Immunotoxins and Other Conjugates Containing Saporin-S6 for Cancer Therapy
Abstract
:1. Introduction
2. ITs Targeting Hematological Cells
Antitumor Activity | ||||||
---|---|---|---|---|---|---|
Antibody | Target Antigen | Tumor | In vitro IC50 (M) | In vivo | Ref. | |
Schedule | Effects | |||||
Various | CD2 | T-CLL | 10−13~10−11 | n.d. | n.d. | [8] |
OKT11 7A10C9 | CD2 | T-CLL | <5 × 10−13 | n.d. | n.d. | [9] |
OKT1 | CD5 | T-lymphocytes B-CLL | 3.2 × 10−10; 4~6.8 × 10−9 | n.d. | n.d. | [10,11] |
UCHT1 | CD3 | lymphocytes | 2.1 × 10−10 | n.d. | n.d. | [6,12] |
HB2 × DB7-18 | CD7 | T-ALL | 2.3 × 10−10 | n.d. | n.d. | [13,14] |
HB2 | CD7 | T-ALL | 4.5 × 10−12 | SCID-HSB2 mice; 1 × 0.5 mg/kg | 50% survival at 150 days | [15,16] |
BU12 | CD19 | B-LL | SCID-NALM-6 mice; 3 × 10 μg | 40% survival at 110 days | [17] | |
BL | SCID-Ramos mice; 1 × 10 μg IT + 10 μg Rituximab | 100% survival at 120 days | [18,19] | |||
Rituximab | CD20 | NHL | 1~3 × 10−10 | n.d. | n.d. | [20] |
F(ab’)2 BsAbs | CD22 | BL | 1.5~6 × 10−10 | n.d. | n.d. | [21] |
OM124 | CD22 | B lymphoblastoid, BL | <5 × 10−15~2.0 × 10−11 | SCID-Daudi mice 3 × 0.5 mg/kg 2 × 0.5 mg/Kg IT + 60 mg/Kg cyclophosphamide | 33% tumor free 66% tumor free | [22] |
Ber-H2 | CD30 | HD | 5 × 10−12~5 × 10−14 | n.d. | n.d. | [23] |
ALCL | SCID-JB6 mice 3 × 11.3 μg | CR 80% CR 30% | [24] | |||
ALCL | SCID-D430B mice 1 × 0.1 mg/kg | CR 66% PR 33% | [25] | |||
IB4 | CD38 | NHL | 2~13 × 10−12 | n.d. | n.d. | [26] |
B7-24 | CD80 | BL, HD | <10−11 | n.d. | n.d. | [27] |
M24 + IG10 | CD80/ CD86 | BL, HD | 0.3~5.8 × 10−12 | n.d. | n.d. | [28] |
83 | CD3/ CD28 | lymphocytes | 8 × 10−11 AC50 2 × 10−12 | n.d. | n.d. | [29] |
ALL | AC50 10−11 | n.d. | n.d. | [30] | ||
ATG | various | lymphoma and leukemia cells | 5 × 10−11~10−10 | n.d. | n.d. | [31] |
Antibody | Antigen | Disease | Total Dose | PR | SD/MR | No. patients | Ref. |
---|---|---|---|---|---|---|---|
F(ab’)2 BsAb | CD22 | NHL | 5 mg | - | 1 | 1 | [32] |
4KB128 + HD6 | CD22 | B-cell lymphoma | 5–20 mg | - | 4 | 4 | [33] |
F(ab’)2 BsAb | CD22 | NHL | 5–20 mg | - | 5 | 5 | [34] |
Ber-H2 | CD30 | HD | 0.8 mg/kg | 3 (75%) | 1 (25%) | 4 | [35] |
Ber-H2 | CD30 | HD | 0.2–0.8 mg/kg | 5 (40%) | 3 (25%) | 12 | [36] |
2.1. ITs Targeting CD2, CD3 and CD5
2.2. ITs Targeting CD7
2.3. ITs Targeting CD19
2.4. ITs Targeting CD20
2.5. ITs Targeting CD22
2.6. ITs Targeting CD30
2.7. ITs Targeting CD38
2.8. ITs Targeting Costimulatory Antigens
2.8.1. ITs Targeting CD80/CD86
2.8.2. ITs Targeting CD156 (CTLA-4)
2.9. ITs Containing Polyclonal Antibodies
2.10. Cocktails of Various Anti-Lymphocyte ITs
3. ITs Targeting Solid Tumor Antigens
Antitumor Activity | ||||||
---|---|---|---|---|---|---|
Carrier | Target Antigen | Tumor | In vitro IC50 (M) | In vivo | Ref. | |
Schedule | Effects | |||||
EGF | EGFR | Sarcoma | 2.4 × 10−9 w/o saponin 6.7 × 10−13 with saponin | n.d. | n.d. | [52] |
Adenocarcinoma | BALB/c-TSA mice 4 × 280 μg/kg | 71% TGR at 20 days | [53] | |||
6 × 5.6 μg/kg + 1670 μg/kg saponin | 94% TGR at 25 days | [54] | ||||
Cervical cancer | SCID-cervical cancer mice6 × 15 μg | 50–60% TGR at 30 days | [55] | |||
FGF | FGFR | Melanoma, teratocarcinoma and neuroblastoma | 10−9~10−11 | BALB/c-neuroblastoma mice 4 × 0.5 μg/kg | CR 20% | [56] |
FGF-2 | FGFR | Bladder cancer | 1.4 × 10−8~ 1.3 × 10−10 | n.d. | n.d. | [57] |
bFGF | FGFR | Prostatic carcinoma | Athymic nude mice-DU1454 × 5 μg/kg | 95% TG Rat 38 days | [58] | |
ch25A11 | CDCP1 | Prostate carcinoma | SCID CB17 mice 3 × 0.4 mg/kg | 66% TGR at 23 days | [59] | |
hj591 | PSMA | Prostate carcinoma | 2 × 10−9~1.4 × 10−10 | Athymic nude mice-LNCaP 4 × 32 μg | 83–90% TG Rat 49 days | [60] |
Ep2 | HMW-MAA | Melanoma | 10−10 | n.d. | n.d. | [61] |
ML30 | HSP65 | Leukaemic monocyte lymphoma | 10−9 | n.d. | n.d. | [62] |
Pancreatic carcinoma | SCID-HPC-4 mice 6 × 10−7 M | TR 15.9 IT TR 48.7 PBS | ||||
48–127 | gp54 | Bladder tumor | 10−9 | n.d. | n.d. | [63] |
I/F8 scFv | ALCAM/ CD166 | Various | 2.4~5 × 10−9 | n.d. | n.d. | [64] |
7E4B11 | RPTPβ | Astrocytic tumor | Athymic nude mice-glioblastoma 4 × 30 μg | 73% TGD | [65] |
3.1. Conjugates Targeting Growth Factor Receptors
3.1.1. Conjugates Targeting EGFR
3.1.2. Conjugates Targeting FGFR
3.2. Conjugates Targeting the Transferrin Receptor
3.3. ITs Targeting Prostatic Antigens
3.4. ITs Targeting Other Antigens on Solid Cancers
4. Conclusions
References
- Stirpe, F. Ribosome-inactivating proteins. Toxicon 2004, 44, 371–383. [Google Scholar]
- Fracasso, G.; Bellisola, G.; Castelletti, D.; Tridente, G.; Colombatti, M. Immunotoxins and other conjugates: Preparation and general characteristics. Mini Rev. Med. Chem. 2004, 4, 545–562. [Google Scholar]
- Ribosome-inactivating protein saporin-6. Available online: http://www.uniprot.org/uniprot/P20656 (accessed on 21 June 2011).
- Fermani, S.; Falini, G.; Ripamonti, A.; Polito, L.; Stirpe, F.; Bolognesi, A. The 1.4 anstroms structure of dianthin 30 indicates a role of surface potential at the active site of type 1 ribosome inactivating proteins. J. Struct. Biol. 2005, 149, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Fermani, S.; Tosi, G.; Farini, V.; Polito, L.; Falini, G.; Ripamonti, A.; Barbieri, L.; Chambery, A.; Bolognesi, A. Structure/function studies on two type 1 ribosome inactivating proteins: Bouganin and lychnin. J. Struct. Biol. 2009, 168, 278–287. [Google Scholar]
- Bolognesi, A.; Tazzari, P.L.; Tassi, C.; Gromo, G.; Gobbi, M.; Stirpe, F. A comparison of anti-lymphocyte immunotoxins containing different ribosoma-inactivating proteins and antibodies. Clin.Exp.Immunol. 1992, 89, 341–346. [Google Scholar]
- Flavell, D.J. Saporin immunotoxins. Curr. Top. Microbiol. Immunol. 1998, 234, 57–61. [Google Scholar]
- Tazzari, P.L.; Bolognesi, A.; de Totero, D.; Lemoli, R.M.; Fortuna, A.; Conte, R.; Crumpton, M.J.; Stirpe, F. Immunotoxins containing saporin linked to different CD2 monoclonal antibodies: In vitro evaluation. Br. J. Haematol. 1994, 86, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Lemoli, R.M.; Tazzari, P.L.; Fortuna, A.; Bolognesi, A.; Gulati, S.C.; Stirpe, F.; Tura, S. Positive selection of hematopoietic CD34+ stem cells provides “indirect purging” of CD34− lymphoid cells and the purging efficiency is increased by anti-CD2 and anti-CD30 immunotoxins. Bone Marrow Transpl. 1994, 13, 465–471. [Google Scholar]
- Siena, S.; Lappi, D.A.; Bregni, M.; Formosa, A.; Villa, S.; Soria, M.; Bonadonna, G.; Gianni, A.M. Synthesis and characterization of an antihuman T-lymphocyte saporin immunotoxin (OKT1-SAP) with in vivo stability into nonhuman primates. Blood 1988, 72, 756–765. [Google Scholar] [PubMed]
- Siena, S.; Bregni, M.; Formosa, A.; Brando, B.; Marenco, P.; Lappi, D.A.; Bonadonna, G.; Gianni, A.M. Immunotoxin-mediated inhibition of chronic lymphocytic leukemia cell proliferation in humans. Cancer Res. 1989, 49, 3328–3332. [Google Scholar]
- Bolognesi, A.; Tazzari, P.L.; Tassi, C.; Gromo, G.; Gobbi, M.; Stirpe, F. Anti-lymphocyte immunotoxins prepared with ribosome-inactivating proteins and different antibodies. J. Chemother. 1990, 3, 337–340. [Google Scholar]
- Flavell, D.J.; Cooper, S.; Morland, B.; Flavell, S.U. Characteristics and performance of a bispecific F (ab’gamma)2 antibody for delivering saporin to a CD7+ human acute T-cell leukaemia cell line. Br. J. Cancer 1991, 64, 274–280. [Google Scholar]
- Flavell, D.J.; Cooper, S.; Morland, B.; French, R.; Flavell, S.U. Effectiveness of combinations of bispecific antibodies for delivering saporin to human acute T-cell lymphoblastic leukaemia cell lines via CD7 and CD38 as cellular target molecules. Br. J. Cancer 1992, 65, 545–551. [Google Scholar]
- Morland, B.J.; Barley, J.; Boehm, D.; Flavell, S.U.; Ghaleb, N.; Kohler, J.A.; Okayama, K.; Wilkins, B.; Flavell, D.J. Effectiveness of HB2 (anti-CD7)—saporin immunotoxin in an in vivo model of human T-cell leukaemia developed in severe combined immunodeficient mice. Br. J. Cancer 1994, 69, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Morland, B.J.; Boehm, D.; Flavell, S.U.; Kohler, J.A.; Flavell, D.J. Immunotoxin studies in a model of human T-cell acute lymphoblastic leukemia developed in severe combined immune-deficient mice. Cell Biophys. 1994, 24-25, 315–329. [Google Scholar] [PubMed]
- Flavell, D.J.; Flavell, S.U.; Boehm, D.; Emery, L.; Noss, A.; Ling, N.R.; Richardson, P.R.; Hardie, D.; Wright, D.H. Preclinical studies with the anti-CD19-saporin immunotoxin BU12-SAPORIN for the treatment of human-B-cell tumours. Br. J. Cancer 1995, 72, 1373–1379. [Google Scholar]
- Flavell, D.J.; Boehm, D.A.; Emery, L.; Noss, A.; Ramsay, A.; Flavell, S.U. Therapy of human B-cell lymphoma bearing SCID mice is more effective with anti-CD19- and anti-CD38-saporin immunotoxins used in combination than with either immunotoxin used alone. Int. J. Cancer 1995, 62, 337–344. [Google Scholar]
- Flavell, D.J.; Warnes, S.L.; Bryson, C.J.; Field, S.A.; Noss, A.L.; Packham, G.; Flavell, S.U. The anti-CD20 antibody rituximab augments the immunospecific therapeutic effectiveness of an anti-CD19 immunotoxin directed against human B-cell lymphoma. Br. J. Haematol. 2006, 134, 157–170. [Google Scholar]
- Polito, L.; Bolognesi, A.; Tazzari, P.L.; Farini, V.; Lubelli, C.; Zinzani, P.L.; Ricci, F.; Stirpe, F. The conjugate Rituximab/SAP-S6 completely inhibits clonogenic growth of CD20-expressing cells and produces a synergistic toxic effect with Fludarabine. Leukemia 2004, 18, 1215–1222. [Google Scholar]
- Bonardi, M.A.; French, R.R.; Amlot, P.; Modena, D.; Glennie, M.J. Delivery of saporin to human B-cell lymphoma using bispecific antibody: Targeting via CD22 but not CD19, CD37, or immunoglobulin results in efficient killing. Cancer Res. 1993, 53, 3015–3021. [Google Scholar] [PubMed]
- Bolognesi, A.; Tazzari, P.L.; Olivieri, F.; Polito, L.; Lemoli, R,; Terenzi, A.; Pasqualucci, L.; Falini, B.; Stirpe, F. Evaluation of immunotoxins containing single-chain ribosome-inactivating proteins and an anti-CD22 monoclonal antibody (OM124): In vitro and in vivo studies. Br. J. Haematol. 1998, 101, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Battelli, M.G.; Buonamici, L.; Bolognesi, A.; Stirpe, F. In vivo and in vitro uptake of an anti-CD30/saporin immunotoxin by rat liver parenchymal and nonparenchymal cells. Hepatology 1994, 20, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Pasqualucci, L.; Wasik, M.; Teicher, B.A.; Flenghi, L.; Bolognesi, A.; Polito, L.; Stirpe, F.; Falini, B.; Kadin, M.E. Antitumor activity of anti-CD30 immunotoxin (Ber-H2/saporin) in vitro and in severe combined immunodeficiency disease mice xenografted with human CD30+ anaplastic large-cell lymphoma. Blood 1995, 85, 2139–2146. [Google Scholar] [PubMed]
- Tazzari, P.L.; de Totero, D.; Bolognesi, A.; Testoni, N.; Pileri, S.; Roncella, S.; Reato, G.; Stein, H.; Gobbi, M.; Stirpe, F. An Epstein-Barr virus-infected lymphoblastoid cell line (D430B) that grows in SCID-mice with the morphologic features of a CD30+ anaplastic large cell lymphoma, and is sensitive to anti-CD30 immunotoxins. Haematologica 1999, 84, 988–995. [Google Scholar]
- Bolognesi, A.; Polito, L.; Farini, V.; Bortolotti, M.; Tazzari, P.L.; Ratta, M.; Ravaioli, A.; Horenstein, A.L.; Stirpe, F.; Battelli, M.G.; et al. CD38 as a target of IB4 mAb carrying SAP-S6: Design of an IT for ex vivo depletion of hematological CD38+ neoplasia. J. Biol. Regul. Homeost. Agents 2005, 19, 145–152. [Google Scholar] [PubMed]
- Vooijs, W.C.; Otten, H.G.; van Vliet, M.; van Dijk, A.J.; de Weger, R.A.; de Boer, M.; Bohlen, H.; Bolognesi, A.; Polito, L.; de Gast, G.C. B7-1 (CD80) as target for immunotoxin therapy for Hodgkin’s disease. Br. J. Cancer 1997, 76, 1163–1169. [Google Scholar]
- Bolognesi, A.; Polito, L.; Tazzari, P.L.; Lemoli, R.M.; Lubelli, C.; Fogli, M.; Boon, L.; de Boer, M.; Stirpe, F. In vitro anti-tumour activity of anti-CD80 and anti-CD86 immunotoxins containing type 1 ribosome-inactivating proteins. Br. J. Haematol. 2000, 110, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Tazzari, P.L.; Polito, L.; Bolognesi, A.; Pistillo, M.P.; Capanni, P.; Palmisano, G.L.; Lemoli, R.M.; Curti, A.; Biancone, L.; Camussi, G.; et al. Immunotoxins containing recombinant anti-CTLA-4 single-chain fragment variable antibodies and saporin: In vitro results and in vivo effects in an acute rejection model. J. Immunol. 2001, 167, 4222–4229. [Google Scholar] [PubMed]
- Pistillo, M.P.; Tazzari, P.L.; Palmisano, G.L.; Pierri, I.; Bolognesi, A.; Ferlito, F.; Capanni, P.; Polito, L.; Ratta, M.; Pileri, S.; et al. CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target molecule for apoptosis induction of leukemic cells. Blood 2003, 101, 202–209. [Google Scholar] [PubMed]
- Polito, L.; Bortolotti, M.; Farini, V.; Pedrazzi, M.; Tazzari, P.L.; Bolognesi, A. ATG-saporin-S6 immunotoxin: A new potent and selective drug to eliminate activated lymphocytes and lymphoma cells. Br. J. Haematol. 2009, 147, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, M.A.; Bell, A.; French, R.R.; Gromo, G.; Hamblin, T.; Modena, D.; Tutt, A.L.; Glennie, M.J. Initial experience in treating human lymphoma with a combination of bispecific antibody and SAP. Int. J. Cancer Suppl. 1992, 7, 73–77. [Google Scholar] [PubMed]
- French, R.R.; Hamblin, T.J.; Bell, A.J.; Tutt, A.L.; Glennie, M.J. Treatment of B-cell lymphomas with combination of bispecific antibodies and SAP. Lancet 1995, 346, 223–224. [Google Scholar]
- French, R.R.; Bell, A.J.; Hamblin, T.J.; Tutt, A.L.; Glennie, M.J. Response of B-cell lymphoma to a combination of bispecific antibodies and SAP. Leuk. Res. 1996, 20, 607–617. [Google Scholar]
- Falini, B.; Bolognesi, A.; Flenghi, L.; Tazzari, P.L.; Broe, M.K.; Stein, H.; Dürkop, H.; Aversa, F.; Corneli, P.; Pizzolo, G.; et al. Response of refractory Hodgkin’s disease to monoclonal anti-CD30 IT. Lancet 1992, 339, 1195–1196. [Google Scholar] [PubMed]
- Pasqualucci, L.; Flenghi, L.; Terenzi, A.; Bolognesi, A.; Stirpe, F.; Bigerna, B.; Falini, B. IT therapy of hematological malignancies. Haematologica 1995, 80, 546–556. [Google Scholar]
- Siena, S.; Bregni, M.; Formosa, A.; Martineau, D.; Lappi, D.A.; Bonadonna, G.; Gianni, A.M. Evaluation of antihuman T lymphocyte saporin immunotoxins potentially useful in human transplantation. Transplantation 1988, 46, 747–753. [Google Scholar]
- Flavell, D.J.; Cooper, S.; Okayama, K.; Emery, L.; Flavell, S.U. Comparison of the performance of anti-CD7 and anti-CD38 bispecific antibodies and immunotoxins for the delivery of saporin to a human T-cell acute lymphoblastic leukemia cell line. Hematol. Oncol. 1995, 13, 185–200. [Google Scholar]
- Flavell, D.J.; Warnes, S.; Noss, A.; Flavell, S.U. Host-mediated antibody-dependent cellular cytotoxicity contributes to the in vivo therapeutic efficacy of an anti-CD7-saporin immunotoxin in a severe combined immunodeficient mouse model of human T-cell acute lymphoblastic leukemia. Cancer Res. 1998, 58, 5787–5794. [Google Scholar] [PubMed]
- Flavell, D.J.; Warnes, S.L.; Noss, A.L.; Flavell, S.U. Anti-CD7 antibody and immunotoxin treatment of human CD7(+)T-cell leukaemia is significantly less effective in NOD/LtSz-scid mice than in CB.17 scid mice. Br. J. Cancer 2000, 83, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Flavell, D.J.; Boehm, D.A.; Okayama, K.; Kohler, J.A.; Flavell, S.U. Therapy of human T-cell acute lymphoblastic leukaemia in severe combined immunodeficient mice with two different anti-CD7-saporin immunotoxins containing hindered or non-hindered disulphide cross-linkers. Int. J. Cancer 1994, 58, 407–414. [Google Scholar]
- Flavell, D.J.; Boehm, D.A.; Noss, A.; Flavell, S.U. Comparison of the potency and therapeutic efficacy of the anti-CD7 immunotoxin HB2-saporin constructed with one or two saporin moieties per immunotoxin molecule. Br. J. Cancer 1997, 75, 1035–1043. [Google Scholar]
- Bregni, M.; Siena, S.; Formosa, A.; Lappi, D.A.; Martineau, D.; Malavasi, D.; Dorken, B.; Bonadonna, G.; Gianni, A.M. B-cell restricted saporin immunotoxins: Activity against B-cell lines and chronic lymphocytic leukemia cells. Blood 1989, 73, 753–762. [Google Scholar]
- McLaughlin, P.; Grillo-López, A.J.; Link, B.K.; Levy, R.; Czuczman, M.S.; Williams, M.E.; Heyman, M.R.; Bence-Bruckler, I.; White, C.A.; Cabanillas, F.; et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J. Clin. Oncol. 1998, 16, 2825–2833. [Google Scholar] [PubMed]
- Bortolotti, M.; Polito, L.; Farini, V.; Bolognesi, A. Epratuzumab/SAP-S6: An anti-CD22 IT for selective depletion of B-cells neoplasms. Haematologica 2010, 95, S86. [Google Scholar]
- Tazzari, P.L.; Bolognesi, A.; de Totero, D.; Falini, B.; Lemoli, R.M.; Soria, M.R.; Pileri, S.; Gobbi, M.; Stein, H.; Flenghi, L.; et al. Ber-H2 (anti-CD30)-saporin immunotoxin: A new tool for the treatment of Hodgkin’s disease and CD30+ lymphoma: In vitro evaluation. Br. J. Haematol. 1992, 81, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Flavell, D.J.; Boehm, D.A.; Emery, L.; Noss, A.; Ramsay, A.; Flavell, S.U. Therapy of human B-cell lymphoma bearing SCID mice is more effective with anti-CD19- and anti-CD38-saporin immunotoxins used in combination than with either immunotoxin used alone. Int. J. Cancer 1995, 62, 337–344. [Google Scholar]
- Pistillo, M.P.; Tazzari, P.L.; Stirpe, F.; Bolognesi, A.; Polito, L.; Capanni, P.; Pioli, C.; Gatta, L.; Ubaldi, V.; Doria, G.; et al. Anti-CTLA-4 human scFv antibodies prevent T-cell activation in transplantation. Transplant. Proc. 2001, 33, 285–287. [Google Scholar] [PubMed]
- Flavell, D.J.; Boehm, D.A.; Noss, A.; Warnes, S.L.; Flavell, S.U. Therapy of human T-cell acute lymphoblastic leukaemia with a combination of anti-CD7 and anti-CD38-SAPORIN immunotoxins is significantly better than therapy with each individual immunotoxin. Br. J. Cancer 2001, 84, 571–578. [Google Scholar]
- Flavell, D.J.; Noss, A.; Pulford, K.A.; Ling, N.; Flavell, S.U. Systemic therapy with 3BIT, a triple combination cocktail of anti-CD19, -CD22, and -CD38-saporin immunotoxins, is curative of human B-cell lymphoma in severe combined immunodeficient mice. Cancer Res. 1997, 57, 4824–4829. [Google Scholar] [PubMed]
- Selbo, P.K.; Weyergang, A.; Høgset, A.; Norum, O.J.; Berstad, M.B.; Vikdal, M.; Berg, K. Photochemical internalization provides time- and space-controlled endolysosomalescape of therapeutic molecole. J. Control. Release 2010, 148, 2–12. [Google Scholar]
- Heisler, I.; Sutherland, M.; Bachran, C.; Hebestreit, P.; Schnitger, A.; Melzig, M.F.; Fuchs, H. Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. J. Control. Release 2005, 106, 123–137. [Google Scholar]
- Fuchs, H.; Bachran, C.; Li, T.; Heisler, I.; Dürkop, H.; Sutherland, M. A cleavable molecular adapter reduces side effects and concomitantly enhances efficacy in tumor treatment by targeted toxins in mice. J. Control. Release 2007, 117, 342–350. [Google Scholar]
- Bachran, C.; Dürkop, H.; Sutherland, M.; Bachran, D.; Müller, C.; Weng, A.; Melzig, M.F.; Fuchs, H. Inhibition of tumor growth by targeted toxins in mice is dramatically improved by saponinum album in a synergistic way. J. Immunother. 2009, 32, 713–725. [Google Scholar]
- Hoffmann, C.; Bachran, C.; Stanke, J.; Elezkurtaj, S.; Kaufmann, A.M.; Fuchs, H.; Loddenkemper, C.; Schneider, A.; Cichon, G. Creation and characterization of axenograft model for human cervical cancer. Gynecol. Oncol. 2010, 118, 76–80, Erratum in: Gynecol. Oncol. 2010, 119, 604.. [Google Scholar] [CrossRef] [PubMed]
- Beitz, J.G.; Davol, P.; Clark, J.W.; Kato, J.; Medina, M.; Frackelton, A.R., Jr.; Lappi, D.A.; Baird, A.; Calabresi, P. Antitumor activity of basic fibroblast growth factor-saporin mitotoxin in vitro and in vivo. Cancer Res. 1992, 52, 227–230. [Google Scholar] [PubMed]
- Tetzke, T.A.; Caton, M.C.; Maher, P.A.; Parandoosh, Z. Effect of fibroblast growth factor saporin mitotoxins on human bladder cell lines. Clin. Exp. Metastasis 1997, 15, 620–629. [Google Scholar]
- Davol, P.; Frackelton, A.R., Jr. The mitotoxin, basic fibroblast growth factor-saporin, effectively targets human prostatic carcinoma in an animal model. J. Urol. 1996, 156, 1174–1179. [Google Scholar] [PubMed]
- Siva, A.C.; Wild, M.A.; Kirkland, R.E.; Nolan, M.J.; Lin, B.; Maruyama, T.; Yantiri-Wernimont, F.; Frederickson, S.; Bowdish, K.S.; Xin, H. Targeting CUB domain-containing protein 1 with a monoclonal antibody inhibits metastasis in a prostate cancer model. Cancer Res. 2008, 68, 3759–3766. [Google Scholar]
- Kuroda, K.; Liu, H.; Kim, S.; Guo, M.; Navarro, V.; Bander, N.H. SAP toxin-conjugated monoclonal antibody targeting prostate-specific membrane antigen has potent anticancer activity. Prostate 2010, 70, 1286–1294. [Google Scholar]
- Tecce, R.; Nicotra, M.R.; Fraioli, R.; Cuomo, M.; Trizio, D.; Natali, P.G. Saporin 6 conjugated to monoclonal antibody selectively kills human melanoma cells. Melanoma Res. 1991, 1, 115–123. [Google Scholar]
- Piselli, P.; Vendetti, S.; Poccia, F.; Cicconi, R.; Mattei, M.; Bolognesi, A.; Stirpe, F.; Colizzi, V. In vitro and in vivo efficacy of heat shock protein specific immunotoxins on human tumor cells. J. Biol. Regul. Homeost. Agents 1995, 9, 55–62. [Google Scholar] [PubMed]
- Battelli, M.G.; Polito, L.; Bolognesi, A.; Lafleur, L.; Fradet, Y.; Stirpe, F. Toxicity of ribosome-inactivating proteins-containing immunotoxins to a human bladder carcinoma cell line. Int. J. Cancer 1996, 65, 485–490. [Google Scholar]
- Piazza, T.; Cha, E.; Bongarzone, I.; Canevari, S.; Bolognesi, A.; Polito, L.; Bargellesi, A.; Sassi, F.; Ferrini, S.; Fabbi, M. Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody. J. Cell Sci. 2005, 118, 1515–1525. [Google Scholar]
- Foehr, E.D.; Lorente, G.; Kuo, J.; Ram, R.; Nikolich, K.; Urfer, R. Targeting of the receptor protein tyrosine phosphatase beta with a monoclonal antibody delays tumor growth in a glioblastoma model. Cancer Res. 2006, 66, 2271–2278. [Google Scholar]
- Waksal, H.W. Role of an anti-epidermal growth factor receptor in treating cancer. Cancer Metastasis Rev. 1999, 18, 427–436. [Google Scholar]
- Ricci, C.; Polito, L.; Nanni, P.; Landuzzi, L.; Astolfi, A.; Nicoletti, G.; Rossi, I.; de Giovanni, C.; Bolognesi, A.; Lollini, P.L. HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells. J. Immunother. 2002, 25, 314–323. [Google Scholar]
- Heisler, I.; Keller, J.; Tauber, R.; Sutherland, M.; Fuchs, H. A cleavable adapter to reduce nonspecific cytotoxicity of recombinant immunotoxins. Int. J. Cancer 2003, 103, 277–282. [Google Scholar]
- Weyergang, A.; Selbo, P.K.; Berg, K. Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF-SAP. J. Control. Release 2006, 111, 165–173. [Google Scholar]
- Yip, W.L.; Weyergang, A.; Berg, K.; Tønnesen, H.H.; Selbo, P.K. Targeted delivery and enhanced cytotoxicity of cetuximab-SAP by photochemical internalization in EGFR-positive cancer cells. Mol. Pharm. 2007, 4, 241–251. [Google Scholar]
- Ying, W.; Martineau, D.; Beitz, J.; Lappi, D.A.; Baird, A. Anti-B16-F10 melanoma activity of a basic fibroblast growth factor-saporin mitotoxin. Cancer 1994, 74, 848–853. [Google Scholar]
- Gosselaar, P.H.; van-Dijk, A.J.; de-Gast, G.C.; Polito, L.; Bolognesi, A.; Vooijs, W.C.; Verheul, A.F.; Krouwer, H.G.; Marx, J.J. Transferrin toxin but not transferrin receptor immunotoxin is influenced by free transferrin and iron saturation. Eur. J. Clin. Invest. 2002, 32, 61–69. [Google Scholar]
- Bergamaschi, G.; Cazzola, M.; Dezza, L.; Savino, E.; Consonni, L.; Lappi, D. Killing of K562 cells with conjugates between human transferrin and a ribosome-inactivating protein (SO-6). Br. J. Haematol. 1988, 68, 379–384. [Google Scholar]
- Daniels, T.R.; Ng, P.P.; Delgado, T.; Lynch, M.R.; Schiller, G.; Helguera, G.; Penichet, M.L. Conjugation of an anti transferrin receptor IgG3-avidin fusion protein with biotinylated SAP results in significant enhancement of its cytotoxicity against malignant hematopoietic cells. Mol. Cancer Ther. 2007, 6, 2995–3008. [Google Scholar]
- Cimini, A.; Mei, S.; Benedetti, E.; Laurenti, G.; Koutris, I.; Cinque, B.; Cifone, M.G.; Galzio, R.; Pitari, G.; Leandro, L.D.; et al. Distinct cellular responses induced by saporin and a trasferrin-saporin conjugate in two different human glioblastoma cell lines. J. Cell. Physiol. 2011, in press. [Google Scholar]
- Fransson, J.; Borrebaeck, C.A. The nuclear DNA repair protein Ku70/80 is a tumor-associated antigen displaying rapid receptor mediated endocytosis. Int. J. Cancer 2006, 119, 2492–2496. [Google Scholar]
- Zhao, X.Y.; Liu, H.L.; Liu, B.; Willuda, J.; Siemeister, G.; Mahmoudi, M.; Dinter, H. Tomoregulin internalization confers selective cytotoxicity of ITs on prostate cancer cells. Transl. Oncol. 2008, 1, 102–109. [Google Scholar]
- Dinota, A.; Tazzari, P.L.; Michieli, M.; Visani, G.; Gobbi, M.; Bontadini, A.; Tassi, C.; Fanin, R.; Damiani, D.; Grandi, M.; et al. In vitro bone marrow purging of multidrug-resistant cells with a mouse monoclonal antibody directed against Mr 170,000 glycoprotein and Saporin-conjugated anti-mouse antibody. Cancer Res. 1990, 50, 4291–4294. [Google Scholar] [PubMed]
- Poccia, F.; Piselli, P.; Di Cesare, S.; Bach, S.; Colizzi, V.; Mattei, M.; Bolognesi, A.; Stirpe, F. Recognition and killing of tumour cells expressing heat shock protein 65 kD with immunotoxins containing saporin. Br. J. Cancer 1992, 66, 427–432. [Google Scholar]
- Duxbury, M.S.; Ito, H.; Ashley, S.W.; Whang, E.E. CEACAM6 as a novel target for indirect type 1 immunotoxin-based therapy in pancreatic adenocarcinoma. Biochem. Biophys. Res. Commun. 2004, 317, 837–843. [Google Scholar]
- Yeung, Y.A.; Finney, A.H.; Koyrakh, I.A.; Lebowitz, M.S.; Ghanbari, H.A.; Wands, J.R.; Wittrup, K.D. Isolation and characterization of human antibodies targeting human aspartyl (asparaginyl) beta-hydroxylase. Hum. Antibodies 2007, 16, 163–176. [Google Scholar]
- Rouleau, C.; Curiel, M.; Weber, W.; Smale, R.; Kurtzberg, L.; Mascarello, J.; Berger, C.; Wallar, G.; Bagley, R.; Honma, N.; et al. Endosialin protein expression and therapeutic target potential in human solid tumors: Sarcoma versus carcinoma. Clin. Cancer Res. 2008, 14, 7223–7236. [Google Scholar] [CrossRef] [PubMed]
- Quadros, E.V.; Nakayama, Y.; Sequeira, J.M. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. Mol. Cancer Ther. 2010, 9, 3033–3040. [Google Scholar]
- Yang, M.Y.; Chaudhary, A.; Seaman, S.; Dunty, J.; Stevens, J.; Elzarrad, M.K.; Frankel, A.E.; Croix, B., St. The cell surface structure of tumor endothelial marker 8 (TEM8) is regulated by the actin cytoskeleton. Biochim. Biophys. Acta 2011, 1813, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Polito, L.; Bortolotti, M.; Farini, V.; Barbieri, L.; Battelli, M.G.; Bolognesi, A. Saporin induces multiple death pathways in lymphoma cells with different intensity and timing as compared to ricin. Int. J. Biochem. Cell Biol. 2009, 41, 1055–1061. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Polito, L.; Bortolotti, M.; Pedrazzi, M.; Bolognesi, A. Immunotoxins and Other Conjugates Containing Saporin-S6 for Cancer Therapy. Toxins 2011, 3, 697-720. https://doi.org/10.3390/toxins3060697
Polito L, Bortolotti M, Pedrazzi M, Bolognesi A. Immunotoxins and Other Conjugates Containing Saporin-S6 for Cancer Therapy. Toxins. 2011; 3(6):697-720. https://doi.org/10.3390/toxins3060697
Chicago/Turabian StylePolito, Letizia, Massimo Bortolotti, Manuela Pedrazzi, and Andrea Bolognesi. 2011. "Immunotoxins and Other Conjugates Containing Saporin-S6 for Cancer Therapy" Toxins 3, no. 6: 697-720. https://doi.org/10.3390/toxins3060697
APA StylePolito, L., Bortolotti, M., Pedrazzi, M., & Bolognesi, A. (2011). Immunotoxins and Other Conjugates Containing Saporin-S6 for Cancer Therapy. Toxins, 3(6), 697-720. https://doi.org/10.3390/toxins3060697