Interleukin-17 (IL-17) Expression Is Reduced during Acute Myocardial Infarction: Role on Chemokine Receptor Expression in Monocytes and Their in Vitro Chemotaxis towards Chemokines
Abstract
:1. Introduction
2. Results
2.1. Percentages of IL-17-Producing Cells Are Reduced in Non-activated Splenocytes of Myocardial Infarcted Mice
2.2. Immune Cells Express IL-17 Receptors and Not IL-22 Receptors
2.3. Effect of IL-17 on Chemokine Receptor Expression
2.4. IL-17 Affects the in Vitro Chemotaxis of Monocytes towards MCP-1/CCL2
2.5. IL-17 Affects the in Vitro Chemotaxis of Monocytes towards SDF-1α/CXCL12
3. Discussion
4. Experimental Section
4.1. Animals
4.2. Antibodies
4.3. Coronary Artery Ligation
4.4. Preparation of Spleen Cells
4.5. Flow Cytometry Analysis
4.6. In Vitro Chemotaxis Assay
4.7. Statistical Analysis
5. Conclusions
Conflict of Interest
Acknowledgements
References
- Valen, G.; Yan, Z.-Q.; Hansson, G.K. Nuclear factor κ-B and the heart. J. Am. Coll. Cardiol. 2001, 38, 307–314. [Google Scholar] [CrossRef]
- Maugeri, N.; Rovere-Querini, P.; Evangelista, V.; Godino, C.; Demetrio, M.; Baldini, M.; Figini, F.; Coppi, G.; Slavich, M.; Camera, M.; et al. An intense and short-lasting burst of neutrophil activation differentiates early acute myocardial infarction from systemic inflammatory syndromes. PLoS One 2012, 7, e39484. [Google Scholar]
- Klingenberg, R.; Luscher, T.F. Inflammation in coronary artery disease and acute myocardial infarction—Is the stage set for novel therapies? Curr. Pharm. Des. 2012, 18, 4358–4369. [Google Scholar] [CrossRef]
- Hansson, G.K.; Klareskog, L. Pulling down the plug on atherosclerosis: Cooling down the inflammasome. Nat. Med. 2011, 17, 790–791. [Google Scholar] [CrossRef]
- Imanishi, T.; kasaka, T. Biomarkers associated with vulnerable atheromatous plaque. Curr. Med. Chem. 2012, 19, 2588–2596. [Google Scholar]
- Breland, U.M.; Hollan, I.; Saatvedt, K.; Almdahl, S.M.; Damås, J.K.; Yndestad, A.; Mikkelsen, K.; Førre, O.T.; Aukrust, P.; Ueland, T. Inflammatory markers in patients with coronary artery disease with and without inflammatory rheumatic disease. Rheumatology 2010, 49, 1118–1127. [Google Scholar] [CrossRef]
- Eyerich, S.; Eyerich, K.; Cavani, A.; Schmidt-Weber, C. IL-17 and IL-22: Siblings, not twins. Trends Immunol. 2010, 31, 354–361. [Google Scholar]
- Duhen, T.; Geiger, R.; Jarrossay, D.; Lanzavecchia, A.; Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009, 10, 857–863. [Google Scholar] [CrossRef]
- Simon, T.; Taleb, S.; Danchin, N.; Laurans, L.; Rousseau, B.; Cattan, S.; Montely, J.M.; Dubourg, O.; Tedgui, A.; Kotti, S.; Mallat, Z. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction. Eur. Heart J. 2012. [Google Scholar] [CrossRef]
- Barry, S.P.; Ounzain, S.; McGormick, J.; Scarabelli, T.M.; Chen-Scarabelli, C.; Saravolatz, L.; Faggian, G.; Mazzucco, A.; Suzuki, H.; Thiemermenn, C.; et al. Enhanced IL-17 signaling following myocardial ischemia-reperfusion. Int. J. Cardiol. 2011. [Google Scholar] [CrossRef]
- Annunziato, F.; Cosmi, L.; Liotta, F.; Maggi, E.; Romagnani, S. The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int. Immunol. 2008, 20, 1361–1368. [Google Scholar] [CrossRef]
- Pandya, A.D.; Al-Jaderi, Z.; Høglund, R.A.; Holmøy, T.; Harbo, H.F.; Norgauer, J.; Maghazachi, A.A. Identification of human NK17/NK1 cells. PLoS One 2011, 6, e26780. [Google Scholar]
- Cella, M.; Fuchs, A.; Vermi, W.; Facchetti, F.; Otero, K.; Lennerz, J.K.; Doherty, J.M.; Mills, J.C.; Colonna, M. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009, 457, 722–725. [Google Scholar]
- Hwang, S.Y.; Kim, J.Y.; Kim, K.W.; Park, M.K.; Moon, Y.; Kim, W.U.; Kim, H.Y. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB- and PI3-kinase/Akt-dependent pathways. Arthritis Res. Ther. 2004, 6, R120–R128. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, J.; Liacini, A.; Li, W.Q.; Zafarullah, M. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell. Signal. 2004, 16, 469–476. [Google Scholar] [CrossRef]
- Honorati, M.C.; Neri, S.; Cattini, L.; Facchini, A. Interleukin-17 a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage 2006, 14, 345–352. [Google Scholar] [CrossRef]
- Komiyama, Y.; Nakae, S.; Matsuki, T.; Nambu, A.; Ishigame, H.; Kakuta, S.; Sudo, K.; Iwakura, Y. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 2006, 177, 566–573. [Google Scholar]
- Lubberts, E.; Koenders, M.I.; Oppers-Walgreen, B.; van den Bersselaar, L.; Coenen-de Roo, C.J.; Joosten, L.A.; van den Berg, W.B. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 2004, 50, 650–659. [Google Scholar] [CrossRef]
- van der Fits, L.; Mourits, S.; Voerman, J.S.; Kant, M.; Boon, L.; Laman, J.D.; Cornelissen, F.; Mus, A.M.; Florencia, E.; Prens, E.P.; Lubberts, E. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 2009, 182, 5836–5845. [Google Scholar]
- Silverpil, E.; Linden, A. IL-17 in human asthma. Expert Rev. Respir. Med. 2012, 6, 173–186. [Google Scholar] [CrossRef]
- Li, L.; Huang, L.; Vergis, A.L.; Ye, H.; Bajwa, A.; Narayan, V.; Strieter, R.M.; Rosin, D.L.; Okusa, M.D. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 2010, 120, 331–342. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Yamamoto, T.; Yamamoto, K.; Oseko, F.; Kanamura, N.; Imanishi, J.; Kita, M. Porphyromonas gingivalis induces myocarditis and/or myocardial infarction in mice and IL-17A is involved in pathogenesis of these diseases. Arch. Oral Biol. 2011, 56, 1290–1298. [Google Scholar]
- Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef]
- Proulx, C.; El-Helou, V.; Gosselin, H.; Clement, R.; Gillis, M.A.; Villeneuve, L.; Calderone, A. Antagonism of stromal cell-derived factor-1α reduces infarct size and improves ventricular function after myocardial infarction. Pflugers Arch. 2007, 455, 241–250. [Google Scholar]
- Liehn, E.A.; Tuchscheerer, N.; Kanzler, I.; Drechsler, M.; Fraemohs, L.; Schuh, A.; Koenen, R.R.; Zander, S.; Soehnlein, O.; Hristov, M.; et al. Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. J. Am. Coll. Cardiol. 2011, 58, 2415–2423. [Google Scholar]
- Taleb, S.; Romain, M.; Ramkhelawon, B.; Uyttenhove, C.; Pasterkamp, G.; Herbin, O.; Esposito, B.; Perez, N.; Yasukawa, H.; van Snick, J.; et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med. 2009, 206, 2067–2077. [Google Scholar] [CrossRef]
- O’Connor, W.; Kamanaka, M.; Booth, C.J.; Town, T.; Nakae, S.; Iwakura, Y.; Kolls, J.K.; Flavell, R.A. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 2009, 10, 603–609. [Google Scholar] [CrossRef]
- Czibik, G.; Gravning, J.; Martinov, V.; Ishaq, B.; Attramadal, H.; Valen, G. Remote delivery of DNA encoding for hypoxia-inducible factor 1 alpha is protective against in vivo myocardial ischemia-reperfusion injury. Life Sci. 2011, 16, 71–78. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Troitskaya, M.; Baysa, A.; Vaage, J.; Sand, K.L.; Maghazachi, A.A.; Valen, G. Interleukin-17 (IL-17) Expression Is Reduced during Acute Myocardial Infarction: Role on Chemokine Receptor Expression in Monocytes and Their in Vitro Chemotaxis towards Chemokines. Toxins 2012, 4, 1427-1439. https://doi.org/10.3390/toxins4121427
Troitskaya M, Baysa A, Vaage J, Sand KL, Maghazachi AA, Valen G. Interleukin-17 (IL-17) Expression Is Reduced during Acute Myocardial Infarction: Role on Chemokine Receptor Expression in Monocytes and Their in Vitro Chemotaxis towards Chemokines. Toxins. 2012; 4(12):1427-1439. https://doi.org/10.3390/toxins4121427
Chicago/Turabian StyleTroitskaya, Maria, Anton Baysa, Jarle Vaage, Kristin L. Sand, Azzam A. Maghazachi, and Guro Valen. 2012. "Interleukin-17 (IL-17) Expression Is Reduced during Acute Myocardial Infarction: Role on Chemokine Receptor Expression in Monocytes and Their in Vitro Chemotaxis towards Chemokines" Toxins 4, no. 12: 1427-1439. https://doi.org/10.3390/toxins4121427
APA StyleTroitskaya, M., Baysa, A., Vaage, J., Sand, K. L., Maghazachi, A. A., & Valen, G. (2012). Interleukin-17 (IL-17) Expression Is Reduced during Acute Myocardial Infarction: Role on Chemokine Receptor Expression in Monocytes and Their in Vitro Chemotaxis towards Chemokines. Toxins, 4(12), 1427-1439. https://doi.org/10.3390/toxins4121427