; Täubel, M.; Loibner, A.P.; Braun, R.; Binder, E.-M. Investigation of different yeast strains for the detoxification of ochratoxin A. Mycotoxin Res. 2003, 19, 124–128. [Google Scholar]
- Krogh, P.; Hald, B.; Gjertsen, P.; Myken, F. Fate of ochratoxin A and citrinin during malting and brewing experiments. Appl. Microbiol. 1974, 28, 31–34. [Google Scholar]
- Chu, F.S.; Chang, C.C.; Ashoor, S.H.; Prentice, N. Stability of aflatoxin B1 and ochratoxin A in brewing. Appl. Microbiol. 1975, 29, 313–316. [Google Scholar]
- Baxter, E.D.; Slaiding, I.R.; Kelly, B. Behaviour of ochratoxin A in brewing. J. Am. Soc. Brew. Chem. 2001, 59, 98–100. [Google Scholar]
- Skrinjar, M.; Rasic, J.L.; Stojicic, V. Lowering ochratoxin A level in milk by yoghurt bacteria and bifidobacteria. Folia Microbiol. (Prague) 1996, 41, 26–28. [Google Scholar] [CrossRef]
- Madhyastha, M.S.; Marquardt, R.R.; Frohlich, A.A. Hydrolysis of ochratoxin A by the microbial activity of digesta in the gastrointestinal tract of rats. Arch. Environ. Contam. Toxicol. 1992, 23, 468–472. [Google Scholar]
- Akiyama, H.; Toyoda, M.; Kato, M.; Igimi, S.; Kumagai, S. The degradation of several mycotoxins by human intestinal microflora cultured by continous flow culture system. Mycotoxins 1997, 44, 21–27. [Google Scholar]
- Schatzmayr, G.; Heidler, D.; Fuchs, E.; Loibner, A.P.; Braun, R.; Binder, E.-M. Evidence of ochratoxin A-detoxification activity of rumen fluid, intestinal fluid and soil samples as well as isolation of relevant microorganisms from these environments. Mycotoxin Res. 2002, 18A, 183–187. [Google Scholar]
- Kiessling, K.H.; Petterson, H.; Sandholm., K.; Olsen, M. Metabolism of aflatoxins, ochratoxin, zeralenone, and three trichothecences by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl. Environ. Microbiol. 1984, 47, 1070–1073. [Google Scholar]
- Müller, H.M.; Lerch, C.; Müller, K.; Eggert, W. Kinetic profiles of ochratoxin A and ochratoxin alpha during in vitro incubation in buffered forestomach and abosomal contents from cows. Nat. Toxins 1998, 6, 251–258. [Google Scholar]
- Lerch, C. Metabolismus von Ochratoxin A und Zearalenon in Pansenflüssigkeit von Milchkühen in vitro. 1990. [Google Scholar]
- Müller, K. Einfluß der Fütterung und anderer Faktoren auf den Umsatz von Ochratoxin A in Pansenflüssigkeit in vitro und in vivo. 1995. [Google Scholar]
- Nip, W.K.; Chu, F.S. Fate of ochratoxin A in goats. J. Environ. Sci. Health B 1979, 14, 319–333. [Google Scholar]
- Blank, R.; Rolfs, J.P.; Südekum, K.-H.; Frohlich, A.A.; Marquardt, R.R.; Wolffram, S. Effect of roughage:concentrate ratio in diet on systemic availability and excretion of ochratoxin A in sheep. J. Anim. Feed Sci. 2004, 13 (Suppl. 1), 673–676. [Google Scholar]
- Blank, R.; Wolffram, S. Effects of live yeast cell supplementation to high concentrate diets on the toxicokinetics of ochratoxin A in sheep. Food Addit. Contam. A 2009, 26, 119–126. [Google Scholar]
- Özpinar, H.; Bilal, T.; Abas, I.; Kutay, C. Degradation of ochratoxin A in rumen fluid in vitro. Facta Universitatis Ser.: Med. Biol. 2002, 9, 66–69. [Google Scholar]
- Özpinar, H.; Augonyte, G.; Drochner, W. Inactivation of ochratoxin in ruminal fluid with variation of pH-value and fermentation parameters in an in vitro system. Environ. Toxicol. Pharmacol. 1999, 7, 1–9. [Google Scholar]
- Müller, H.M.; Müller, K.; Steingass, H. Effect of feeding regime on the metabolism of ochratoxin A during the in vitro incubation in buffered rumen fluid from cows. Arch. Anim. Nutr. 2001, 54, 279–285. [Google Scholar]
- Blank, R.; Münster, Y.; Westphal, A.; Wolffram, S. Comparison of ruminal degradation of ochratoxin A from different sources using the Hohenheim gas test. Proc. Soc. Nutr. Physiol. 2002, 11, 94. [Google Scholar]
- Wallace, R.J.; Joblin, K.N. Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol. Lett. 1985, 29, 19–25. [Google Scholar]
- Franzolin, R.; Dehority, B.A. Effect of prolonged high-concentrate feeding on ruminal protozoa concentrations. J. Anim. Sci. 1996, 74, 2803–2809. [Google Scholar]
- Dehority, B.A.; Orpin, C.G. Development of and natural fluctuations in rumen microbial populations. In The Rumen Microbial Ecosystem; Hobson, P.N., Ed.; Elsevier Applied Science: London, UK, 1988; pp. 151–183. [Google Scholar]
- Russell, J.B.; Dombrowski, D.B. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 1980, 39, 604–610. [Google Scholar]
- Erfle, J.D.; Boila, R.J.; Teather, R.M.; Mahadevan, S.; Sauer, F.D. Effect of pH on fermentation characteristics and degradation by rumen microorganisms in vitro. J. Dairy Sci. 1982, 65, 1457–1464. [Google Scholar]
- Erdmann, R.A. Dietary buffering requirements of the lactating dairy cows: a review. J. Dairy Sci. 1988, 71, 3246–3266. [Google Scholar]
- de Veth, M.J.; Kolver, E.S. Diurnal variation in pH reduces digestion and synthesis of microbial protein when pasture is fermented in continuous culture. J. Dairy Sci. 2001, 84, 2066–2072. [Google Scholar]
- Lindberg, J.E. The effect of basal diet on ruminal degradation of dry matter, nitrogenous compounds and cell walls in nylon bags: Roughages and cereals in various proportions. Swed. J. Agric. Res. 1981, 11, 159–169. [Google Scholar]
- Madsen, J.; Hvelplund, T. The influence of different protein supply and feeding levels on pH, ammonia concentration and microbial protein synthesis in the rumen of cows. Acta Agric. Scand. 1988, 38, 115–125. [Google Scholar]
- Zebeli, Q.; Dijkstra, J.; Tafaj, M.; Steingass, H.; Ametaj, B.N.; Drochner, W. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J. Dairy Sci. 2008, 91, 2046–2066. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Abdelhamid, A.M.; El-Ayouty, S.A.; El-Saadany, H.H. The influence of contamination with separate mycotoxins (aflatoxins, ochratoxin A, citrinin, patulin, penicillic acid or sterigmatocystin) on in vitro dry matter and organic matter digestibilities of some roughages (Berseem hay and wheat straw). Arch. Anim. Nutr. 1992, 42, 179–185. [Google Scholar]
- Pettersson, H.; Kiessling, K.-H. Effect of aflatoxin, ochratoxin and sterigmatocystin on microorganisms from sheep rumen. Swed. J. Agric. Res. 1976, 6, 161–162. [Google Scholar]
- Krogh, P.; Axelsen, N.H.; Elling, F.; Gyrd-Hansen, N.; Hald, B.; Hyldgaard-Jensen, J.; Larsen, A.E.; Madsen, A.; Mortensen, H.P.; Moller, T.; Petersen, O.K.; Ravnskov, U.; Rostgaard, M.; Aalund, O. Experimental porcine nephropathy changes of renal function and structure induced by ochratoxin A contaminated feeds. Acta Pathol. Microbiol. Scand. 1974, 246, 1–21. [Google Scholar]
- Rutqvist, L.; Bjorklund, N.E.; Hult, K.; Hockby, E.; Carlsson, B. Ochratoxin A as the cause of spontaneous nephropathy in fattening pigs. Appl. Environ. Microbiol. 1978, 36, 920–925. [Google Scholar]
- Hamilton, P.B.; Huff, W.E.; Harris, J.R.; Watt, R.D. Natural occurrence of ochratoxicosis in poultry. Poult. Sci. 1982, 61, 1832–1841. [Google Scholar]
- Ribelin, W.E.; Fukushima, K.; Still, P.E. The toxicity of ochratoxin to ruminants. Can. J. Comp. Med. 1978, 42, 172–176. [Google Scholar]
- Pier, A.C.S.; Cysewski, S.J.; Richard, J.L.; Baetz, A.L.; Mitchell, L. Experimental mycotoxicosis in calves with aflatoxin,ochratoxin,rubratoxin and T-2 toxin. In Proceedings 8th Annual Meeting of U.S. Animal Health Association, Miami Beach, FL, USA, 1976; pp. 130–147.
- Munro, I.C.; Scott, P.M.; Moodie, C.A.; Willes, R.F. Ochratoxin A: occurrence and toxicity. J. Am. Vet. Med. Assoc. 1973, 163, 1269–1273. [Google Scholar]
- Still, P.E.; Macklin, A.W.; Ribelin, W.E.; Smalley, E.B. Relationship of ochratoxin A to foetal death in laboratory and domestic animals. Nature (Lond.) 1971, 234, 563–564. [Google Scholar] [CrossRef]
- Still, P.E. Mycotoxins as Possible Causes of Abortions in Dairy Cattle. 1973. [Google Scholar]
- Vough, L.R.; Glick, I. Round bale silage. In Silage Production from Seed to Animal; Northeast Regional Agricultural Engineering Service (NRAES-67): Itaca, NY, USA, 1993; pp. 117–123. [Google Scholar]
- Lloyd, W.E.; Stahr, H.M. Ochratoxin toxicosis in cattle. In Proceedings of the 22nd Annual Meeting American Association of Veterinary Laboratory Diagnostics; 1980; pp. 222–237.
- Lloyd, W.E. Citrinin and ochratoxin toxicosis in the United States. 2nd Symposium of Veterinary Laboratory Diagnosticians, Lucerne, Switzerland, 24–26 June 1980; pp. 435–439.
- Scott, P.M.; van Walbeek, W.; Harwig, J.; Fennell, D.I. Occurrence of a mycotoxin, ochratoxin A, in wheat and isolation of ochratoxin A and citrinin producing strains of Penicillium viridicatum. Can. J. Plant Sci. 1970, 50, 583–585. [Google Scholar]
- Shreeve, B.J.; Patterson, D.S.P.; Roberts, B.A. The carryover of aflatoxin, ochratoxin and zearalenone from naturally contaminated feed to tissues, urine and milk of dairy cows. Food Cosmet. Toxicol. 1979, 17, 151–152. [Google Scholar]
- Yamazaki, M.; Suzuki, S.; Sakakibara, Y.; Miyaki, K. The toxicity of 5-chloro-8-hydroxy-3,4-dihydro-3-methyl-isocoumarin-7-carboxylic acid, a hydrolyzate of ochratoxin A. Jpn. J. Med. Sci. Biol. 1971, 24, 245–250. [Google Scholar]
- Creppy, E.E.; Kern, D.; Steyn, P.S.; Vleggaar, R.; Roschenthaler, R.; Dirheimer, G. Comparative study of the effect of ochratoxin A analogues on yeast aminoacyl tRNA synthetases and on the growth and protein synthesis of hepatoma cells. Toxicol. Lett. 1983, 19, 217–224. [Google Scholar]
- Li, S.; Marquardt, R.R.; Frohlich, A.A.; Vitti, T.G.; Crow, G. Pharmacokinetics of ochratoxin A and its metabolites in rats. Toxicol. Appl. Pharmacol. 1997, 145, 82–90. [Google Scholar]
- Chu, F.S.A. A comparative study of the interaction of ochratoxins with bovine serum albumin. Biochem. Pharmacol. 1974, 23, 1105–1113. [Google Scholar]
- Gareis, M.; Scheuer, R. Ochratoxin A in meat and meat products. Arch. Lebensmittelhygiene 2000, 51, 102–104. [Google Scholar]
- Mortensen, H.R.; Hald, B.; Madsen, A. Feeding experiments with ochratoxin A contaminated barley for bacon pigs. 5. Ochratoxin A in pig blood. Acta Agric. Scand. 1983, 33, 235–239. [Google Scholar] [CrossRef]
- Gareis, M. Fate of ochratoxin A on processing of meat products. Food Addit. Contam. 1996, 13, 35–37. [Google Scholar]
- Jolánkai, R.; Márton, A.; Wagner, l.; Husvéth, F. Appearance of feed mycotoxin in sheep milk. Cereal Res. Commun. 2007, 35, 545–548. [Google Scholar]
- Jolánkai, R.; Tóth, S.B.; Wágner, L.; Husvéth, F. Mycotoxins in the food chain: Appearance of the toxins in sheep milk and products. Cereal Res. Commun. 2008, 36 (Suppl. B), 365–366. [Google Scholar]
- Valenta, H.; Goll, M. Determination of ochratoxin A in regional samples of cow milk from Germany. Food Addit. Contam. 1996, 13, 669–676. [Google Scholar]
- Engel, G. Ochratoxin in sweets, oil seeds and dairy products. Arch. Lebensmittelhyg. 2000, 51, 98–101. [Google Scholar]
- Survey of Milk for Mycotoxins (Number17/01)-Food Survey Information Sheet; Food Standards Agency: UK, 2001.
- González-Osnaya, L.; Soriano, J.M.; Moltó, J.C.; Manes, J. Simple liquid chromatography assay for analyzing ochratoxin A in bovine milk. Food Chem. 2008, 108, 272–276. [Google Scholar]
- Bascarán, A.; Hernández de Rojas, A.; Choucino, P.; Delgado, T. Analysis of chratoxin A in milk after direct immunoaffinity column clean-up by high-performance liquid chromatography with flourescence detection. J. Chromatogr. A 2007, 1167, 95–101. [Google Scholar]
- Breitholtz-Emanuelsson, A.; Olsen, A.M.; Oskarsson, A.; Palminger, I.; Hult, K. Ochratoxin A in cow milk and in human milk with corresponding human blood samples. J. AOAC Int. 1993, 76, 842–846. [Google Scholar]
- Skaug, M.A. Analysis of Norwegian milk and infant formulas for ochratoxin A. Food Addit. Contam. 1999, 16, 75–78. [Google Scholar] [Green Version]
- Boudra, H.; Barnouin, J.; Dragacci, S.; Morgavi, D.P. Aflatoxin M1 and ochratoxin A in raw bulk milk from French dairy herds. J. Dairy Sci. 2007, 90, 3197–3201. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar]
- McDonald, I. A revised model for protein degradability in the rumen. J. Agric. Sci. 1981, 96, 251–252. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mobashar, M.; Hummel, J.; Blank, R.; Südekum, K.-H. Ochratoxin A in Ruminants–A Review on Its Degradation by Gut Microbes and Effects on Animals. Toxins 2010, 2, 809-839. https://doi.org/10.3390/toxins204809
Mobashar M, Hummel J, Blank R, Südekum K-H. Ochratoxin A in Ruminants–A Review on Its Degradation by Gut Microbes and Effects on Animals. Toxins. 2010; 2(4):809-839. https://doi.org/10.3390/toxins204809
Chicago/Turabian StyleMobashar, Muhammad, Jürgen Hummel, Ralf Blank, and Karl-Heinz Südekum. 2010. "Ochratoxin A in Ruminants–A Review on Its Degradation by Gut Microbes and Effects on Animals" Toxins 2, no. 4: 809-839. https://doi.org/10.3390/toxins204809
APA StyleMobashar, M., Hummel, J., Blank, R., & Südekum, K. -H. (2010). Ochratoxin A in Ruminants–A Review on Its Degradation by Gut Microbes and Effects on Animals. Toxins, 2(4), 809-839. https://doi.org/10.3390/toxins204809