Important Poisonous Plants in Tibetan Ethnomedicine
Abstract
:1. Introduction
2. Representatives of Poisonous Plants in Tibetan Medicine
2.1. Aconitum pendulum
Category in Tibetan Medicinal System | Scientific Name | Distribution and Origin | Toxicity |
---|---|---|---|
Bang-Ga (with white caudices) | Aconitum naviculare (Brühl) Stapf | Tibet; Bhutan, NE India | Low |
Aconitum tanguticum (Maxim.) Stapf | SW & W China | Low | |
Bang-Ma or Bang-Se (with red or yellow caudices) | Aconitum brunneum Hand.-Mazz. | SW & W China | Low |
Aconitum pulchellum Hand.-Mazz. | SW China; Bhutan, NE India, Myanmar | Low | |
Aconitum pulchellum var. racemosum W. T. Wang | Yunnan | Low | |
Bang-Na (with black caudices) | Aconitum acutiusculum var. aureopilosum W. T. Wang | Yunnan | High |
Aconitum brachypodum Diels | Sichuan, Yunnan | High | |
Aconitum bracteolosum W. T. Wang | Yunnan | High | |
Aconitum dolichorhynchum W. T. Wang | Yunnan | High | |
Aconitum flavum Hand.-Mazz. | SW & W China | High | |
Aconitum forrestii Stapf | SW China | High | |
Aconitum gezaense W. T. Wang et L. Q. Li | Yunnan | High | |
Aconitum kongboense Lauener | SW China | High | |
Aconitum pendulum Busch | SW & W China | High | |
Aconitum sungpanense Hand.-Mazz. | SW & W China | High |
2.2. Strychnos nux-vomica
2.3. Datura stramonium
2.4. Anisodus tanguticus
3. Chemical Constituents of Important Poisonous Plants in Tibetan Medicine
3.1. Alkaloids from Aconitum pendulum
3.2. Alkaloids in Strychnos nux-vomica
No. | Alkaloids | Tissue | Reference |
---|---|---|---|
1 | Strychnine | Seeds, fruits | [37,38,39] |
2 | Brucine | Seeds | [37,38] |
3 | β-colubrine | Seeds | [37,38] |
4 | Icajine | Seeds | [37,38] |
5 | 16-Hydroxy-α-colubrine | Seeds | [37] |
6 | Brucine-N-oxide | Seeds | [37,38] |
7 | Strychnine-N-oxide | Seeds | [37,38] |
8 | Vomicine | Seeds, fruits | [37,38,39] |
9 | Novacine | Seeds | [37,38] |
10 | Pseudostrychnine | Seeds | [37,38] |
11 | Pseudobrucine | Seeds | [37] |
12 | Isostrychnine | Seeds | [37,38] |
13 | Isobrucine | Processed seeds, seeds | [37,38] |
14 | Isobrucine-N-oxide | Processed seeds, seeds | [37,38] |
15 | Isostrychnine-N-oxide | Processed seeds, seeds | [37,38] |
16 | 2-Hydroxy-3-methoxystrychnine | Processed seeds | [37] |
17 | 4-N-hydroxymethyl-strychnidin-17-acetic acid | Seeds | [40] |
18 | 10,11-Dimethoxy-4-N-hydroxymethyl strychnidin-17-acetic acid | Seeds | [40] |
3.3. Alkaloids from Datura stramonium and Anisodus tanguticus
4. Biological Activities of Chemicals from Important Poisonous Plants in Tibetan Medicine
4.1. Biological Activities of Aconitine
4.2. Biological Activities of Strychnine
4.3. Biological Activities of Scopolamine
Cognitive Impairment (CI) | Specific Behavior | Pharmacological Activities Phenomenon | Reference |
---|---|---|---|
Non-behavioral CI | Pupil diameter, salivation and smooth muscle function | Dose-dependent increase in pupil size | [66] |
Reduces salivation | [67] | ||
Induced gastrointestinal distress | [59] | ||
Electroencephalogram | Decreased low voltage fast activity | [68] | |
Induced disturbances in gamma oscillations | [69] | ||
Behavioral CI | Locomotor activity and motor learning | Increased locomotor activity | [70,71] |
Anxiety | lowered the number of transitions to the light side | [72] | |
Stimulus discrimination | Implicated the (dorsal) hippocampus and cortex | [73,74] | |
Attention | Impaired the maintenance of attention | [75] | |
Learning and memory | Interfere with short-term memory | [76] |
4.4. Biological Activities of Anisodamine
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Salick, J.; Byg, A.; Amend, A.; Gunn, B.; Law, W.; Schmidt, H. Tibetan medicine plurality. Econ. Bot. 2006, 60, 227–253. [Google Scholar] [CrossRef]
- Pordié, L. Tibetan medicine today: Neo-traditionalism as an analytical lens and a political tool. In Tibetan Medicine in the Contemporary World. Global Politics of Medical Knowledge and Practice; Pordié, L., Ed.; Routledge: London, UK; New York, NY, USA, 2010; pp. 3–32. [Google Scholar]
- Di Sarsina, P.R.; Ottaviani, L.; Mella, J. Tibetan medicine: A unique heritage of person-centered medicine. EPMA J. 2011, 2, 358–389. [Google Scholar]
- Tenzing Pengcuo, D. Jingzhu Materia Medica (Jing Zhu Ben Cao, Chinese Version); Shanghai Science and Technology Press: Shanghai, China, 2012; pp. 52–144. Mao, J.; Luo, D.; Wang, Z.; Ma, S., Translators. [Google Scholar]
- Yang, J.S. Diqing Zangyao (Diqing Medicinal Plants); Yunnan Sci & Tech Press: Kunming, China, 1989; pp. 10–133. [Google Scholar]
- Zhang, Q.R.; Xia, G.C. Color Pictorial Handbook of Toxic Chinese Herbs; Tianjin Sci & Tech Translation Publishing Co.: Tianjin, China, 1996; pp. 13–225. [Google Scholar]
- Li, L.Q.; Kadota, Y. Actonitum. In Flora of China; Wu, Z.Y., Raven, P., Eds.; Science Press, and Missouri Botanical Garden Press: Beijing, China; St. Louis, MO, USA, 2001; pp. 149–222. [Google Scholar]
- Yang, Q.E. Taxonomic notes on some species of Aconitum L. (Ranunculaceae) from Yunnan, China. J. Syst. Evol. 1999, 37, 545–590. [Google Scholar]
- Luo, Y.; Yang, Q.E. Taxonomic revision of Aconitum (Ranunculaceae) from Sichuan, China. J. Syst. Evol. 2005, 43, 289–386. [Google Scholar] [CrossRef]
- Kang, Y.X.; Uczaj, J.; Ye, S. The highly toxic Aconitum carmichaelii Debeaux as a root vegetable in the Qinling Mountains (Shaanxi, China). Genet. Resour. Crop Evol. 2012, 59, 1569–1575. [Google Scholar] [CrossRef]
- Chan, T.Y.K. Aconitum alkaloid poisoning related to the culinary uses of aconite roots. Toxins 2014, 6, 2605–2611. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.G.; Wang, F.P.; Gao, F.; Yan, L.P.; Chen, D.P.; Liu, Y. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China. J. Syst. Evol. 2006, 44, 1–46. [Google Scholar] [CrossRef]
- Li, B.T.; Leeuwenberg, A.J.M. Loganiaceae. In Flora of China; Wu, Z.Y., Raven, P., Eds.; Science Press, and Missouri Botanical Garden Press: Beijing, China; St. Louis, MO, USA, 2001; pp. 320–327. [Google Scholar]
- Ma, Y.P. Method improvement of stir-frying with sands for processing Semen Strychni. China J. Chin. Mater. Med. 2002, 27, 712. [Google Scholar]
- Zhang, Z.Y.; Lu, A.M.; D’Arcy, W.G. Solanaceae. In Flora of China; Wu, Z.Y., Raven, P., Eds.; Science Press, and Missouri Botanical Garden Press: Beijing, China; St. Louis, MO, USA, 1994; Volume 17, pp. 300–332. [Google Scholar]
- Liu, Y.L.; Chen, T.; Chen, C.; Zou, D.L.; Li, Y.L. Isolation and preparation of an imidazole alkaloid from radix of Aconitum pendulum Busch by semi-preparative high-speed counter-current chromatography. Se Pu 2014, 32, 543–546. [Google Scholar]
- Wang, Y.J.; Zhang, J.; Zeng, C.J.; Yao, Z.; Zhang, Y. Three new C19-diterpenoid alkaloids from Aconitum pendulum. Phytochem. Lett. 2011, 4, 166–169. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zeng, C.J.; Yao, Z.; Zhang, J.; Zhang, Y.; Zhang, F. Diterpene alkaloids from roots and processed products of Aconitum pendulum. Zhong Cao Yao 2010, 41, 347–351. [Google Scholar]
- Zhang, S.M.; Tan, L.Q.; Ou, Q.Y. Diterpenoid alkaloids from Aconitum pendulum. Chin. Chem. Lett. 1997, 8, 967–970. [Google Scholar]
- Liu, L.M.; Wang, H.C.; Zhu, Y.L. Studies on Chinese drug Aconitum spp. XIX the alkaloids of Aconitum pendulum and their chemical structure. Yao Xue Xue Bao 1983, 18, 39–44. [Google Scholar]
- Cai, B.C.; Hattori, M.; Namba, T. Processing of nux vomica.Ⅱ. Changes in alkaloid composition of the seeds of Strychnos nux-vomica L. on traditional drug-processing. Chem. Pharm. Bull. 1990, 38, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Xu, Q.; Xiao, H.B.; Liang, X.M. Iridoid glucosides from Strychnos nux-vomica. Phytochemistry 2003, 64, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Frederich, M.; Choi, Y.H.; Angenot, L.; Harnischfeger, G.; Lefeber, A.W.M.; Verpoorte, R. Metabolomic analysis of Strychnos nux-vomica, Strychnos icaja and Strychnos ignatii extracts by 1H nuclear magnetic resonance spectrometry and multivariate analysis techniques. Phytochemistry 2004, 65, 1993–2001. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.X.; Yang, B.Y.; Xia, Y.G.; Feng, W.S. Chemical constituents from the flower of Datura metel L. Arch. Pharm. Res. 2008, 31, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Xia, Y.G.; Wang, Q.H.; Dou, D.Q.; Kuang, H.X. Two new amide alkaloids from the flower of Datura metel L. Fitoterapia 2010, 81, 1003–1005. [Google Scholar] [CrossRef]
- Pan, Y.H.; Wang, X.H.; Hu, X.M. Cytotoxic Withanolides from the flowers of Datura metel. J. Nat. Prod. 2007, 70, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Xie, C.M.; Li, J.; Lou, F.C.; Hu, L.H. Daturametelins H, I and J: Three new withanolide glycosides from Datura metel L. Chem. Biodivers. 2006, 3, 180. [Google Scholar] [CrossRef] [PubMed]
- Poupko, J.M.; Baskin, S.I.; Moore, E. The pharmacological properties of anisodamine. J. Appl. Toxicol. 2007, 27, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, X.D.; Zhao, J.F.; Jin, Y.; Zhang, H.B.; Li, L. A new C19-diterpenoid alkaloid, habaenine C, from Aconitum habaense. Chem. Nat. Compd. 2008, 44, 334–336. [Google Scholar] [CrossRef]
- Xue, J.; Yang, C.H.; Liu, J.H.; Liang, J.Y.; Tang, Q.F.; Zhang, S.J. Recent advance of diterpenoid alkaloids in genus Aconitum. Strait Pharmaceut. J. 2009, 21, 1–10. [Google Scholar]
- Ameri, A. The effects of Aconitum alkaloids on the central nervous system. Prog. Neurobiol. 1998, 56, 211–235. [Google Scholar] [CrossRef] [PubMed]
- Isono, T.; Oyama, T.; Asami, A.; Suzuki, Y.; Hayakawa, Y.; Ikeda, Y.; Noguchi, M.; Omiya, Y. The analgesic mechanism of processed aconitie tuber: The involvement of the descending inhibitory system. Am. J. Chin. Med. 1994, 22, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Bisset, N.G.; Phillipson, J.D. The tertiary alkaloids of some Asian species of Strychnos. J. Pharm. Pharmacol. 1971, 23, 244S. [Google Scholar] [CrossRef] [PubMed]
- Makarovsky, I.; Markel, G.; Hoffman, A.; Schein, O.; Broshnissimov, T.; Tashma, Z.; Dushnitsky, T.E.A. Strychnine-a killer from the past. Isr. Med. Assoc. J. 2008, 10, 142–145. [Google Scholar] [PubMed]
- Cai, B.C.; Yang, W.X.; Zhu, W.Y.; Lu, J.C.; Ye, D.J. Effect of processing on the extraction of alkaloids from Strychnos. Zhong Cao Yao 1993, 18, 23–24. [Google Scholar]
- Yin, W.; Wang, T.; Yin, F.; Cai, B. Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Strychnos nux-vomica. J. Ethnopharmacol. 2003, 88, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.C.; Wu, H.; Yang, X.W.; Hattori, M.; Namba, T. Analysis of spectral data for 13CNMR of sixteen Strychnos alkaloids. Yao Xue Xue Bao 1994, 29, 44–48. [Google Scholar]
- Yang, X.W.; Yan, Z.K.; Cai, B.C. Studies on the chemical constituents of alkaloids in seeds of Strychnos nux-vomica L. Zhongguo Zhong Yao Za Zhi 1993, 18, 739–740. [Google Scholar] [PubMed]
- Liu, X.K.; Li, W. Chemical constituents of Maqianzi (Strychno nux-vomica). Zhong Cao Yao 1998, 29, 435–438. [Google Scholar]
- Yang, G.M.; Tu, X.; Liu, L.J.; Pan, Y. Two new bisindole alkaloids from the seeds of Strychnos nux-vomica. Fitoterapia 2010, 81, 932–936. [Google Scholar] [CrossRef] [PubMed]
- China Pharmacopoeia Commission. Pharmacopoeia of China; Chemical Industry Press: Beijing, China, 2005; Volume 1, p. 188. [Google Scholar]
- Berkov, S.; Zayed, R.; Doncheva, T. Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia 2006, 77, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Barene, I.A.; Minina, S.A. Alkaloid of the roots of Seopolia tangutiea. Chem. Nat. Compd. 1971, 3, 360–361. [Google Scholar] [CrossRef]
- Ameri, A.; Gleitz, J.; Peters, T. Inhibition of neuronal activity in rat hippocampal slices by Aconitum alkaloids. Brain Res. 1996, 738, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Nyirimigabo, E.; Xu, Y.Y.; Li, Y.B.; Wang, Y.M.; Agyemang, K.; Zhang, Y.J. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J. Pharm. Pharmacol. 2014, 67, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 1980, 20, 15–43. [Google Scholar] [CrossRef] [PubMed]
- Gutser, U.T.; Friese, J.; Heubach, J.F.; Matthiesen, T.; Selve, N.; Wilffert, B.; Gleitz, J. Mode of antinociceptive and toxic action of alkaloids of Aconitum species. Naunyn Schmiedebergs Arch. Pharmacol. 1998, 357, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.Y.K. Aconitum alkaloid content and the high toxicity of aconite tincture. Forensic Sci. Int. 2012, 222, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.Y.K. Aconite poisoning following the percutaneous absorption of Aconitum alkaloids. Forensic Sci. Int. 2012, 223, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.K.; Wu, Y.; Li, W.D.; Yin, F.Z.; Lu, X.Y.; Zhang, X.C.; Hua, Z.C.; Cai, B.C. The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism. J. Ethnopharmacol. 2006, 106, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Deng, X.K.; Yin, F.Z.; Zhang, X.C.; Cai, B.C. The cytotoxicity induced by brucine from the seed of Strychnos nux-vomica proceeds via apoptosis and is mediated by cyclooxygenase 2 and caspase 3 in SMMC 7221 cells. Food Chem. Toxicol. 2007, 45, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.S.; Ramanadham, M.; Prasad, M.N.V. Anti-proliferative and cytotoxic effects of Strychnos nux-vomica root extract on human multiple myeloma cell line C RPMI 8226. Food Chem. Toxicol. 2009, 47, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Saraswati, S.; Agarwal, S.S. Strychnine inhibits inflammatory angiogenesis in mice via down regulation of VEGF, TNF-α and TGF-β. Microvasc. Res. 2013, 87, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qi, X.; Yang, Y.; Pan, Y.; Bian, H. Toxic effects of strychnine and strychnine N-oxide on zebrafish embryos. Chin. J. Nat. Med. 2014, 12, 760. [Google Scholar] [PubMed]
- Philippe, G.; Angenot, L.; Tits, M.; Frederich, M. About the toxicity of some Strychnos species and their alkaloids. Toxicon 2004, 44, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.H.; Wang, H.L.; Wu, W.R.; Guo, Y.; Cao, D.Y.; Wang, H.S.; Zhao, Y. Ethological analysis of scopolamine treatment or pretreatment in morphine dependent rats. Physiol. Behav. 2006, 88, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Zayed, R.; Wink, M. Induction of tropane alkaloid formation in transformed root cultures of Brugmansia suaveolens(Solanaceae). Z. Naturforsch. C Biosci. 2004, 59c, 863–886. [Google Scholar]
- Ebert, U.; Kirch, W. Scopolamine model of dementia: Electroencephalogram findings and cognitive performance. Eur. J. Clin. Investig. 1998, 28, 944–949. [Google Scholar] [CrossRef]
- Klinkenberg, I.; Blokland, A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci. Biobehav. Rev. 2010, 34, 1307–1350. [Google Scholar] [CrossRef] [PubMed]
- Drachman, D.A.; Leavitt, J. Human memory and the cholinergic system: A relationship to aging? Arch. Neurol. 1974, 30, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Budzynska, B.; Boguszewska-Czubara, A.; Kruk-Slomka, M.; Skalicka-Wozniak, K.; Michalak, A.; Musik, I.; Biala, G. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology 2014. [Google Scholar] [CrossRef]
- Szczodry, O.; van der Staay, F.J.; Arndt, S.S. Modelling Alzheimer-like cognitive deficits in rats using biperiden as putative cognition impairer. Behav. Brain Res. 2014, 274, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Almasi-Nasrabadi, M.; Gharedaghi, M.H.; Rezazadeh, P.; Dehpour, A.R.; Javadi-Paydar, M. NMDA receptors interact with the retrieval memory enhancing effect of pioglitazone in mice. Pharmacol. Biochem. Behav. 2014, 126, 136–145. [Google Scholar] [CrossRef] [PubMed]
- English, B.A.; Osimo, N.; Korb, A.; Bazih, A.; Rodriguez, C.; Sotomayor, B.; Gertsik, L.; Ereshefsky, L. Effects of scopolamine on working memory task and resting functional connectivity using FMRI in healthy Korean subjects. Alzheimers Dement. 2014, 10, S919. [Google Scholar] [CrossRef]
- Lee, B.; Sur, B.; Shim, J.; Hahm, D.H.; Lee, H. Acupuncture stimulation improves scopolamine-induced cognitive impairment via activation of cholinergic system and regulation of BDNF and CREB expressions in rats. BMC Complem. Altern. Med. 2014, 14, 338. [Google Scholar] [CrossRef]
- Jones, D.N.C.; Higgins, G.A. Effect of scopolamine on visual attention in rats. Psychopharmacology 1995, 120, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Tobin, G.; Giglio, D.; Gtrick, B. Studies of muscarinic receptor subtypes in salivary gland function in anaesthetized rats. Auton. Neurosci. 2002, 100, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dringenberg, H.C.; Vanderwolf, C.H. Neocortical activation: Modulation by multiple pathways acting on central cholinergic and serotonergic systems. Exp. Brain Res. 1997, 116, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Kallenbach, U.; Singer, W.; Munk, M.H. Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J. Neurosci. 2004, 24, 10369–10378. [Google Scholar] [CrossRef] [PubMed]
- Chintoh, A.; Fulton, J.; Koziel, N.; Aziz, M.; Sud, M.; Yeomans, J.S. Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M. Pharmacol. Biochem. Behav. 2003, 76, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Gholamreza, P.; Pratt, J.A.; Nima, D. Effects of low-dose scopolamine on locomotor activity: No dissociation between cognitive and non-cognitive effects. Neurosci. Res. Commun. 2002, 31, 165–174. [Google Scholar] [CrossRef]
- Hughes, R.N.; Desmond, C.S.; Fisher, L.C. Room novelty, sex, scopolamine and their interactions as determinants of general activity and rearing, and light Cdark preferences in rats. Behav. Process 2004, 67, 173–181. [Google Scholar] [CrossRef]
- Carli, M.; Balducci, C.; Millan, M.J.; Bonalumi, P.; Samanin, R. S 15535, a benzodioxopiperazine acting as presynaptic agonist and postsynaptic 5-HT1A receptor antagonist, prevents the impairment of spatial learning caused by intrahippocampal scopolamine. Br. J. Clin. Pharmacol. 1999, 128, 1207–1214. [Google Scholar] [CrossRef]
- Wilson, D.A. Scopolamine enhances generalization between odor representations in rat olfactory cortex. Learn. Memory 2001, 8, 279–285. [Google Scholar] [CrossRef]
- Higgs, S.; Deacon, R.M.J.; Rawlins, J.N.P. Effects of scopolamine on a novel choice serial reaction time task. Eur. J. Neurosci. 2000, 12, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Sambeth, A.; Riedel, W.; Smits, L.; Blokland, A. Cholinergic drugs affect novel object recognition in rats: Relation with hippocampal EEG? Eur. J. Pharmacol. 2007, 572, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.W.; Song, M.K.; Cui, Y.Y.; Wang, H.; Zhu, L.; Niu, Y.Y.; Yang, L.M.; Lu, Y.; Chen, H.Z. Differential neuropsychopharmacological influences of naturally occurring tropane alkaloids anisodamine versus scopolamine. Neurosci. Lett. 2008, 443, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, Y.; Chen, H.Z. Differentiating effects of anisodamine on cognitive amelioration and peripheral muscarinic side effects induced by pilocarpine in mice. Neurosci. Lett. 2003, 344, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.P.; Wang, H.; Hou, L.N.; Xia, Z.; Zhu, L.; Chen, H.Z.; Cui, Y.Y. Modulatory effect of anisodamine on airway hyper-reactivity and eosinophilic inflammation in a murine model of allergic asthma. Int. Immunopharmacol. 2011, 11, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.N.; Yang, K.; Xu, Z.P.; Zhu, L.; Hou, L.N.; Qi, H.; Chen, H.Z.; Cui, Y.Y. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility. Toxicol. Appl. Pharm. 2012, 262, 70–79. [Google Scholar] [CrossRef]
- Norby, F.L.; Ren, J. Anisodamine inhibits cardiac contraction and intracellular Ca2+ transients in isolated adult rat ventricular myocytes. Eur. J. Pharmacol. 2002, 439, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, J.; He, L. Anisodamine (654–2) improves impaired cognitive function induced by experimental brain damage. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 1995, 17, 254–258. [Google Scholar] [PubMed]
- Liu, C.; Shen, F.M.; Le, Y.Y.; Kong, Y.; Liu, X.; Cai, G.J.; Chen, A.F.; Su, D.F. Antishock effect of anisodamine involves a novel pathway for activating alpha7 nicotinic acetylcholine receptor. Crit. Care Med. 2009, 37, 636–641. [Google Scholar]
- Zhou, J.X.; Ke, P.; Huan, G.; Shao, B.Z.; Liu, C. Combined treatment with anisodamine and neostigmine inhibits joint inflammation in collagen-induced arthritis mice. CNS Neurosci. Ther. 2014, 20, 186–187. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Gu, R.; Tang, L.; Chen, Z.-E.; Di, R.; Long, C. Important Poisonous Plants in Tibetan Ethnomedicine. Toxins 2015, 7, 138-155. https://doi.org/10.3390/toxins7010138
Ma L, Gu R, Tang L, Chen Z-E, Di R, Long C. Important Poisonous Plants in Tibetan Ethnomedicine. Toxins. 2015; 7(1):138-155. https://doi.org/10.3390/toxins7010138
Chicago/Turabian StyleMa, Lijuan, Ronghui Gu, Li Tang, Ze-E Chen, Rong Di, and Chunlin Long. 2015. "Important Poisonous Plants in Tibetan Ethnomedicine" Toxins 7, no. 1: 138-155. https://doi.org/10.3390/toxins7010138
APA StyleMa, L., Gu, R., Tang, L., Chen, Z. -E., Di, R., & Long, C. (2015). Important Poisonous Plants in Tibetan Ethnomedicine. Toxins, 7(1), 138-155. https://doi.org/10.3390/toxins7010138