Risk Assessment on Dietary Exposure to Aflatoxin B1 in Post-Harvest Peanuts in the Yangtze River Ecological Region
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of Chromatographic Methods
2.2. Contamination Distributions of AFB1 in 2009–2014
Statistic | Methods | AFB1 Content (μg/kg) |
---|---|---|
Mean | LB a | 7.101 |
UB a | 7.238 | |
Standard deviation | LB | 25.215 |
UB | 25.177 | |
P25 | LB | 0.000 |
UB | 0.200 | |
P50 | LB | 0.000 |
UB | 0.200 | |
P65 | LB | 0.000 |
UB | 0.200 | |
P70 | LB | 0.131 |
UB | 0.200 | |
P75 | LB | 0.280 |
UB | 0.280 | |
P90 | LB | 12.621 |
UB | 12.621 | |
P95 | LB | 56.485 |
UB | 56.485 | |
P97.5 | LB | 92.467 |
UB | 92.467 |
2.3. Natural Occurrence of AFB1 in Post-Harvested Peanuts in the Yangtze River Ecological Region (2009–2014)
Year | Location | NO. | Positive Samples (%) | Mean (μg/kg) | Std. Deviation (μg/kg) | P90 (μg/kg) | Compliance a (%) |
---|---|---|---|---|---|---|---|
2009 | Anhui | 87 | 25 (28.74) | 2.82 | 11.49 | 1.63 | 83 (95.40) |
Hubei | 131 | 57 (43.51) | 1.70 | 7.50 | 0.49 | 128 (97.71) | |
Hunan | 36 | 4 (11.11) | 0.71 | 2.99 | 0.16 | 100 | |
Jiangxi | 32 | 17 (53.13) | 4.16 | 8.91 | 17.13 | 30 (93.75) | |
Jiangsu | 52 | 7 (13.72) | 1.34 | 7.11 | 0.23 | 51 (98.08) | |
Sichuan | - | - | - | - | - | - | |
Total | 339 | 110 (32.45) | 2.06 | 8.48 | 1.41 | 329 (97.05) | |
2010 | Anhui | 82 | 9 (10.98) | 4.48 | 19.49 | 3.41 | 77 (93.90) |
Hubei | 93 | 63 (67.74) | 3.18 | 11.87 | 4.29 | 90 (96.77) | |
Hunan | 70 | 30 (48.86) | 3.00 | 13.49 | 2.08 | 68 (97.14) | |
Jiangxi | 92 | 37 (40.22) | 6.59 | 22.70 | 12.43 | 85 (92.39) | |
Jiangsu | 60 | 0 | 0.00 | 0.00 | 0.00 | 100 | |
Sichuan | 80 | 2 (2.5) | 0.30 | 2.38 | 0.00 | 79 (98.75) | |
Total | 477 | 141 (29.56) | 3.15 | 14.93 | 2.77 | 459 (96.23) | |
2011 | Anhui | 149 | 68 (45.64) | 2.48 | 12.50 | 1.52 | 146 (97.99) |
Hubei | 99 | 31 (31.31) | 2.98 | 19.64 | 0.64 | 96 (96.97) | |
Hunan | 86 | 50 (58.14) | 11.96 | 38.58 | 33.40 | 74 (86.05) | |
Jiangxi | 93 | 54 (58.06) | 11.41 | 32.54 | 39.35 | 79 (84.95) | |
Jiangsu | 100 | 55 (0.55) | 0.56 | 3.24 | 0.39 | 99 (99) | |
Sichuan | 97 | 21 (21.65) | 8.37 | 29.33 | 4.82 | 88 (90.72) | |
Total | 624 | 279 (44.71) | 5.80 | 24.71 | 4.76 | 612 (98.08) | |
2012 | Anhui | 150 | 32 (21.33) | 2.94 | 11.86 | 2.02 | 143 (95.33) |
Hubei | 47 | 10 (21.28) | 2.33 | 6.65 | 7.96 | 45 (95.74) | |
Hunan | 140 | 33 (23.57) | 15.49 | 45.59 | 48.56 | 118 (84.29) | |
Jiangxi | 130 | 44 (33.85) | 6.49 | 15.30 | 21.76 | 115 (88.46) | |
Jiangsu | 100 | 14 (0.14) | 0.44 | 2.89 | 0.20 | 99 (99) | |
Sichuan | 140 | 26 (18.57) | 8.19 | 25.01 | 22.63 | 124 (88.57) | |
Total | 707 | 159 (22.49) | 6.72 | 25.19 | 14.43 | 644 (91.09) | |
2013 | Anhui | 149 | 61 (40.94) | 12.66 | 29.47 | 57.34 | 125 (83.89) |
Hubei | 98 | 33 (33.67) | 14.86 | 30.16 | 73.23 | 78 (81.63) | |
Hunan | 110 | 34 (30.91) | 21.51 | 46.23 | 113.50 | 88 (80) | |
Jiangxi | 100 | 20 (20) | 11.73 | 32.98 | 46.56 | 88 (88) | |
Jiangsu | 100 | 53 (53) | 12.79 | 26.82 | 59.95 | 82 (82) | |
Sichuan | 140 | 21 (15) | 7.41 | 26.24 | 8.59 | 128 (91.43) | |
Total | 697 | 222 (31.85) | 13.20 | 32.55 | 60.46 | 589 (84.51) | |
2014 | Anhui | 79 | 22 (27.85) | 17.14 | 43.11 | 81.08 | 67 (84.81) |
Hubei | 17 | 0 | 0.00 | 0.00 | 0.00 | 100 | |
Hunan | 7 | 0 | 0.00 | 0.00 | 0.00 | 100 | |
Jiangxi | 24 | 2 (8.33) | 2.36 | 7.98 | 0.00 | 22 (91.67) | |
Jiangsu | 12 | 0 | 0.00 | 0.00 | 0.00 | 100 | |
Sichuan | - | - | - | - | - | - | |
Total | 139 | 24 (17.27) | 10.15 | 33.56 | 18.02 | 125 (89.93) |
Country | Year Reported | Incidence (%) | Content (μg/kg) | Analysis Method |
---|---|---|---|---|
Egyptian [13] | - | 82 (in peanuts and seeds) | 24 | - |
India [14] | - | - | <833 | HPLC a |
Uganda [15] | 2003–2004 | - | 7.3–12.4 | - |
Korea [16] | 2004–2005 | 53.33 | 4.07 (0.11–18.04) | HPLC |
São Paulo [17] | 1995–1996 | 31.43 | <1557 | TLC b |
São Paulo [18] | 2006–2007 | 47.92 | 6.02 | HPLC |
Congo [19] | - | 72 | 229.07 (1.5–937) | TLC |
Taiwan [20] | 1997–2011 | 7.8 | 1.56 | HPLC |
Bulawayo [21] | - | 17 | 6.3–528 | - |
2.4. Relationship between AFB1 Contamination Levels in Peanuts and Climatic Conditions before Harvest
2.5. AFB1 Risk Assessment
2.5.1. AFB1 Dietary Exposure Assessment
Group | Weight/kg | Amount of Peanut Consumption/g | |
---|---|---|---|
Mean-Level Consumption | High-Level Consumption | ||
2- to 6- year-old children | 15.18 | 1.66 | 24.9 |
Standard adult a | 62.57 | 3.02 | 35.7 |
2.5.2. AFB1 Risk Characterization
Population | Consumption Level | Methods | Mean (90% Confidence Interval)/ng/(kg·d) | Percentiles of AFB1 Intake (90% Confidence Interval)/ng/(kg·d) | ||||
---|---|---|---|---|---|---|---|---|
P50 | P75 | P90 | P95 | P97.5 | ||||
2- to 6-year-old child | Mean | LB a | 0.777 (0.729–0.825) | 0 | 0.031 (0.028–0.034) | 1.377 (1.230–1.501) | 6.131 (5.796–6.383) | 10.007 (9.423–10.462) |
UB a | 0.790 (0.745–0.837) | 0.022 | 0.031 (0.028–0.035) | 1.384 (1.231–1.503) | 6.144 (5.796–6.383) | 10.022 (9.423–10.465) | ||
High | LB | 11.660 (10.934–12.370) | 0 | 0.462 (0.427–0.509) | 20.655 (18.454–22.509) | 91.972 (86.937–95.751) | 150.104 (141.338–156.929) | |
UB | 11.853 (11.174–12.556) | 0.328 | 0.463 (0.427–0.509) | 20.753 (18.470–22.538) | 92.162 (86.937–95.751) | 150.330 (141.338–156.972) | ||
Standard adult | Mean | LB | 0.343 (0.322–0.364) | 0 | 0.014 (0.013–0.015) | 0.608 (0.544–0.662) | 2.706 (2.558–2.818) | 4.417 (4.159–4.618) |
UB | 0.349 (0.329–0.370) | 0.010 | 0.014 (0.013–0.015) | 0.611 (0.543–0.663) | 2.712 (2.558–2.818) | 4.423 (4.159–4.619) | ||
High | LB | 4.056 (3.803–4.303) | 0 | 0.161 (0.148–0.177) | 7.185 (6.419–7.829) | 31.991 (30.240–33.306) | 52.212 (49.162–54.586) | |
UB | 4.123 (3.887–4.367) | 0.114 | 0.161 (0.148–0.177) | 7.219 (6.425–7.840) | 32.057 (30.240–33.306) | 52.290 (49.162–54.601) |
Population | Consumption Level | Methods | Mean (90% Confidence Interval)/cases/(105·persons·year) | Percentiles of AFB1-Induced Liver Cancer Risk (90% Confidence Interval)/cases/(100,000·persons·year) | ||||
---|---|---|---|---|---|---|---|---|
P50 | P75 | P90 | P95 | P97.5 | ||||
2- to 6-year-old child | Mean | LB a | 0.024 (0.023–0.026) | 0 | 0.001 | 0.043 (0.038–0.047) | 0.190 (0.180–0.198) | 0.310 (0.292–0.324) |
UB a | 0.024 (0.023–0.026) | 0.001 | 0.001 | 0.043 (0.038–0.047) | 0.190 (0.180–0.198) | 0.311 (0.292–0.324) | ||
High | LB | 0.361 (0.339–0.383) | 0 | 0.014 (0.013–0.016) | 0.640 (0.572–0.698) | 2.851 (2.695–2.968) | 4.653 (4.381–4.865) | |
UB | 0.367 (0.346–0.389) | 0.010 | 0.014 (0.013–0.016) | 0.643 (0.573–0.699) | 2.857 (2.695–2.968) | 4.660 (4.381–4.866) | ||
Standard adult | Mean | LB | 0.011 (0.010–0.011) | 0 | 0 | 0.019 (0.017–0.021) | 0.084 (0.079–0.087) | 0.137 (0.129–0.143) |
UB | 0.011 (0.010–0.012) | 0 | 0 | 0.019 (0.017–0.021) | 0.084 (0.079–0.087) | 0.137 (0.129–0.143) | ||
High | LB | 0.126 (0.118–0.133) | 0 | 0.005 (0.004–0.006) | 0.223 (0.199–0.243) | 0.992 (0.937–1.032) | 1.619 (1.524–1.692) | |
UB | 0.128 (0.120–0.135) | 0.004 | 0.005 | 0.224 (0.199–0.243) | 0.994 (0.937–1.032) | 1.621 (1.524–1.693) |
3. Experimental Section
3.1. Samples
3.2. Climate Data
3.3. Determination of AFB1 via HPLC Analysis
3.4. Statistical Analysis
3.5. Population Consumption Data
3.6. Risk Assessment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Williams, R.J.; McDonald, D. Grain molds in the tropics: Problems and importance. Annu. Rev. Phytopathol. 1983, 21, 153–178. [Google Scholar]
- Moss, M.O. Risk assessment for aflatoxins in foodstuffs. Int. Biodeterior. Biodegrad. 2002, 50, 137–142. [Google Scholar] [CrossRef]
- Barros, G.; Torres, A.; Palacio, G.; Chulze, S. Aspergillus species from section Flavi isolated from soil at planting and harvest time in peanut-growing regions of Argentina. J. Sci. Food Agric. 2003, 83, 1303–1307. [Google Scholar] [CrossRef]
- Torres, A.M.; Barros, G.G.; Palacios, S.A.; Chulze, S.N.; Battilani, P. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int. 2014, 62, 11–19. [Google Scholar] [CrossRef]
- Sanders, T.H.; Blankenship, P.D.; Cole, R.J.; Hill, R.A. Effect of soil temperature and drought on peanut pod and stem temperatures relative to Aspergillus flavus invasion and aflatoxin contamination. Mycopathologia 1984, 86, 51–54. [Google Scholar] [PubMed]
- Diener, U.L.; Davis, N.D. Production of aflatoxin on peanuts under controlled environments. J. Stored Products Res. 1969, 5, 251–258. [Google Scholar] [CrossRef]
- Ding, X.; Li, P.; Bai, Y.; Zhou, H. Aflatoxin B-1 in post-harvest peanuts and dietary risk in China. Food Control 2012, 23, 143–148. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [PubMed]
- Ko, L.J.; Prives, C. p53: Puzzle and paradigm. Genes Dev. 1996, 10, 1054–1072. [Google Scholar] [CrossRef]
- Ewen, M.E.; Miller, S.J. p53 and translational control. Biochim. Biophys. Acta (BBA)—Rev. Cancer 1996, 1242, 181–184. [Google Scholar] [CrossRef]
- Bourdon, J.C.; Deguin-Chambon, V.; Lelong, J.C.; Dessen, P.; May, P.; Debuire, B.; May, E. Further characterisation of the p53 responsive element—Identification of new candidate genes for trans-activation by p53. Oncogene 1997, 14, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Henry, S.H.; Bosch, F.X.; Bowers, J.C. Aflatoxin, Hepatitis and Worldwide Liver Cancer Risks. Mycotoxins Food Saf. 2002, 504, 229–233. [Google Scholar]
- Selim, M.I.; Popendorf, W.; Ibrahim, M.S.; el Sharkawy, S.; el Kashory, E.S. Aflatoxin B1 in common Egyptian foods. J. AOAC Int. 1996, 79, 1124–1129. [Google Scholar] [PubMed]
- Bhat, R.V.; Vasanthi, S.; Rao, B.S.; Rao, R.N.; Rao, V.S.; Nagaraja, K.V.; Bai, R.G.; Prasad, C.A.; Vanchinathan, S.; Roy, R.; et al. Aflatoxin B1 contamination in groundnut samples collected from different geographical regions of India: A multicentre study. Food Addit. Contam. 1996, 13, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Kaaya, A.N.; Harris, C.; Eigel, W. Peanut aflatoxin levels on farms and in markets of Uganda. Peanut Sci. 2006, 33, 68–75. [Google Scholar] [CrossRef]
- Ee Ok, H.; Kim, H.J.; Bo Shim, W.; Lee, H.; Bae, D.-H.; Chung, D.-H.; Chun, H.S. Natural occurrence of aflatoxin B1 in marketed foods and risk estimates of dietary exposure in Koreans. J. Food Prot. 2007, 70, 2708–2934. [Google Scholar]
- Freitas, V.P.; Brigido, B.M. Occurrence of aflatoxins B1, B2, G1, and G2 in peanuts and their products marketed in the region of Campinas, Brazil in 1995 and 1996. Food Addit. Contam. 1998, 15, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.A.F.; Gonçalves, N.B.; Rosim, R.E.; Fernandes, A.M. Determination of aflatoxins in peanut products in the northeast region of São Paulo, Brazil. Int. J. Mol. Sci. 2009, 10, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Kamika, I.; Takoy, L.L. Natural occurrence of aflatoxin B1 in peanut collected from Kinshasa, Democratic Republic of Congo. Food Control 2011, 22, 1760–1764. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Liao, C.-D.; Lin, H.-Y.; Chiueh, L.-C.; Shih, D.Y.-C. Survey of aflatoxin contamination in peanut products in Taiwan from 1997 to 2011. J. Food Drug Anal. 2013, 21, 247–252. [Google Scholar] [CrossRef]
- Mupunga, I.; Lebelo, S.L.; Mngqawa, P.; Rheeder, J.P.; Katerere, D.R. Natural occurrence of aflatoxins in peanuts and peanut butter from Bulawayo, Zimbabwe. J. Food Prot. 2014, 77, 1814–1818. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.J.; Sanders, T.H.; Hill, R.A.; Blankenship, P.D. Mean geocarposphere temperatures that induce preharvest aflatoxin contamination of peanuts under drought stress. Mycopathologia 1985, 91, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.E.; Potter, W.D.; McClendon, R.W.; Hoogenboom, G. Predicting aflatoxin contamination in peanuts: A genetic algorithm/neural network approach. Appl. Intell. 2000, 12, 183–192. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Wright, G.C.; Rachaputi, R.C.N.; Holzworth, D.; Broome, A.; Krosch, S.; Robertson, M.J. Application of a model to assess aflatoxin risk in peanuts. J. Agric. Sci. 2010, 148, 341. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Wild Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Abulu, E.O.; Uriah, N.; Aigbefo, H.S.; Oboh, P.A.; Agbonlahor, D.E. Preliminary investigation on aflatoxin in cord blood of jaundiced neonates. West Afr. J. Med. 1998, 17, 184–187. [Google Scholar] [PubMed]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Forty-ninth Meeting of the Joint FAO/WHO Expert Committee on Food Additives. In Safety Evaluation of Certain Food Additives and Contaminants in Food: Aflatoxins; Food Additives Series No. 40; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Chen, J.G.; Song, X.M. An evaluation on incident cases of liver cancer in China. Chin. J. Cancer Res. 2005, 29–32. [Google Scholar]
- Harris, C.C. The 1995 Walter Hubert Lecture -molecular epidemiology of human cancer: Insights from the mutational analysis of the p53 tumour-suppressor gene. Br. J. Cancer 1996, 73, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Raad, F.; Nasreddine, L.; Hilan, C.; Bartosik, M.; Parent-Massin, D. Dietary exposure to aflatoxins, ochratoxin A and deoxynivalenol from a total diet study in an adult urban Lebanese population. Food Chem. Toxicol.: Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2014, 73, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Sugita-Konishi, Y.; Sato, T.; Saito, S.; Nakajima, M.; Tabata, S.; Tanaka, T.; Norizuki, H.; Itoh, Y.; Kai, S.; Sugiyama, K.; et al. Exposure to aflatoxins in Japan: Risk assessment for aflatoxin B1. Food Addit. Contam. Part A Chem. Anal. Control Exposure Risk Assess. 2010, 27, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, J.C.; Tard, A.; Volatier, J.L.; Verger, P. Estimated dietary exposure to principal food mycotoxins from the first French Total Diet Study. Food Addit. Contam. Part A Chem. Anal. Control Exposure Risk Assess. 2005, 22, 652–672. [Google Scholar] [CrossRef] [PubMed]
- Wilda, C.P.; Hallb, A.J. Primary prevention of hepatocellular carcinoma in developing countries. Mutat. Res./Rev. Mutat. Res. 2000, 462, 381–393. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.M. Assessment of dietary aflatoxins exposure in Chinese residents. Chin. J. Food Hyg. 2007, 3, 238–240. [Google Scholar]
- Wang, L.D. 2002 Chinese Resident Nutrition and Health Survey Report; China Ministry of Health: Beijing, China, 2005.
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Commission related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. EFSA J. 2007, 446, 1–127. [Google Scholar]
- The Minister of Health of the People’s Republic of China (MOHC); The China National Standardization Management Committee (SMC). Determination of Aflatoxins B1, B2, G1, G2 in Foods; China Standard Press: Beijing, China, 2006.
- AOAC International. Natural contaminants. In Official Methods of the Association of Official Analytical Chemists, 17th ed.; Cunnif, P., Ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Wu, L.; Li, P.; Zhang, Z.; Zhou, H.; Bai, Y.; Chen, X.; Jiang, J. Risk Assessment on Dietary Exposure to Aflatoxin B1 in Post-Harvest Peanuts in the Yangtze River Ecological Region. Toxins 2015, 7, 4157-4174. https://doi.org/10.3390/toxins7104157
Ding X, Wu L, Li P, Zhang Z, Zhou H, Bai Y, Chen X, Jiang J. Risk Assessment on Dietary Exposure to Aflatoxin B1 in Post-Harvest Peanuts in the Yangtze River Ecological Region. Toxins. 2015; 7(10):4157-4174. https://doi.org/10.3390/toxins7104157
Chicago/Turabian StyleDing, Xiaoxia, Linxia Wu, Peiwu Li, Zhaowei Zhang, Haiyan Zhou, Yizhen Bai, Xiaomei Chen, and Jun Jiang. 2015. "Risk Assessment on Dietary Exposure to Aflatoxin B1 in Post-Harvest Peanuts in the Yangtze River Ecological Region" Toxins 7, no. 10: 4157-4174. https://doi.org/10.3390/toxins7104157
APA StyleDing, X., Wu, L., Li, P., Zhang, Z., Zhou, H., Bai, Y., Chen, X., & Jiang, J. (2015). Risk Assessment on Dietary Exposure to Aflatoxin B1 in Post-Harvest Peanuts in the Yangtze River Ecological Region. Toxins, 7(10), 4157-4174. https://doi.org/10.3390/toxins7104157