Effect of Venom from the Jellyfish Nemopilema nomurai on the Silkworm Bombyx mori L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Jellyfish Venom on Silkworm Growth
Sample | Concentration (µg/mL) | IRM (%) | ||
---|---|---|---|---|
2 days | 4 days | 6 days | ||
Control | 0 | 102.16 ± 3.91 | 207.48 ± 6.95 | 620.92 ± 45.61 |
SFV | 188 | 121.94 ± 20.12 | 234.47 ± 21.33 | 509.03 ± 41.18 |
18.8 | 126.57 ± 15.23 | 247.73 ± 29.96 | 578.80 ± 90.30 | |
3.76 | 116.63 ± 12.16 | 259.13 ± 30.66 | 586.40 ± 75.50 | |
DSFV | 196 | 117.13 ± 7.21 | 241.62 ± 6.80 * | 505.02 ± 38.90 |
19.6 | 169.70 ± 18.00 * | 287.93 ± 30.28 * | 695.04 ± 9.63 | |
3.92 | 151.24 ± 20.07 | 260.57 ± 21.60 | 688.07 ± 77.55 | |
Fr-1 | 81 | 161.99 ± 31.30 | 341.79 ± 60.01 | 902.58 ± 152.19 |
8.1 | 159.54 ± 7.75 ** | 288.90 ± 18.99 ** | 691.62 ± 27.71 | |
1.62 | 159.83 ± 27.52 | 291.77 ± 50.62 | 700.05 ± 83.63 | |
Fr-2 | 173 | 131.23 ± 5.64 * | 265.48 ± 13.28 * | 642.80 ± 22.32 |
17.3 | 151.86 ± 9.92 * | 271.90 ± 12.54 * | 717.76 ± 38.71 | |
3.46 | 134.95 ± 13.54 | 271.78 ± 33.83 | 704.09 ± 68.69 |
2.2. Effect of Jellyfish Venom on Silkworm Cuticle
Sample | Concentration (µg/mL) | 12 days | 14 days | ||||
---|---|---|---|---|---|---|---|
Protein (%) | Chitin (%) | Ash (%) | Protein (%) | Chitin (%) | Ash (%) | ||
Control | 0 | 46.21 ± 2.54 | 51.93 ± 0.73 | 1.86 ± 2.33 | 23.04 ± 13.76 | 56.94 ± 4.05 | 20.02 ± 11.99 |
SFV | 117 | 50.97 ± 2.36 * | 46.25 ± 0.89 ** | 2.78 ± 1.82 | 34.63 ± 9.02 | 56.30 ± 5.36 | 9.07 ± 3.91 |
11.7 | 53.58 ± 3.45 | 41.35 ± 0.77 ** | 5.07 ± 3.64 | 48.02 ± 11.93 | 50.18 ± 0.89 | 1.79 ± 1.19 | |
2.34 | 45.02 ± 10.11 | 44.41 ± 6.12 | 10.57 ± 4.26 | 36.77 ± 8.13 | 54.67 ± 2.02 | 8.55 ± 7.19 | |
DSFV | 294 | 51.52 ± 1.77 | 47.26 ± 2.43 | 1.22 ± 0.72 | 36.46 ± 7.66 | 53.26 ± 1.56 | 10.28 ± 7.14 |
29.4 | 44.19 ± 6.79 | 49.66 ± 0.59 | 6.15 ± 6.49 | 47.67 ± 2.63 | 50.49 ± 3.30 * | 2.05 ± 1.77 | |
5.88 | 50.61 ± 3.29 | 43.94 ± 2.24 * | 5.45 ± 1.22 | 36.30 ± 18.65 | 54.76 ± 7.22 | 8.95 ± 11.43 | |
Fr-1 | 81 | 51.08 ± 1.91 | 36.62 ± 3.10 * | 12.3 ± 3.51 | 39.68 ± 2.13 | 53.87 ± 4.74 | 6.45 ± 2.64 |
8.1 | 49.48 ± 5.20 | 48.93 ± 3.42 | 1.56 ± 2.70 | 47.43 ± 3.48 | 48.30 ± 2.66 * | 4.27 ± 1.75 | |
1.62 | 46.99 ± 10.71 | 38.56 ± 3.45 * | 14.45 ± 13.72 | 52.24 ± 0.56 | 47.76 ± 0.56 * | 0 | |
Fr-2 | 173 | 46.88 ± 4.04 | 51.09 ± 5.90 | 2.03 ± 2.24 | 43.51 ± 5.05 | 55.33 ± 5.69 | 1.16 ± 2.10 |
17.3 | 41.27 ± 20.96 | 42.81 ± 23.34 | 16.02 ± 8.05 | 37.25 ± 6.56 | 62.75 ± 6.56 | 0 | |
3.46 | 48.84 ± 2.17 | 49.19 ± 2.25 | 1.97 ± 0.36 | 27.67 ± 4.85 | 59.59 ± 4.11 | 12.74 ± 2.55 |
2.3. Effect of Jellyfish Venom on Silkworm AChE Activity
Sample | Concentration (µg/mL) | AChE Activity (Μm·min−1·mg−1) | |
---|---|---|---|
12 days | 14 days | ||
Control | 0 | 24.55 ± 6.54 | 9.65 ± 1.21 |
SFV | 188 | 16.70 ± 2.70 | 21.26 ± 9.20 |
18.8 | 26.69 ± 7.12 | 27.86 ± 18.04 | |
3.8 | 18.45 ± 1.96 | 24.04 ± 5.17 * | |
DSFV | 196 | 15.98 ± 9.48 | 13.63 ± 0.71 ** |
19.6 | 21.60 ± 2.78 | 30.76 ± 13.18 | |
3.9 | 12.67 ± 2.97 | 20.61 ± 1.53 ** | |
Fr-1 | 81 | 22.48 ± 7.54 | 37.72 ± 17.59 |
8.1 | 13.19 ± 1.37 | 49.66 ± 15.42 | |
3.6 | 15.62 ± 3.21 | 48.70 ± 8.55 * | |
Fr-2 | 173 | 16.15 ± 4.14 | 32.76 ± 1.58 ** |
17.3 | 19.95 ± 6.59 | 41.81 ± 4.93 ** | |
3.5 | 17.48 ± 8.16 | 35.87 ± 3.63 ** |
3. Experimental Section
3.1. Animals
3.2. Venom Preparation
3.3. Effect of Jellyfish Venom on Silkworm Growth
3.4. Effect of Jellyfish Venom on Silkworm Cuticle
3.5. Effect of Jellyfish Venom on Silkworm AChE Activity
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, B.; Wang, Y.; Liu, H.; Xu, Y.; Wei, Z.; Chen, Y.; Shen, W. Resistance comparison of domesticated silkworm (Bombyx mori L.) and wild silkworm (Bombyx mandarina M.) to phoxim insecticide. Afr. J. Biotechnol. 2010, 9, 1771–1775. [Google Scholar]
- Peng, G.; Wang, J.; Ma, L.; Wang, Y.; Cao, Y.; Shen, W.; Li, B. Transcriptional characteristics of acetylcholinesterase genes in domestic silkworms (Bombyx mori) exposed to phoxim. Pestic. Biochem. Phys. 2011, 101, 154–158. [Google Scholar] [CrossRef]
- Gu, Z.; Zhou, Y.; Xie, Y.; Li, F.; Ma, L.; Sun, S.; Wu, Y.; Wang, B.; Wang, J.; Hong, F.; et al. The adverse effects of phoxim exposure in the midgut of silkworm, Bombyx mori. Chemosphere 2014, 96, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Yukuhiro, F.; Noda, H. Subacute and delayed toxicity of iminoctadine liquid formulation, which contains iminoctadine triacetate as an antifungal component on a non-target domesticated insect, the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Pestic. Biochem. Phys. 2011, 100, 239–243. [Google Scholar] [CrossRef]
- Vyjayanthi, N.; Subramanyam, M.V.V. Effect of fenvalerate-20EC on sericigenous insects I. Food utilization in the late-age larva of the silkworm, Bombyx mori L. Ecotoxicol. Environ. Saf. 2002, 53, 206–211. [Google Scholar] [CrossRef]
- Phugare, S.S.; Kalyani, D.C.; Gaikwad, Y.B.; Jadhav, J.P. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Biochem. Eng. J. 2013, 230, 27–35. [Google Scholar] [CrossRef]
- SEPA. Guidelines for Environmental Safety Assessment Testing of Chemical Pesticides-Silkworm Toxicity Test, National Standard of the People’s Republic of China; State Environmental Protection Agency of China: Beijing, China, 2004. [Google Scholar]
- ACIS. Guidelines for Preparation of Study Results Submitted When Applying for Registration of Agricultural Chemicals, Section 2-8-2 Silkworm Toxicity Studies; Agriculturalchemicals Inspection Station: Tokyo, Japan.
- Omori, M.; Kitamura, M. Taxonomic review of three Japanese species of edible jellyfish (Scyphozoa: Rhizostomeae). Plankton Biol. Ecol. 2004, 51, 36–51. [Google Scholar]
- Zhang, F.; Sun, S.; Jin, X.; Li, C. Associations of large jellyfish distributions with temperature and salinity in the Yellow Sea and East China Sea. Hydrobiologia 2012, 690, 81–96. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Sun, S.; Zhang, G.T.; Wang, S.W.; Li, C.L. Distribution pattern of zooplankton functional groups in the Yellow Sea in June: A possible cause for geographical separation of giant jellyfish species. Hydrobiologia 2014. [Google Scholar] [CrossRef]
- Yu, H.; Liu, X.; Dong, X.; Xing, R.; Liu, S.; Li, C.; Li, P. Insecticidal activity of proteinous venom from tentacles of jellyfish Rhopilema esculentum. Bioorg. Med. Chem. Lett. 2005, 15, 4949–4952. [Google Scholar] [CrossRef] [PubMed]
- Sollod, B.L.; Wilson, D.; Zhaxybayeva, O.; Gogarten, J.P.; Drinkwater, R.; King, G.F. Were arachnids the first to use combinatorial peptide libraries? Peptides 2005, 26, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Morabito, R.; la Spada, G.; Crupi, R.; Esposito, E.; Marino, A. Crude venom from nematocysts of the jellyfish Pelagia noctiluca as a tool to study cell physiology. Cent. Nerv. Syst. Agents Med. Chem. 2015, 15, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Corzo, G.; Diego-Garcia, E.; Clement, H.; Peigneur, S.; Odell, G.; Tytyat, J.; Possani, L.D.; Alagon, A. An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera. Peptides 2008, 29, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Lipkin, A.; Kozlov, S.; Nosyreva, E.; Blake, A.; Windass, J.D.; Grishin, E. Novel insecticidal toxins from the venom of the spider Segestria florentina. Toxicon 2002, 40, 125–130. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Quintero-Hernandez, V.; Possani, L.D. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon 2013, 74, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Mariottini, G.L.; Pane, L. Mediterranean jellyfish venoms: A review on scyphomedusae. Mar. Drugs 2010, 8, 1122–1152. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yu, H.; Xing, R.; Liu, S.; Qing, Y.; Li, K.; Li, B.; Meng, X.; Cui, J.; Li, P. Application of nanoLC-MS/MS to the shotgun proteomic analysis of the nematocyst proteins from jellyfish Stomolophus meleagris. J. Chromatogr. B 2012, 899, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yu, H.; Xing, R.; Liu, S.; Qing, Y.; Li, K.; Li, B.; Meng, X.; Cui, J.; Li, P. Isolation, identification and characterization of a novel antioxidant protein from the nematocyst of the jellyfish Stomolophus meleagris. Int. J. Biol. Macromol. 2012, 51, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.S. Shifts in glycogen metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Pestic. Biochem. Phys. 2003, 74, 73–84. [Google Scholar] [CrossRef]
- Nath, B.S. Changes in carbohydrate metabolism in hemolymph and fat body of the silkworm, Bombyx mori L., exposed to organophosphorus insecticides. Pestic. Biochem. Phys. 2000, 68, 127–137. [Google Scholar] [CrossRef]
- Nath, B.S.; Suresh, A.; Varma, B.M.; Kumar, R.P.S. Changes in protein metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Ecotoxicol. Environ. Saf. 1997, 36, 169–173. [Google Scholar] [CrossRef]
- Fan, J.; Chen, X.; Hu, Q. Effects of Destruxin A on hemocytes morphology of Bombyx mori. J. Integr. Agric. 2013, 12, 1042–1048. [Google Scholar] [CrossRef]
- Li, Q.; Xu, J.; Zhang, S.; Zhang, X.; Chen, A. Safety evaluation on myricetin and crude extract from Waxberry leaves to non-target organisms. J. Anhui Agric. Sci. 2010, 38, 11486–11488. [Google Scholar]
- Zhen, Z.; Yang, G.; Li, Y.; Li, N.; Jia, M.; Huo, Y. Effect of several medicinal plants on silkworm. North Seric. 2011, 32, 14–16. [Google Scholar]
- Li, J.; Yan, F.; He, W.; Xiao, M.; Chen, Y.; Chen, F. Toxicity and mechanism of Jatropherol I to silkworm, Bombyx mori L. Chin. J. Pestic. Sci. 2005, 7, 29–34. [Google Scholar]
- Moussian, B.; Schwarz, H.; Bartoszewski, S.; Nüsslein-Volhard, C. Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J. Morphol. 2005, 264, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Devine, W.; Lubarsky, B.; Shaw, K. Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 17014–17019. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E. Chitin synthesis and inhibition: A revisit. Pest Manag. Sci. 2001, 57, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Candy, D.J.; Kilby, B.A. Studies on chitin synthesis in desert locust. J. Exp. Biol. 1962, 39, 129–140. [Google Scholar]
- Duran, A.; Bowers, B.; Cabib, E. Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc. Natl. Acad. Sci. USA 1975, 72, 3952–3955. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Gooday, G. Stability and zymogenic nature of chitin synthase from Candida albicans. Curr. Microbiol. 1983, 9, 51–54. [Google Scholar] [CrossRef]
- Mayer, R.; Chen, A.; Deloach, J. Characterization of a chitin synthase from the stable fly, Stomoxys calcitrans (L). Insect Biochem. 1980, 10, 549–556. [Google Scholar] [CrossRef]
- Li, C.; Yu, H.; Liu, S.; Xing, R.; Guo, Z.; Li, P. Factors affecting the protease activity of venom from jellyfish Rhopilema esculentum Kishinouye. Bioorg. Med. Chem. Lett. 2005, 15, 5370–5374. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, T.; Nobusawa, C.; Fukami, J. Mode of inhibition of chitin synthesis by diflubenzuron in the cabbage armyworm, Mamestra brassicae L. J. Pestic. Sci. 1984, 9, 19–26. [Google Scholar] [CrossRef]
- Soreq, H.; Seidman, S. Acetylcholinesterase-new roles for an old actor. Nat. Rev. Neurosci. 2001, 2, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.S.; Kumar, R.P.S. Toxic impact of organophosphorus insecticides on acetylcholinesterase activity in the silkworm, Bombyx mori L. Ecotoxicol. Environ. Saf. 1999, 42, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.A. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Chi, D.; Miao, J.; Han, J.; Shen, Z.; Shao, P. Study on the mechanism of triflumuron on the Hyphantria cunea. For. Sci. Tech. 1997, 58, 15–17. [Google Scholar]
- Chen, C. Insect Physiological and Biochemical Experiments, 1st ed.; China Agricultural Press: Beijing, China, 1996; pp. 124–127. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Li, R.; Chen, X.; Yue, Y.; Xing, R.; Liu, S.; Li, P. Effect of Venom from the Jellyfish Nemopilema nomurai on the Silkworm Bombyx mori L. Toxins 2015, 7, 3876-3886. https://doi.org/10.3390/toxins7103876
Yu H, Li R, Chen X, Yue Y, Xing R, Liu S, Li P. Effect of Venom from the Jellyfish Nemopilema nomurai on the Silkworm Bombyx mori L. Toxins. 2015; 7(10):3876-3886. https://doi.org/10.3390/toxins7103876
Chicago/Turabian StyleYu, Huahua, Rongfeng Li, Xiaolin Chen, Yang Yue, Ronge Xing, Song Liu, and Pengcheng Li. 2015. "Effect of Venom from the Jellyfish Nemopilema nomurai on the Silkworm Bombyx mori L." Toxins 7, no. 10: 3876-3886. https://doi.org/10.3390/toxins7103876
APA StyleYu, H., Li, R., Chen, X., Yue, Y., Xing, R., Liu, S., & Li, P. (2015). Effect of Venom from the Jellyfish Nemopilema nomurai on the Silkworm Bombyx mori L. Toxins, 7(10), 3876-3886. https://doi.org/10.3390/toxins7103876