Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding
Abstract
:1. Environmental Factors Affecting Fumonisin Contamination in Maize Kernels
1.1. Effect of Temperature and Water Activity in Vitro Studies
1.2. Environmental Factors Affecting Fumonisin Contamination in the Field
1.2.1. Temperature, Air Humidity and Rainfall
1.2.2. Critical Periods during Maize Development
1.2.3. Fungal Diversity
1.2.4. Insect Infestation
1.2.5. Agronomic Practices
1.3. Modeling Fumonisin Contamination
2. Maize Breeding for Resistance to Kernel Contamination with Fumonisins
2.1. Sources of Resistance to Fusarium Ear Rot and Fumonisin Contamination
2.2. Inheritance of Maize Resistance to Fusarium Ear Rot and Fumonisin Contamination
2.3. Breeding Programs for Reducing Kernel Contamination with Fumonisins
3. Genotypic Traits Influencing Fusarium Ear Rot and Fumonisin Contamination
3.1. Precocity of the Plant
3.2. Husk Coverage
3.3. Silks’ Characteristics
3.4. Kernel characteristics
3.4.1. Color
3.4.2. Antioxidant Profile
3.4.3. Lipidic Profile
3.4.4. Proteic Profile
3.4.5. Pericarp (Protection Tissue)
3.4.6. Endosperm (Storage Tissue)
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abbas, H.K.; Riley, R.T. The presence and phytotoxicity of fumonisins and AAL-toxin in Alternaria alternata. Toxicon 1996, 34, 133–136. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Smedsgaard, J.; Samson, R.A.; Larsen, T.O.; Thrane, U. Fumonisin B2 production by Aspergillus niger. J. Agric. Food Chem. 2007, 55, 9727–9732. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Bottalico, A.; Mule, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant Pathol. 2003, 109, 645–667. [Google Scholar] [CrossRef]
- Butron, A.; Santiago, R.; Mansilla, P.; Pintos-Varela, C.; Ordas, A.; Ana Malvar, R. Maize (Zea mays L.) genetic factors for preventing fumonisin contamination. J. Agric. Food Chem. 2006, 54, 6113–6117. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.K.; Williams, W.P.; Windham, G.L.; Pringle, H.C.; Xie, W.; Shier, W.T. Aflatoxin and fumonisin contamination of commercial corn (Zea mays) hybrids in Mississippi. J. Agric. Food Chem. 2002, 50, 5246–5254. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.K.; Cartwright, R.D.; Xie, W.; Shier, W.T. Aflatoxin and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop Prot. 2006, 25, 1–9. [Google Scholar] [CrossRef]
- Parsons, M.W.; Munkvold, G.P. Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Addit. Contam. Part A 2010, 27, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Chulze, S.N.; Ramirez, M.L.; Farnochi, M.C.; Pascale, M.; Visconti, A.; March, G. Fusarium and fumonisin occurrence in Argentinian corn at different ear maturity stages. J. Agric. Food Chem. 1996, 44, 2797–2801. [Google Scholar] [CrossRef]
- Camargos, S.M.; Soares, L.M.V.; Sawazaki, E.; Bolonhezi, D.; Castro, J.L.; Bortolleto, N. Fumonisins in corn cultivars in the state of São Paulo. Braz. J. Microbiol. 2000, 31, 225–228. [Google Scholar] [CrossRef]
- Sun, G.; Wang, S.; Hu, X.; Su, J.; Huang, T.; Yu, J.; Tang, L.; Gao, W.; Wang, J.-S. Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Addit. Contam. Part A 2007, 24, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wei, H.; Ma, J.; Luo, X. The fumonisin B1 content in corn from north China, a high-risk area of esophageal cancer. J. Environ. Pathol. Toxicol. Oncol. 2000, 19, 139–141. [Google Scholar] [PubMed]
- Alizadeh, A.M.; Rohandel, G.; Roudbarmohammadi, S.; Roudbary, M.; Sohanaki, H.; Ghiasian, S.A.; Taherkhani, A.; Semnani, S.; Aghasi, M. Fumonisin B1 contamination of cereals and risk of esophageal cancer in a high risk area in northeastern Iran. Asian Pac. J. Cancer Prev. 2012, 13, 2625–2628. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, C.G.; Ojiambo, P.S.; Ekpo, E.J.A.; Menkir, A.; Bandyopadhyay, R. Evaluation of maize inbred lines for resistance to Fusarium ear rot and fumonisin accumulation in grain in tropical Africa. Plant Dis. 2007, 91, 279–286. [Google Scholar] [CrossRef]
- Fandohan, P.; Gnonlonfin, B.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, west Africa. Int. J. Food Microbiol. 2005, 99, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Marasas, W.F. Discovery and occurrence of the fumonisins: A historical perspective. Environ. Health Perspect. 2001, 109 (Suppl. 2), 239–243. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P.; Desjardins, A.E. Fumonisins in maize—can we reduce their occurrence? Plant Dis. 1997, 81, 556–565. [Google Scholar] [CrossRef]
- Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
- Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- Gelineau van Waes, J.; Starr, L.; Maddox, J.; Aleman, F.; Voss, K.A.; Wilberding, J.; Riley, R.T. Maternal fumonisin exposure and risk for neural tube defects: Mechanisms in an in vivo mouse model. Birth Defects Res. Part A 2005, 73, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H.; Rothman, K.J.; Hendricks, K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Perspect. 2006, 114, 237–241. [Google Scholar] [CrossRef] [PubMed]
- IARC. Fumonisin B1: Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. In 82 Monograph of the International Agency for Research of Cancer on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 2002; pp. 301–306. [Google Scholar]
- Marin, S.; Magan, N.; Ramos, A.J.; Sanchis, V. Fumonisin-producing strains of Fusarium: A review of their ecophysiology. J. Food Prot. 2004, 67, 1792–1805. [Google Scholar] [PubMed]
- Samapundo, S.; Devlieghere, F.; De Meulenaer, B.; Debevere, J. Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J. Food Prot. 2005, 68, 1054–1059. [Google Scholar] [PubMed]
- Mogensen, J.M.; Nielsen, K.F.; Samson, R.A.; Frisvad, J.C.; Thrane, U. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. BMC Microbiol. 2009, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Schmidt-Heydt, M.; Cardenas-Chavez, D.L.; Parra, R.; Geisen, R.; Magan, N. Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors. J. R. Soc. Interface 2013, 10, 20130320. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Munimbazi, C.; Bullerman, L.B. Fumonisin b1 production by Fusarium moniliforme and Fusarium proliferatum as affected by cycling temperatures. J. Food Prot. 1999, 62, 1456–1460. [Google Scholar] [PubMed]
- Cao, A.; Butron, A.; Ramos, A.J.; Marin, S.; Souto, C.; Santiago, R. Assessing white maize resistance to fumonisin contamination. Eur. J. Plant Pathol. 2014, 138, 283–292. [Google Scholar] [CrossRef]
- Marin, P.; Magan, N.; Vazquez, C.; Gonzalez-Jaen, M.T. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene fum1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiol. Ecol. 2010, 73, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, M.; Marin, P.; Magan, N.; Gonzalez-Jaen, M.T. Relationship between solute and matric potential stress, temperature, growth, and fum1 gene expression in two Fusarium verticillioides strains from Spain. Appl. Environ. Microbiol. 2008, 74, 2032–2036. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, F.; Iversen, A.; Logrieco, A.F.; Mulè, G. Relationship between fumonisin production and fum gene expression in Fusarium verticillioides under different environmental conditions. Food Addit. Contam. Part A 2012, 30, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, I.; Susca, A.; Mulè, G.; Ritieni, A.; Ferracane, R.; Marocco, A.; Battilani, P. Effects of temperature and water activity on fum2 and fum21 gene expression and fumonisin B production in Fusarium verticillioides. Eur. J. Plant Pathol. 2012, 134, 685–695. [Google Scholar] [CrossRef]
- Cao, A.; Santiago, R.; Ramos, A.J.; Marin, S.; Reid, L.M.; Butron, A. Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. Int. J. Food Microbiol. 2013, 164, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.F.; Pearson, C.A.S.; Nelson, P.E.; Toussoun, T.A. Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern United States. Phytopathology 1990, 80, 343–350. [Google Scholar] [CrossRef]
- Dorn, B.; Forrer, H.R.; Schurch, S.; Vogelgsang, S. Fusarium species complex on maize in Switzerland: Occurrence, prevalence, impact and mycotoxins in commercial hybrids under natural infection. Eur. J. Plant Pathol. 2009, 125, 51–61. [Google Scholar] [CrossRef]
- Folcher, L.; Jarry, M.; Weissenberger, A.; Gerault, F.; Eychenne, N.; Delos, M.; Regnault-Roger, C. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Prot. 2009, 28, 302–308. [Google Scholar] [CrossRef]
- Hooker, D.C.; Schaafsma, A. Agronomic and environmental impacts on concentrations of deoxynivalenol and fumonisin B1 in corn across Ontario. Can. J. Plant Pathol. 2005, 27, 347–356. [Google Scholar] [CrossRef]
- Munkvold, G. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 2003, 109, 705–713. [Google Scholar] [CrossRef]
- Goertz, A.; Zuehlke, S.; Spiteller, M.; Steiner, U.; Dehne, H.; Waalwijk, C.; de Vries, I.; Oerke, E. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur. J. Plant Pathol. 2010, 128, 101–111. [Google Scholar] [CrossRef]
- Stumpf, R.; dos Santos, J.; Gomes, L.B.; Silva, C.N.; Tessmann, D.J.; Ferreira, F.D.; Machinski, M.; Del Ponte, E.M. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons. Braz. J. Microbiol. 2013, 44, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Li, R.; Guo, C.; Pang, M.; Liu, Y.; Dong, J. Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012. Food Addit. Contam. Part A 2014, 32, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Janse van Rensburg, B.; McLaren, N.W.; Flett, B.C.; Schoeman, A. Fumonisin producing Fusarium spp. and fumonisin contamination in commercial South African maize. Eur. J. Plant Pathol. 2015, 141, 491–504. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Ritieni, A.; Bottalico, A.; Corda, P. Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy. Plant Dis. 1995, 79, 727–731. [Google Scholar] [CrossRef]
- Bakan, B.; Melcion, D.; Richard-Molard, D.; Cahagnier, B. Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J. Agric. Food Chem. 2002, 50, 728–731. [Google Scholar] [CrossRef] [PubMed]
- De Curtis, F.; De Cicco, V.; Haidukowski, M.; Pascale, M.; Somma, S.; Moretti, A. Effects of agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of maize in southern Italy. Field Crop. Res. 2011, 123, 161–169. [Google Scholar] [CrossRef]
- Mohammadi, A.; Shams-Ghahfarokhi, M.; Nazarian-Firouzabadi, F.; Kachuei, R.; Gholami-Shabani, M.; Razzaghi-Abyaneh, M. Giberella fujikuroi species complex isolated from maize and wheat in Iran: Distribution, molecular identification and fumonisin B1 in vitro biosynthesis. J. Sci. Food Agric. 2015. [Google Scholar] [CrossRef] [PubMed]
- Arino, A.; Juan, T.; Estopanan, G.; Gonzalez-Cabo, J.F. Natural occurrence of Fusarium species, fumonisin production by toxigenic strains, and concentrations of fumonisins B1 and B2 in conventional and organic maize grown in Spain. J. Food Prot. 2007, 70, 151–156. [Google Scholar] [PubMed]
- Herrera, M.; Conchello, P.; Juan, T.; Estopañán, G.; Herrera, A.; Ariño, A. Fumonisins concentrations in maize as affected by physico-chemical, environmental and agronomical conditions. Maydica 2010, 55, 121–126. [Google Scholar]
- Schjøth, J.E.; Visconti, A.; Sundheim, L. Fumonisins in maize in relation to climate, planting time and hybrids in two agroecological zones in Zambia. Mycopathologia 2009, 167, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Gamanya, R.; Sibanda, L. Survey of Fusarium moniliforme (F. verticillioides) and production of fumonisin B1 in cereal grains and oilseeds in Zimbabwe. Int. J. Food Microbiol. 2001, 71, 145–149. [Google Scholar] [CrossRef]
- Atukwase, A.; Kaaya, A.N.; Muyanja, C. Factors associated with fumonisin contamination of maize in Uganda. J. Sci. Food Agric. 2009, 89, 2393–2398. [Google Scholar] [CrossRef]
- Miller, J.D. Factors that affect the occurrence of fumonisin. Environ. Health Perspect. 2001, 109 (Suppl. 2), 321–324. [Google Scholar] [CrossRef] [PubMed]
- Bush, B.J.; Carson, M.L.; Cubeta, M.A.; Hagler, W.M.; Payne, G.A. Infection and fumonisin production by Fusarium verticillioides in developing maize kernels. Phytopathology 2004, 94, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.K.; Shier, W.T.; Cartwright, R.D. Effect of temperature, rainfall and planting date on aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas. Phytoprotection 2007, 88, 41–50. [Google Scholar] [CrossRef]
- Pascale, M.; Visconti, A.; Pronczuk, M.; Wisniewska, H.; Chelkowski, J. Accumulation of fumonisins in maize hybrids inoculated under field conditions with Fusarium moniliforme sheldon. J. Sci. Food Agric. 1997, 74, 1–6. [Google Scholar] [CrossRef]
- Blandino, M.; Reyneri, A.; Vanara, F. Effect of sowing time on toxigenic fungal infection and mycotoxin contamination of maize kernels. J. Phytopathol. 2009, 157, 7–14. [Google Scholar] [CrossRef]
- Blandino, M.; Scarpino, V.; Vanara, F.; Sulyok, M.; Krska, R.; Reyneri, A. Role of the European corn borer (Ostrinia nubilalis) on contamination of maize with 13 Fusarium mycotoxins. Food Addit. Contam. Part A 2014, 32, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Torelli, E.; Firrao, G.; Bianchi, G.; Saccardo, F.; Locci, R. The influence of local factors on the prediction of fumonisin contamination in maize. J. Sci. Food Agric. 2012, 92, 1808–1814. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, E.; Scandolara, A.; Giorni, P.; Pietri, A.; Battilani, P. Field control of Fusarium ear rot, Ostrinia nubilalis (hübner), and fumonisins in maize kernels. Pest Manag. Sci. 2011, 67, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Maiorano, A.; Reyneri, A.; Magni, A.; Ramponi, C. A decision tool for evaluating the agronomic risk of exposure to fumonisins of different maize crop management systems in Italy. Agric. Syst. 2009, 102, 17–23. [Google Scholar] [CrossRef]
- Venturini, G.; Assante, G.; Vercesi, A. Fusarium verticillioides contamination patterns in northern Italian maize during the growing season. Phytopathol. Mediterr. 2011, 50, 110–120. [Google Scholar]
- Shelby, R.A.; White, D.G.; Bauske, E.M. Differential fumonisin production in maize hybrids. Plant Dis. 1994, 78, 582–584. [Google Scholar] [CrossRef]
- De la Campa, R.; Hooker, D.C.; Miller, J.D.; Schaafsma, A.W.; Hammond, B.G. Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. Mycopathologia 2005, 159, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Santiago, R.; Ramos, A.J.; Souto, X.C.; Aguin, O.; Ana Malvar, R.; Butron, A. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. Int. J. Food Microbiol. 2014, 177, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Maiorano, A.; Reyneri, A.; Sacco, D.; Magni, A.; Ramponi, C. A dynamic risk assessment model (fumagrain) of fumonisin synthesis by Fusarium verticillioides in maize grain in Italy. Crop Prot. 2009, 28, 243–256. [Google Scholar] [CrossRef]
- Rossi, V.; Scandolara, A.; Battilani, P. Effect of environmental conditions on spore production by Fusarium verticillioides, the causal agent of maize ear rot. Eur. J. Plant Pathol. 2009, 123, 159–169. [Google Scholar] [CrossRef]
- Ariño, A.; Bullerman, L.B. Fungal colonization of corn grown in Nebraska in relation to year, genotype and growing conditions. J. Food Prot. 1994, 57, 1084–1087. [Google Scholar]
- Alma, A.; Lessio, F.; Reyneri, A.; Blandino, M. Relationships between Ostrinia nubilalis (lepidoptera: Crambidae) feeding activity, crop technique and mycotoxin contamination of corn kernel in northwestern Italy. Int. J. Pest Manag. 2005, 51, 165–173. [Google Scholar] [CrossRef]
- Abbas, H.K.; Mascagni, H.J., Jr.; Bruns, H.A.; Shier, W.T. Effect of planting density, irrigation regimes, and maize hybrids with varying ear size on yield, and aflatoxin and fumonisin contamination levels. Am. J. Plant Sci. 2012, 3. [Google Scholar] [CrossRef]
- Picot, A.; Barreau, C.; Pinson-Gadais, L.; Piraux, F.; Caron, D.; Lannou, C.; Richard-Forget, F. The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field conditions. Appl. Environ. Microbiol. 2011, 77, 8382–8390. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Bolduan, C.; Melchinger, A.E. Aggressiveness and mycotoxin production of eight isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and resistant early maize inbred lines. Eur. J. Plant Pathol. 2010, 127, 113–123. [Google Scholar] [CrossRef]
- Covarelli, L.; Stifano, S.; Beccari, G.; Raggi, L.; Lattanzio, V.M.T.; Albertini, E. Characterization of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, pathogenicity and genetic variability. Food Microbiol. 2012, 31, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Reid, L.M.; Nicol, R.W.; Ouellet, T.; Savard, M.; Miller, J.D.; Young, J.C.; Stewart, D.W.; Schaafsma, A.W. Interaction of Fusarium graminearum and F. moniliforme in maize ears: Disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology 1999, 89, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Zorzete, P.; Castro, R.S.; Pozzi, C.R.; Israel, A.L.M.; Fonseca, H.; Yanaguibashi, G.; Corrêa, B. Relative populations and toxin production by Aspergillus flavus and Fusarium verticillioides in artificially inoculated corn at various stages of development under field conditions. J. Sci. Food Agric. 2008, 88, 48–55. [Google Scholar] [CrossRef]
- Zummo, N.; Scott, G.E. Interaction of Fusarium moniliforme and Aspergillus flavus on kernel infection and aflatoxin contamination in maize ears. Plant Dis. 1992, 76, 771–773. [Google Scholar] [CrossRef]
- Dowd, P.F. Involvement of arthropods in the establishment of mycotoxigenic fungi under field conditions. In Mycotoxins in Agriculture and Food Safety; Sinha, K.K., Bhatnagar, D., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 307–350. [Google Scholar]
- Fandohan, P.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Infection of maize by Fusarium species and contamination with fumonisis in Africa. Afr. J. Biotechnol. 2003, 12, 570–579. [Google Scholar]
- Farrar, J.J.; Davis, R.M. Relationships among ear morphology, western flower thrips, and Fusarium ear rot of corn. Phytopathology 1991, 81, 661–666. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Hellmich, R.L.; Rice, L.G. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis. 1999, 83, 130–138. [Google Scholar] [CrossRef]
- Blandino, M.; Reyneri, A.; Vanara, F.; Pascale, M.; Haidukowski, M.; Saporiti, M. Effect of sowing date and insecticide application against European corn borer (lepidoptera: Crambidae) on fumonisin contamination in maize kernels. Crop Prot. 2008, 27, 1432–1436. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Quaranta, F.; Desiderio, E.; Visconti, A. Fumonisin contamination of maize hybrids visibly damaged by Seesamia. J. Sci. Food Agric. 2003, 83, 13–18. [Google Scholar] [CrossRef]
- Clements, M.J.; Campbell, K.W.; Maragos, C.M.; Pilcher, C.; Headrick, J.M.; Pataky, J.K.; White, D.G. Influence of cry1ab protein and hybrid genotype on fumonisin contamination and Fusarium ear rot of corn. Crop Sci. 2003, 43, 1283–1293. [Google Scholar] [CrossRef]
- Parsons, M.W.; Munkvold, G.P. Relationships of immature and adult thrips with silk-cut, Fusarium ear rot and fumonisin B1 contamination of maize in California and Hawaii. Plant Pathol. 2010, 59, 1099–1106. [Google Scholar] [CrossRef]
- Dowd, P.F. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J. Econ. Entomol. 2001, 94, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Santiago, R.; Cao, A.; Malvar, R.A.; Butron, A. Is it possible to control fumonisin contamination in maize kernels by using genotypes resistant to the Mediterranean corn borer? J. Econ. Entomol. 2013, 106, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
- Blandino, M.; Reyneri, A.; Colombari, G.; Pietri, A. Comparison of integrated field programmes for the reduction of fumonisin contamination in maize kernels. Field Crop. Res. 2009, 111, 284–289. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Battilani, P.; Pietri, A.; Barbano, C.; Scandolara, A.; Bertuzzi, T.; Marocco, A. Logistic regression modeling of cropping systems to predict fumonisin contamination in maize. J. Agric. Food Chem. 2008, 56, 10433–10438. [Google Scholar] [CrossRef] [PubMed]
- Ariño, A.; Herrera, M.; Juan, T.; Estopañan, G.; Carramiñana, J.J.; Rota, C.; Herrera, A. Influence of agricultural practices on the contamination of maize by fumonisin mycotoxins. J. Food Prot. 2009, 72, 898–902. [Google Scholar] [PubMed]
- de Galarreta, J.I.R.; Butrón, A.; Ortiz-Barredo, A.; Malvar, R.A.; Ordás, A.; Landa, A.; Revilla, P. Mycotoxins in maize grains grown in organic and conventional agriculture. Food Control 2015, 52, 98–102. [Google Scholar] [CrossRef]
- Martínez, M.; Moschini, R.; Barreto, D.; Bodega, J.; Forjan, H.; Piatti, F.; Presello, D.; Valentinuz, O. Factores ambientales que afectan el contenido de fumonisina en granos de maíz. Tropical Plant Pathol. 2010, 35, 277–284. [Google Scholar]
- Eller, M.S.; Holland, J.B.; Payne, G.A. Breeding for improved resistance to fumonisin contamination in maize. Toxin Rev. 2008, 27, 371–389. [Google Scholar] [CrossRef]
- Löffler, M.; Kessel, B.; Ouzunova, M.; Miedaner, T. Covariation between line and testcross performance for reduced mycotoxin concentrations in European maize after silk channel inoculation of two Fusarium species. Theor. Appl. Genet. 2011, 122, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.A.; Kleinschmidt, C.E.; White, D.G.; Payne, G.A.; Maragos, C.M.; Holland, J.B. Heritabilities and correlations of Fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Sci. 2006, 46, 353–361. [Google Scholar] [CrossRef]
- Santiago, R.; Cao, A.; Malvar, R.A.; Reid, L.M.; Butron, A. Assessment of corn resistance to fumonisin accumulation in a broad collection of inbred lines. Field Crop. Res. 2013, 149, 193–202. [Google Scholar] [CrossRef]
- Bolduan, C.; Miedaner, T.; Schipprack, W.; Dhillon, B.S.; Melchinger, A.E. Genetic variation for resistance to ear rots and mycotoxins contamination in early European maize inbred lines. Crop Sci. 2009, 49, 2019–2028. [Google Scholar] [CrossRef]
- Löffler, M.; Miedaner, T.; Kessel, B.; Ouzunova, M. Mycotoxin accumulation and corresponding ear rot rating in three maturity groups of european maize inoculated by two Fusarium species. Euphytica 2010, 174, 153–164. [Google Scholar] [CrossRef]
- Eller, M.S.; Payne, G.A.; Holland, J.B. Selection for reduced Fusarium ear rot and fumonisin content in advanced backcross maize lines and their topcross hybrids. Crop Sci. 2010, 50, 2249–2260. [Google Scholar] [CrossRef]
- Presello, D.A.; Pereyra, A.O.; Iglesias, J.; Fauguel, C.M.; Sampietro, D.A.; Eyherabide, G.H. Responses to selection of S5 inbreds for broad-based resistance to ear rots and grain mycotoxin contamination caused by Fusarium spp. in maize. Euphytica 2011, 178, 23–29. [Google Scholar] [CrossRef]
- Mesterhazy, A.; Lemmens, M.; Reid, L.M. Breeding for resistance to ear rots caused by Fusarium spp. In maize - a review. Plant Breed. 2012, 131, 1–19. [Google Scholar] [CrossRef]
- Clements, M.J.; Kleinschmidt, C.E.; Maragos, C.M.; Pataky, J.K.; White, D.G. Evaluation of inoculation techniques for Fusarium ear rot and fumonisin contamination of corn. Plant Dis. 2003, 87, 147–153. [Google Scholar] [CrossRef]
- Munkvold, G.P.; McGee, D.C.; Carlton, W.M. Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology 1997, 87, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Bush, B.J. Fusarium verticillioides infection, fumonisin contamination and resistance evaluation in north Carolina maize. Master’s Thesis, North Carolina State Univ., Raleigh, NC, USA, 2001. [Google Scholar]
- Schaafsma, A.W.; Tamburic-Illincic, L.; Reid, L.M. Fumonisin B1 accumulation and severity of Fusarium ear rot and Gibberella ear rot in food-grade corn hybrids in Ontario after inoculation according to two methods. Can. J. Plant Pathol. 2006, 28, 548–557. [Google Scholar] [CrossRef]
- Pascale, M.; Visconti, A.; Chelkowski, J. Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. Eur. J. Plant Pathol. 2002, 108, 645–651. [Google Scholar] [CrossRef]
- Kleinschmidt, C.E.; Clements, M.J.; Maragos, C.M.; Pataky, J.K.; White, D.G. Evaluation of food-grade dent corn hybrids for severity of Fusarium ear rot and fumonisin accumulation in grain. Plant Dis. 2005, 89, 291–297. [Google Scholar] [CrossRef]
- Presello, D.A.; Iglesias, J.; Botta, G.; Eyherabide, G.H. Severity of Fusarium ear rot and concentration of fumonisin in grain of Argentinian maize hybrids. Crop Prot. 2007, 26, 852–855. [Google Scholar] [CrossRef]
- Toldi, E.; Bartok, T.; Varga, M.; Szekeres, A.; Toth, B.; Mesterhazy, A. The role of breeding in reducing mycotoxin contamination in maize. Cereal Res. Commun. 2008, 36, 175–177. [Google Scholar]
- Henry, W.B.; Williams, W.P.; Windham, G.L.; Hawkins, L.K. Evaluation of maize inbred lines for resistance to Aspergillus and Fusarium ear rot and mycotoxin accumulation. Agron. J. 2009, 101, 1219–1226. [Google Scholar] [CrossRef]
- Balconi, C.; Berardo, N.; Locatelli, S.; Lanzanova, C.; Torri, A.; Redaelli, R. Evaluation of ear rot (Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines. Phytopathol. Mediterr. 2014, 53, 14–26. [Google Scholar]
- Small, I.M.; Flett, B.C.; Marasas, W.F.O.; McLeod, A.; Stander, M.A.; Viljoen, A. Resistance in maize inbred lines to Fusarium verticillioides and fumonisin accumulation in South Africa. Plant Dis. 2012, 96, 881–888. [Google Scholar] [CrossRef]
- Clements, M.J.; Maragos, C.A.; Pataky, J.K.; White, D.G. Sources of resistance to fumonisin accumulation in grain and Fusarium ear and kernel rot of corn. Phytopathology 2004, 94, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Presello, D.A.; Reid, L.M.; Mather, D.E. Resistance of Argentine maize germplasm to Gibberella and Fusarium ear rots. Maydica 2004, 49, 73–81. [Google Scholar]
- Xiang, K.; Zhang, Z.M.; Reid, L.M.; Zhu, X.Y.; Yuan, G.S.; Pan, G.T. A meta-analysis of QTL associated with ear rot resistance in maize. Maydica 2010, 55, 281–290. [Google Scholar]
- Ding, J.-Q.; Wang, X.-M.; Chander, S.; Yan, J.-B.; Li, J.-S. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol. Breed. 2008, 22, 395–403. [Google Scholar] [CrossRef]
- Pérez-Brito, D.; Jeffers, D.; González-de-León, D.; Khairallah, M.; Cortés-Cruz, M.; Velázquez-Cardelas, G.; Azpíroz-Rivero, S.; Srinivasan, G. QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrociencia 2001, 35, 181–196. [Google Scholar]
- Robertson-Hoyt, L.A.; Jines, M.P.; Balint-Kurti, P.J.; Kleinschmidt, C.E.; White, D.G.; Payne, G.A.; Maragos, C.M.; Molnár, T.L.; Holland, J.B. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci. 2006, 46, 1734. [Google Scholar] [CrossRef]
- Mideros, S.X.; Warburton, M.L.; Jamann, T.M.; Windham, G.L.; Williams, W.P.; Nelson, R.J. Quantitative trait loci influencing mycotoxin contamination of maize: Analysis by linkage mapping, characterization of near-isogenic lines, and meta-analysis. Crop Sci. 2014, 54, 127–142. [Google Scholar] [CrossRef]
- Warburton, M.L.; Williams, W.P.; Hawkins, L.; Bridges, S.; Gresham, C.; Harper, J.; Ozkan, S.; Mylroie, J.E.; Xueyan, S. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize. Toxins 2011, 3, 754–765. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Ding, J.Q.; Li, H.M.; Li, Z.M.; Sun, X.D.; Li, J.J.; Wang, R.X.; Dai, X.D.; Dong, H.F.; Song, W.B.; et al. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol. Breed. 2012, 30, 1649–1656. [Google Scholar] [CrossRef]
- Zila, C.T.; Fernando Samayoa, L.; Santiago, R.; Butron, A.; Holland, J.B. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3-Genes Genomes Genet. 2013, 3, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Zila, C.T.; Ogut, F.; Romay, M.C.; Gardner, C.A.; Buckler, E.S.; Holland, J.B. Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.S.; Zhang, Z.M.; Xiang, K.; Shen, Y.O.; Du, J.; Lin, H.J.; Liu, L.; Zhao, M.J.; Pan, G.T. Different gene expressions of resistant and susceptible maize inbreds in response to Fusarium verticillioides infection. Plant Mol. Biol. Rep. 2013, 31, 925–935. [Google Scholar] [CrossRef]
- Campos-Bermudez, V.A.; Fauguel, C.M.; Tronconi, M.A.; Casati, P.; Presello, D.A.; Andreo, C.S. Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS ONE 2013, 8, e61580. [Google Scholar] [CrossRef] [PubMed]
- Lanubile, A.; Pasini, L.; Marocco, A. Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. J. Plant Physiol. 2010, 167, 1398–1406. [Google Scholar] [PubMed]
- Lanubile, A.; Bernardi, J.; Marocco, A.; Logrieco, A.; Paciolla, C. Differential activation of defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium verticillioides. Environ. Exp. Bot. 2012, 78, 39–46. [Google Scholar] [CrossRef]
- Lanubile, A.; Ferrarini, A.; Maschietto, V.; Delledonne, M.; Marocco, A.; Bellin, D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC genomics 2014, 15, 710. [Google Scholar] [CrossRef] [PubMed]
- Lanubile, A.; Bernardi, J.; Battilani, P.; Logrieco, A.; Marocco, A. Resistant and susceptible maize genotypes activate different transcriptional responses against Fusarium verticillioides. Physiol. Mol. Plant Pathol. 2012, 77, 52–59. [Google Scholar] [CrossRef]
- Hefny, M.; Attaa, S.; Bayoumi, T.; Ammar, S.; El-Bramawy, M. Breeding maize for resistance to ear rot caused by Fusarium moniliforme. PJBS 2012, 15, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.-Y.; Holland, J.B. Diallel analysis of resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci. 2012, 52, 2173–2181. [Google Scholar] [CrossRef]
- Reid, L.M.; Zhu, X.; Parker, A.; Yan, W. Increased resistance to Ustilago zeae and Fusarium verticilliodes in maize inbred lines bred for Fusarium graminearum resistance. Euphytica 2009, 165, 567–578. [Google Scholar] [CrossRef]
- Williams, W.P.; Windham, G.L. Diallel analysis of fumonisin accumulation in maize. Field Crop. Res. 2009, 114, 324–326. [Google Scholar] [CrossRef]
- Butron, A.; Reid, L.M.; Santiago, R.; Cao, A.; Malvar, R.A. Inheritance of maize resistance to Gibberella and Fusarium ear rots and kernel contamination with deoxynivalenol and fumonisins. Plant Pathol. 2015. [Google Scholar] [CrossRef]
- Nankam, C.; Pataky, J.K. Resistance to kernel infection by Fusarium moniliforme in the sweet corn inbred IL125b. Plant Dis. 1996, 80, 593–598. [Google Scholar] [CrossRef]
- Castanon, G.; Rincon, F.; Latournerie, L. Heterosis and combinatory aptitude in seven maize lines. Phyton-Int. J. Exp. Bot. 2002, 29–40. [Google Scholar]
- Löffler, M.; Kessel, B.; Ouzunova, M.; Miedaner, T. Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays l.) inbred lines. Theor. Appl. Genet. 2010, 120, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Presello, D.A.; Iglesias, J.; Botta, G.; Reid, L.M.; Lori, G.A.; Eyherabide, G.H. Stability of maize resistance to the ear rots caused by Fusarium graminearum and F. verticillioides in Argentinian and Canadian environments. Euphytica 2006, 147, 403–407. [Google Scholar] [CrossRef]
- Clements, M.J.; White, D.G. Identifying sources of resistance to aflatoxin and fumonisin contamination in corn grain. J. Toxicology-Toxin Rev. 2004, 23, 381–396. [Google Scholar] [CrossRef]
- Reid, L.M.; McDiarmid, G.; Parker, A.J.; Woldemariam, T.; Hamilton, R.I. CO388 and CO389 corn inbred lines. Can. J. Plant Sci. 2001, 81, 457–459. [Google Scholar] [CrossRef]
- Lanubile, A.; Pasini, L.; Lo Pinto, M.; Battilani, P.; Prandini, A.; Marocco, A. Evaluation of broad spectrum sources of resistance to Fusarium verticillioides and advanced maize breeding lines. World Mycotoxin J. 2011, 4, 43–51. [Google Scholar] [CrossRef]
- Vasal, S.K.; Srinivasan, G.; Cordova, H.; Pandey, S.; Jeffers, D.; Bergvinson, D.; Beck, D. Inbred line evaluation nurseries and their role in maize breeding at CIMMYT. Maydica 1999, 44, 341–351. [Google Scholar]
- Chapman, M.A. New hybrid maize plant (36k50) is useful in industry and as a food source for humans and animals. US5962771-A, 5 October 1999. [Google Scholar]
- Colbert, T.R. New maize hybrid x1128bw and its hybrids, useful as food and industrial raw material, with good early growth and short stature. US6359201-B1, 19 March 2002. [Google Scholar]
- Colbert, T.R.; Gorman, D.P. Seed and plants of inbred maize line ph5d6 and its hybrids, useful as food and industrial raw material, has e.G. Good resistance to several fungal pathogens. US6316704-B1, 13 November 2001. [Google Scholar]
- Henke, G.E. Inbred maize line ph2ej, and genetically engineered variants, suitable for cultivation in the Central Corn Belt, northeast, southeast, southcentral, southwest and western regions of the United States. US6333453-B1, 25 December 2001. [Google Scholar]
- Henke, G.E. New hybrid maize seed, designated 33k81, useful for developing maize plant in maize plant breeding program using techniques e.G. Backcrossing and pedigree breeding. US6410829-B1, 25 June 2002. [Google Scholar]
- Henke, G.E.; Barker, T.C. Seed of new maize inbred line ph2e4 useful for producing F1 hybrids in plant breeding programs and as a source of human food, animal feeds and industrial raw materials. US6147284-A, 14 November 2000. [Google Scholar]
- Trimble, M.W. Maize inbred line phkv1 for production of F1 hybrids adapted to all areas of the USA and has good resistance to Fusarium ear rot. US5608138-A, 4 March 1997. [Google Scholar]
- Koehler, B. Fungus growth in shelled corn as affected by moisture. J. Agric. Res. 1938, 56, 291–307. [Google Scholar]
- Headrick, J.M.; Pataky, J.K.; Juvik, J.A. Relationships among carbohydrate content of kernels, condition of silks after pollination, and the response of sweet corn inbred lines to infection of kernels by Fusarium moniliforme. Phytopathology 1990, 80, 487–494. [Google Scholar] [CrossRef]
- Manninger, I. Resistance of maize to ear rot on the basis of natural infection and inoculation. In Proceeding of the 10th Meeting of the Maize and Sorghum Section of EUCARPIA, Varna, Bulgaria, 17–19 September 1979; pp. 181–184.
- Ramirez, M.L.; Pascale, M.; Chulze, S.; Reynoso, M.M.; March, G.; Visconti, A. Natural occurrence of fumonisins and their correlation to Fusarium contamination in commercial corn hybrids growth in Argentina. Mycopathologia 1996, 135, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Camargos, S.M.; Soares, L.M.V.; Sawazaki, E.; Bolonhezi, D.; Castro, J.L.; Bortolleto, N. Accumulation of fumonisins B1 and B2 in freshly harvested Brazilian commercial maize at three locations during two non consecutive seasons. Mycopathologia 2002, 155, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Blandino, M.; Reyneri, A. Effect of maize hybrid maturity and grain hardness on fumonisin and zearalenone contamination. Ital. J. Agron. 2008, 2, 107–117. [Google Scholar] [CrossRef]
- Battilani, P.; Formenti, S.; Ramponi, C.; Rossi, V. Dynamic of water activity in maize hybrids is crucial for fumonisin contamination in kernels. J. Cereal Sci. 2011, 54, 467–472. [Google Scholar] [CrossRef]
- Koehler, B. Natural mode of entrance of fungi into corn ears and some symptoms that indicate infection. J. Agric. Res. 1942, 64, 421–442. [Google Scholar]
- Hesseltine, C.W.; Bothast, R.J. Mold development in ears of corn from tasseling to harvest. Mycologia 1977, 69, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Kommedahl, T.; Windels, C.E. Root-, stalk-, and ear-infecting Fusarium species on corn in the USA. In Fusarium Diseases, Biology and Taxonomy; Nelson, P.E., Toussoun, T.A., Cook, R.J., Eds.; Pennsylvania State University Press: University Park, PA, USA, 1981; pp. 94–103. [Google Scholar]
- Cassini, R. Fusarium diseases of cereals in western Europe. In Fusarium Diseases, Biology and Taxonomy; Nelson, P.E., Toussoun, T.A., Cook, R.J., Eds.; Pennsylvania State University Press: University Park, PA, USA, 1981; pp. 56–63. [Google Scholar]
- Scott, G.E.; King, S.B. Site of action of factors for resistance to Fusarium moniliforme in maize. Plant Dis. 1984, 68, 804–806. [Google Scholar] [CrossRef]
- Warfield, C.Y.; Davis, R.M. Importance of the husk covering on the susceptibility of corn hybrids to Fusarium ear rot. Plant Dis. 1996, 80, 208–210. [Google Scholar] [CrossRef]
- Duncan, K.E.; Howard, R.J. Biology of maize kernel infection by Fusarium verticillioides. Mol. Plant-Microbe Interact. 2010, 23, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P.; Hellmich, R.L.; Showers, W.B. Reduced fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology 1997, 87, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.M.; Kegel, F.R.; Sills, W.M.; Farrar, J.J. Fusarium ear rot of corn. Calif. Agric. 1989, 43, 4–5. [Google Scholar]
- Headrick, J.M.; Pataky, J.K. Maternal influence on the resistance of sweet corn lines to kernel infection by Fusarium moniliforme. Phytopathology 1991, 81, 268–274. [Google Scholar] [CrossRef]
- Valdivia, E.R.; Cosgrove, D.J.; Stephenson, A.G. Role of accelerated style senescence in pathogen defense. Am. J. Bot. 2006, 93, 1725–1729. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.W.; Reid, L.M.; Nicol, R.W.; Schaafsma, A.W. A mathematical simulation of growth of Fusarium in maize ears after artificial inoculation. Phytopathology 2002, 92, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Reid, L.M.; Woldemariam, T.; Zhu, X.; Stewart, D.W.; Schaafsma, A.W. Effect of inoculation time and point of entry on disease severity in Fusarium graminearum, Fusarium verticillioides, or Fusarium subglutinans inoculated maize ears. Can. J. Plant Pathol. 2002, 24, 162–167. [Google Scholar] [CrossRef]
- Sekhon, R.S.; Kuldau, G.; Mansfield, M.; Chopra, S. Characterization of fusarium-induced expression of flavonoids and pr genes in maize. Physiol. Mol. Plant Pathol. 2006, 69, 109–117. [Google Scholar] [CrossRef]
- Reid, L.M.; Mather, D.E.; Arnason, J.T.; Hamilton, R.I.; Bolton, A.T. Changes in phenolic constituents of maize silk infected with Fusarium graminearum. Can. J. Botany 1992, 70, 1697–1702. [Google Scholar] [CrossRef]
- Grotewold, E.; Drummond, B.J.; Bowen, B.; Peterson, T. The myb-homologous p-gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 1994, 76, 543–553. [Google Scholar] [CrossRef]
- Pilu, R.; Cassani, E.; Sirizzotti, A.; Petroni, K.; Tonelli, C. Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel. J. Appl. Genet. 2011, 52, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S.; Thiel, P.G.; Stockenstrom, S.; Sydenham, E.W. Worldwide survey of fumonisin contamination of corn and corn-based products. J. AOAC Int. 1996, 79, 671–687. [Google Scholar] [PubMed]
- Picot, A.; Atanasova-Penichon, V.; Pons, S.; Marchegay, G.; Barreau, C.; Pinson-Gadais, L.; Roucolle, J.; Daveau, F.; Caron, D.; Richard-Forget, F. Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance. J. Agric. Food Chem. 2013, 61, 3389–3395. [Google Scholar] [CrossRef] [PubMed]
- Boutigny, A.-L.; Barreau, C.; Atanasova-Penichon, V.; Verdal-Bonnin, M.-N.; Pinson-Gadais, L.; Richard-Forget, F. Ferulic acid, an efficient inhibitor of type b trichothecene biosynthesis and tri gene expression in Fusarium liquid cultures. Mycol. Res. 2009, 113, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Walley, J.W.; Kliebenstein, D.J.; Bostock, R.M.; Dehesh, K. Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol. 2013, 16, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Dall'Asta, C.; Falavigna, C.; Galaverna, G.; Battilani, P. Role of maize hybrids and their chemical composition in Fusarium infection and fumonisin production. J. Agric. Food Chem. 2012, 60, 3800–3808. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Brodhagen, M.; Isakeit, T.; Brown, S.H.; Goebel, C.; Betran, J.; Feussner, I.; Keller, N.P.; Kolomiets, M.V. Inactivation of the lipoxygenase zmlox3 increases susceptibility of maize to Aspergillus spp. Mol. Plant-Microbe Interact. 2009, 22, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Shim, W.-B.; Goebel, C.; Kunze, S.; Feussner, I.; Meeley, R.; Balint-Kurti, P.; Kolomiets, M. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol. Plant-Microbe Interact. 2007, 20, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Dall'Asta, C.; Giorni, P.; Cirlini, M.; Reverberi, M.; Gregori, R.; Ludovici, M.; Camera, E.; Fanelli, C.; Battilani, P.; Scala, V. Maize lipids play a pivotal role in the fumonisin accumulation. World Mycotoxin J. 2015, 8, 87–97. [Google Scholar] [CrossRef]
- Murillo, I.; Jaeck, E.; Cordero, M.J.; Segundo, B.S. Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol. Biol. 2001, 45, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Campo, S.; Carrascal, M.; Coca, M.; Abian, J.; San Segundo, B. The defense response of germinating maize embryos against fungal infection: A proteomics approach. Proteomics 2004, 4, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.M.; Campo, S.; Murillo, I.; Coca, M.; Segundo, B.S. Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Mol. Biol. 2003, 52, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Brown, R.L.; Damann, K.E.; Cleveland, T.E. Identification of maize kernel endosperm proteins associated with resistance to aflatoxin contamination by Aspergillus flavus. Phytopathology 2007, 97, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.J.; Buzan, C.L.; Macmasters, M.M.; Rist, C.E. Structure of the mature corn kernel .2. Microscopic structure of pericarp, seed coat, and hilar layer of dent corn. Cereal Chem. 1952, 29, 334–348. [Google Scholar]
- Hoenisch, R.W.; Davis, R.M. Relationship between kernel pericarp thickness and susceptibility to fusarium ear rot in-field corn. Plant Dis. 1994, 78, 517–519. [Google Scholar] [CrossRef]
- Ivic, D.; Cabric, M.; Palaversic, B.; Cvjetkovic, B. No correlation between pericarp thickness and Fusarium ear rot (Fusarium verticillioides) in Croatian maize hybrids and lines. Maydica 2008, 53, 297–301. [Google Scholar]
- Russin, J.S.; Guo, B.Z.; Tubajika, K.M.; Brown, R.L.; Cleveland, T.E.; Widstrom, N.W. Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Phytopathology 1997, 87, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Sampietro, D.A.; Vattuone, M.A.; Presello, D.A.; Fauguel, C.M.; Catalán, C.A.N. The pericarp and its surface wax layer in maize kernels as resistance factors to fumonisin accumulation by Fusarium verticillioides. Crop Prot. 2009, 28, 196–200. [Google Scholar] [CrossRef]
- Dixon, R.A.; Steele, C.L. Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci. 1999, 4, 394–400. [Google Scholar] [CrossRef]
- Burr, S.J.; Fry, S.C. Extracellular cross-linking of maize arabinoxylans by oxidation of feruloyl esters to form oligoferuloyl esters and ether-like bonds. Plant J. 2009, 58, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Sampietro, D.A.; Fauguel, C.M.; Vattuone, M.A.; Presello, D.A.; Catalán, C.A.N. Phenylpropanoids from maize pericarp: Resistance factors to kernel infection and fumonisin accumulation by Fusarium verticillioides. Eur. J. Plant Pathol. 2012, 135, 105–113. [Google Scholar] [CrossRef]
- Costa, R.S.; Moro, F.V.; Moro, J.R.; da Silva, H.P.; Panizzi, R.D. Relationship between caryopsis morphological characteristics and Fusarium ear rot in corn. Pesqui. Agropecu. Bras. 2003, 38, 27–33. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, M.J.; Miranda Filho, J.B. Germplasm. In Quantitative Genetics in Maize Breeding; Springer: New York, NY, USA, 2010; Volume 6. [Google Scholar]
- Dickerson, G.W. Specialty Corns; Cooperative Extension Service, College of Agriculture and Home Economics, New Mexico State University: Las Cruces, NM, USA, 2003. [Google Scholar]
- Doko, M.B.; Canet, C.; Brown, N.; Sydenham, E.W.; Mpuchane, S.; Siame, B.A. Natural co-occurrence of fumonisins and zearalenone in cereals and cereal-based foods from eastern and southern Africa. J. Agric. Food Chem. 1996, 44, 3240–3243. [Google Scholar] [CrossRef]
- Czembor, E.; Ochodzki, P. Resistance of flint and dent maize forms for colonization by Fusarium spp. and mycotoxins contamination. Maydica 2009, 54, 263–267. [Google Scholar]
- Wit, M.; Warzecha, R.; Mirzwa-Mroz, E.; Jabłońska, E.; Ochodzki, P.; Waśkiewicz, A.; Wakuliński, W. Susceptibility of flint and dent maize ears to Fusarium species. Phytopathologia 2011, 60, 35–45. [Google Scholar]
- Hennigen, M.R.; Valente Soares, L.M.; Sanchez, S.; Di Benedetto, N.M.; Longhi, A.; Eyhérabide, G.; Torroba, J.; Zanelli, M. Fumonisin in Corn Hybrids Grown in Argentina for Two Consecutive Seasons; IUPAC: Guaruja, Brazil, 2000. [Google Scholar]
- Shim, W.B.; Flaherty, J.E.; Woloshuk, C.P. Comparison of fumonisin B1 biosynthesis in maize germ and degermed kernels by Fusarium verticillioides. J. Food Prot. 2003, 66, 2116–2122. [Google Scholar] [PubMed]
- Ball, S.G.; van de Wal, M.; Visser, R.G.F. Progress in understanding the biosynthesis of amylose. Trends Plant Sci. 1998, 3, 462–467. [Google Scholar] [CrossRef]
- Myers, A.M.; Morell, M.K.; James, M.G.; Ball, S.G. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 2000, 122, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Coe, E.H.; Neuffer, M.G.; Hoisington, D.A. The Genetics of Corn; American Society Agronomy: Madison, WI, USA, 1988. [Google Scholar]
- Neuffer, M.G.; Coe, E.H.; Wessler, S.R. Mutants of Maize; Cold Spring Harbor Press: Cold Spring Harbor, NY, USA, 1997. [Google Scholar]
- James, M.G.; Denyer, K.; Myers, A.M. Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 2003, 6, 215–222. [Google Scholar] [CrossRef]
- Blandino, M.; Reyneri, A. Comparison between normal and waxy maize hybrids for Fusarium-toxin contamination in nw Italy. Maydica 2007, 52, 127–134. [Google Scholar]
- Wang, Y.J.; White, P.; Pollak, L.; Jane, J. Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem. 1993, 70, 171–179. [Google Scholar]
- Tsai, C.Y. Genetics of Storage Protein in Maize; AVI Publishing: Westport, CT, USA, 1982. [Google Scholar]
- Lee, L.; Tsai, C.Y. Effect of sucrose accumulation on zein synthesis in maize starch-deficient mutants. Phytochemistry 1985, 24, 225–229. [Google Scholar] [CrossRef]
- Fergason, V. High amylose and waxy corns. In Specialty Corns, 2nd ed.; Hallauer, A.R., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 63–84. [Google Scholar]
- Bluhm, B.H.; Woloshuk, C.P. Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol. Plant-Microbe Interact. 2005, 18, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Warren, H.L. Comparision of normal and high-lisine maize hybrids for resistance to kernel rot caused by Fusarium moniliforme. Phytopathology 1978, 68, 1331–1335. [Google Scholar] [CrossRef]
- Loesch, J.R.; Foley, P.J.; Cox, D.F. Comparative resistance of o2 and normal inbred lines of maize to ear rotting pathogens. Crop Sci. 1976, 16, 841–842. [Google Scholar]
- Schultz, J.A.; Juvik, J.A. Current models for starch synthesis and the sugary enhancer 1 (se1) mutation in Zea mays L. Plant Physiol. Biochem. 2004, 42, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Bhave, M.R.; Lawrence, S.; Barton, C.; Hannah, L.C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 1990, 2, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.D.; Wolf, E.A. Control of seedborne and soilborne mycoses of florida sweet corn by seed treatment. Plant Dis. Reporter 1974, 58, 922–923. [Google Scholar]
- Styer, R.C.; Cantliffe, D.J. Infection of 2 endosperm mutants of sweet corn by Fusarium moniliforme and its effect on seedling vigor. Phytopathology 1984, 74, 189–194. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago, R.; Cao, A.; Butrón, A. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding. Toxins 2015, 7, 3267-3296. https://doi.org/10.3390/toxins7083267
Santiago R, Cao A, Butrón A. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding. Toxins. 2015; 7(8):3267-3296. https://doi.org/10.3390/toxins7083267
Chicago/Turabian StyleSantiago, Rogelio, Ana Cao, and Ana Butrón. 2015. "Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding" Toxins 7, no. 8: 3267-3296. https://doi.org/10.3390/toxins7083267
APA StyleSantiago, R., Cao, A., & Butrón, A. (2015). Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding. Toxins, 7(8), 3267-3296. https://doi.org/10.3390/toxins7083267