Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?
Abstract
:1. Introduction
2. What Are Toxins? Definitions and Distinctions
3. What Are Mycotoxins?
4. What Are Volatile Organic Compounds (VOCs)?
5. What Are Biogenic VOCs?
6. Are Some Fungal VOCs Toxic?
7. Mycotoxin and Fungal VOC Research Overlap in the Study of Indoor Air Quality
8. What’s in a Name?
9. Conclusions: Do We Need a New Term to Describe Toxic Volatiles?
Acknowledgments
Author Contributions
Conflicts of Interest
References
- James, R.C. General Principles of Toxicology. In Industrial Toxicology: Safety and Health Applications in the Workplace; Williams, P., Burson, J., Eds.; Van Nostrand Reinhold Company: New York, NY, USA, 1985; pp. 7–26. [Google Scholar]
- Klaassen, C. Casarett & Doull's Toxicology: The Basic Science of Poisons, 8th ed.; McGraw Hill: New York, NY, USA, 2013; pp. 1–1454. [Google Scholar]
- Hodgson, E. A Textbook of Modern Toxicology, 4th ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 1–672. [Google Scholar]
- Manahan, S.E. Fundamentals of Environmental and Toxicological Chemistry: Sustainable Science, 4th ed.; CRC Press/Taylor and Francis Group: Boca Raton, FL, USA, 2013; pp. 1–614. [Google Scholar]
- White, J.; Meier, J. Handbook of Clinical Toxicology of Animal Venoms and Poisons, 1st ed.; CRC Press/Taylor and Francis Group: Boca Raton, FL, USA, 1995; pp. 1–768. [Google Scholar]
- Proft, T. Microbial Toxins: Current Research and Future Trends; Caister Academic Press: Norfolk, UK, 2009; pp. 1–192. [Google Scholar]
- Nelson, L.S.; Shih, R.D.; Balich, M.J. Handbook of Poisonous and Injurious Plants, 2nd ed.; Springer: New York, NY, USA, 2007; pp. 1–340. [Google Scholar]
- Protocol for the Prohibition of the Use in War of Asphyxiating, Poisonous or other Gases, and the Bacteriological Methods of Warfare (Geneva Protocol 1925). Available online: https://www.icrc.org/ihl/INTRO/280?OpenDocument (accessed on 11 July 2015).
- United Nations. Chemical and Bacteriological (Biological) Weapons and the Effects of Their Possible Use; Ballantine Books: Fairfield, NJ, USA, 1970; pp. 1–178. [Google Scholar]
- Crone, H.D. Banning Chemical Weapons. The Scientifc Background; Cambridge University Press: Cambridge, UK, 1992; pp. 1–122. [Google Scholar]
- Pringle, L. Chemical and Biological Warfare: The Cruelest Weapons; Enslow Publishers: Hillside, NJ, USA, 1993; pp. 1–103. [Google Scholar]
- US legal. Available online: http://definitions.uslegal.com/t/toxin/ (accessed on 11 July 2015).
- Forgacs, J.; Carll, W.T. Mycotoxicoses. Advan. Vet. Sci. 1962, 7, 273–382. [Google Scholar]
- Wyllie, T.D.; Morehouse, L.G. (Eds.) Mycotoxic Fungi, Mycotoxins, Mycotoxicoses: An Encyclopedic Handbook. Volume I: Mycotoxic Fungi and Chemistry of Mycotoxins; Marcel Dekker Inc.: New York, NY, USA, 1977; pp. 1–538.
- Wyllie, T.D.; Morehouse, L.G. (Eds.) Mycotoxic Fungi, Mycotoxins, Mycotoxicoses. An Encyclopedic Handbook. Volume II: Mycotoxicoses of Domestic and Laboratory Animals, Poultry, and Aquatic Invertebrates and Vertebrates; Marcel Dekker Inc.: New York, NY, USA, 1978; pp. 1–570.
- Cole, R.J.; Cox, R.H. Handbook of Toxic Fungal Metabolites; Academic Press: New York, NY, USA, 1981; pp. 1–937. [Google Scholar]
- Lacey, J. Trichothecenes and Other Mycotoxins; John Wiley & Sons: Chichester, UK, 1985; pp. 1–571. [Google Scholar]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.R. Mushrooms: Poisons and Panceas. A Handbook for Naturalists, Mcologists and Physicians; W.H. Freeman and Company: New York, NY, USA, 1995; pp. 1–422. [Google Scholar]
- Richard, J.L.; Thurston, J.R. Diagnosis of Mycotoxicoses; Martinus Nijhoff: Dordrecht, The Netherlands, 1986; pp. 1–441. [Google Scholar]
- Bhatnagar, D.; Lillehoj, E.B.; Arora, D.K. (Eds.) Handbook of Applied Mycology. Volume V: Mycotoxins in Ecological Systems; Marcel Dekker Inc.: New York, NY, USA, 1992; pp. 1–464.
- Pitt, J.I. Toxigenic fungi: Which are important? Med. Mycology 2000, 38, 17–22. [Google Scholar] [CrossRef]
- Woloshuk, C.P.; Shim, W.B. Aflatoxins, fumonisins, and trichothecenes: A convergence of knowledge. FEMS Microbiol. Rev. 2013, 37, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Groopman, J.D. The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance, 1st ed.; Academic Press: San Diego, CA, USA, 1994; pp. 1–544. [Google Scholar]
- De Vries, J.W.; Trucksess, M.W.; Jackson, L.S. Mycotoxins and Food Safety; Kluwer Academic/Plenum Publications: New York, NY, USA, 2002; pp. 1–295. [Google Scholar]
- Bennett, J.W.; Bentley, R. What’s in a name? Microbial secondary metabolism. Adv. Appl. Microbiol. 1989, 34, 1–28. [Google Scholar]
- Bennett, J.W. From molecular genetics and secondary metabolism to molecular metabolites and secondary genetics. Can. J. Bot. 1995, 73, 917–924. [Google Scholar] [CrossRef]
- Boonen, J.; Malysheva, S.V.; Taevernier, L.; Diana Di Mavungu, J.; De Saeger, S.; De Spiegeleer, B. Human skin penetration of selected model mycotoxins. Toxicology 2012, 301, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.K.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W.; Linz, J.E.; Woloshuk, C.P.; Payne, G.A. Cloning of the Aspergillus parasiticus apa2 gene associated with the regulation of aflatoxin biosynthesis. Appl. Environ. Microbiol. 1993, 59, 3273–3279. [Google Scholar] [PubMed]
- Bennett, J.W.; Chang, P.K.; Bhatnagar, D. One gene to whole pathway: the role of norsolorinic acid in aflatoxin research. Adv. Appl. Microbiol. 1997, 45, 1–15. [Google Scholar] [PubMed]
- Keller, N.P.; Hohn, T.M. Metabolic pathway gene clusters in filamentous fungi. Fungal Genet. Biol. 1997, 21, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Payne, G.; Brown, M.P. Genetics and physiology of aflatoxin biosynthesis. Ann. Rev. Plant Path. 1998, 36, 329–362. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chang, P.-K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Bhatnagar, D.; Cleveland, T.E. Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus. FEBS Lett. 2004, 564, 126–130. [Google Scholar] [CrossRef]
- Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism – from biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, D.; Keller, N.P. Natural products of filamentous fungi: Enzymes, genes, and their regulation. Nat. Prod. Rep. 2007, 24, 393–416. [Google Scholar] [CrossRef] [PubMed]
- Turner, G. Genomics and secondary metabolism in Aspergillus. In Aspergillus Molecular Biology and Genomics; Machida, M., Gomi, K., Eds.; Caister Academic Press: Norfolk, UK, 2010; pp. 139–155. [Google Scholar]
- Andersen, M.R.; Nielsen, J.B.; Klitgaard, A.; Petersen, L.M.; Zachariasen, M.; Hansen, T.J.; Blicher, L.H.; Gotfredsen, C.H.; Larsen, T.O.; Nielsen, K.F.; et al. Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc. Natl. Acad. Sci. USA 2013, 110, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Khaldi, N.; Seifuddin, F.T.; Turner, G.; Haft, D.; Nierman, W.C.; Wolfe, K.H.; Fedorova, N.D. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 2010, 47, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Breitling, R.; Takano, E. AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 2011, 39, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, N.D.; Moktali, V.; Medema, M.X. Bioinformatics approaches and software for detection of secondary metabolite gene clusters. Methods Mol. Biol. 2012, 944, 23–45. [Google Scholar] [PubMed]
- Umemura, M.; Koike, H.; Nagano, N.; Ishii, T.; Kawano, J.; Yamane, N.; Kozone, I.; Horimoto, K.; Shin-ya, K.; Asai, K.; et al. MIDDAS-M: motif-independent de novo detection of secondary metabolite gene clusters through the integration of genome sequencing and transcriptome data. PLoS ONE 2013, 8, e84028. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, E.; Levi, P.E. A Textbook of Modern Toxicology, 2nd ed.; Appleton and Lange: Stamford, CT, USA, 1997; pp. 1–496. [Google Scholar]
- Weschler, C.J.; Nazaroff, W.W. SVOC exposure indoors: Fresh look at dermal pathways. Indoor Air 2012, 22, 356–377. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J.; Nazaroff, W.W. Dermal uptake of organic vapors commonly found in indoor air. Environ. Sci. Technol. 2014, 48, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T. Advances in understanding benzene health effects and susceptibility. Annu. Rev. Public Health 2010, 31, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Wilbur, S.; Wohlers, D.; Paikoff, S.; Keith, L.S.; Faroon, O. ATSDR evaluation of health effects of benzene and relevance to public health. Toxicol. Ind. Health 2008, 24, 263–398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Steinmaus, C.; Eastmond, D.A.; Xin, X.K.; Smith, M.T. Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms. Mutat. Res. 2009, 681, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Nurmatov, U.B.; Tagiyeva, N.; Semple, S.; Devereux, G.; Sheikh, A. Volatile organic compounds and risk of asthma and allergy: a systematic review. Eur. Respir. Rev. 2015, 24, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Hermann, A. The Chemistry and Biology of Volatiles; Wiley: Hoboken, NJ, USA, 2010; pp. 1–428. [Google Scholar]
- Atkinson, R.; Tuazon, E.D.; Aschmann, S.M. Atmospheric chemistry of 2-pentanone and 2-heptanone. Environ. Sci. Technol. 2000, 34, 623–631. [Google Scholar] [CrossRef]
- Andreae, M.O. A new look at aging aerosols. Science 2009, 326, 1493–1494. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 2003, 37, 197–219. [Google Scholar] [CrossRef]
- Carlton, A.G.; Pinder, R.W.; Bhave, P.V.; Pouliot, G.A. To what extent can biogenic secondary organic aerosols (SOA) be controlled? Environ. Sci. Technol. 2010, 44, 3376–3380. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Dickschat, J.S. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 2007, 24, 814–842. [Google Scholar] [CrossRef] [PubMed]
- Piechulla, B.; Degenhardt, J. The emerging importance of microbial volatile organic compounds. Plant Cell Environ. 2014, 37, 811–812. [Google Scholar] [CrossRef] [PubMed]
- Kanchiswamy, C.N.; Mainoy, M.; Maffie, M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 2015, 6, 151. [Google Scholar] [CrossRef] [PubMed]
- Dudavera, N.; Pichersky, E. The Biology of Floral Scent; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–360. [Google Scholar]
- Chiron, N.; Michelot, D. Mushrooms odors, chemistry and role in the biotic interactions—A review. Cryptogam. Mycol. 2005, 26, 299–364. [Google Scholar]
- Korpi, A.; Jarnberg, J.; Pasanen, A.L. Microbial volatile organic compounds. Crit. Rev. Toxicol. 2009, 39, 139–193. [Google Scholar] [CrossRef] [PubMed]
- Lemfack, M.C.; Nickel, J.; Dunkel, M.; Preissner, R.; Piechulla, B. VOC: A database of microbial volatiles. Nucleic Acids Res. 2014, 42, D744–D748. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, K.; Larsen, K. Identification of volatile (micro) biological compounds from household waste and building materials by thermal desorption-Capillary gas chromatography-mass spectroscopy. J. High Res. Chrom. 1995, 18, 373–377. [Google Scholar] [CrossRef]
- Bennett, J.W.; Hung, R.; Lee, S.; Padhi, S. Fungal and bacterial volatile organic compounds; an overview and their role as ecological signaling agents. In The Mycota IX Fungal Interactions; Hock, B., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2013; pp. 373–393. [Google Scholar]
- Morath, S.; Hung, R.; Bennett, J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 30, 1–11. [Google Scholar] [CrossRef]
- Horner, E.W.; Miller, D.J. Microbial volatile organic compounds with emphasis on those arising from filamentous fungal contaminants of buildings. ASHRAE Transact. 2003, 109, 215–231. [Google Scholar]
- Hung, R.; Lee, S.; Bennett, J.W. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef] [PubMed]
- Magan, N.; Evans, P. Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. J. Stored Prod. Res. 2000, 36, 319–340. [Google Scholar] [CrossRef]
- Claeson, A. Volatile organic compounds from microorganisms—Identification and health effects. Ph.D. Thesis, Umeå University, Sweden, 20 October 2006. [Google Scholar]
- Bjurman, J. Release of MVOCs from microorganisms. In Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation; Salhammer, T., Ed.; Wiley-VCH: Weinheim, Germany, 1999; pp. 259–273. [Google Scholar]
- Wurzenberger, M.; Grosch, W. Stereochemistry of the cleavage of the 10-hydroperoxide isomer of linoleic acid to 1-octen-3-ol by a hydroperoxide lyase from mushrooms (Psalliota bispora). Biochem. Biophys. Acta 1984, 795, 163–165. [Google Scholar] [CrossRef]
- Assaf, S.; Hadar, Y.; Dosoretz, C.G. 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzyme Microb. Technol. 1997, 21, 484–490. [Google Scholar] [CrossRef]
- Min, D.B.; Smouse, T.H.; Chang, S.S. Flavor Chemistry of Lipid Foods; American Oil Chemists Society Publications: Urbana, IL, USA, 1989; pp. 1–462. [Google Scholar]
- Chen, H.; Fink, G.R. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 2006, 20, 1150–1161. [Google Scholar] [CrossRef] [PubMed]
- Tsitsigiannis, D.I.; Keller, N.P. Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol. Microbiol. 2006, 59, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Wessen, B.; Strom, G.; Palmgren, U.; Shoeps, K.O.; Nilsson, M. Analysis of microbial volatile organic compounds. In Microorganisms in Home and Indoor Work Environments; Flanagan, B., Samson, R.A., Mller, J.D., Eds.; Taylor and Francis: London, UK, 2001; pp. 267–274. [Google Scholar]
- Mason, S.; Cortes, D.; Horner, W.E. Detection of gaseous effluents and by-products of fungal growth that affect environments. HVAC&R 2010, 10, 109–121. [Google Scholar]
- Wadman, M.K.; de Vries, R.P.; Kalkhove, S.I.C.; Veldink, G.A.; Vliegenthart, J.F.G. Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger. BMC Microbiol. 2009, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Chan, H.W.-S. (Ed.) Autoxidation of Unsaturated Lipids; Academic Press: London, UK, 1987; pp. 1–296.
- Fraatz, M.A.; Zorn, H. Fungal Flavours. In The Mycota X: Industial Applications. 2; Hofrichter, M., Ed.; Springer-Verlag: Berlin, Germany, 2010; pp. 249–264. [Google Scholar]
- Muller, T.; Thissen, R.; Braun, S.; Dott, W.; Fischer, G. (M)VOC and composting facilities. Part 2. (M)VOC dispersal in the environment. Environ. Sci. Pollut. Res. Int. 2004, 11, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Alarie, Y. Irritating properties of airborne materials to the upper respiratory tract. Arch. Environ. Health 1996, 13, 433–449. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Standard test method for estimating sensory irritancy of airborne chemicals. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 1984; pp. E981–E984. [Google Scholar]
- Nakajima, D.; Ishii, R.; Kageyama, S.; Onji, Y.; Mneki, S.; Morooka, N.; Takatori, K.; Goto, S. Genotoxicty of microbial volatile organic compounds. J. Health Sci. 2006, 52, 148–153. [Google Scholar] [CrossRef]
- Kreja, L.; Seidel, H.J. Evaluation of the genotoxic potential of some microbial volatile organic compounds (MVOC) with the comet assay, the micronucleus assay and the HPRT gene mutation assay. Mutat. Res. 2002, 513, 143–150. [Google Scholar] [CrossRef]
- Splivallo, R.; Novero, M.; Bertea, C.; Bossi, S.; Bonfante, P. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Pathologist 2007, 175, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Hung, R.; Lee, S.; Bennett, J.W. The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana. Mycology 2014, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hung, R.; Schink, A.; Mauro, J.; Bennett, J. Arabidopsis thaliana for testing the phytotoxicity of volatile organic compounds. Plant Growth Regul. 2014, 74, 177–186. [Google Scholar] [CrossRef]
- Strobel, G.A.; Dirkse, E.; Sears, J.; Markworth, C. Volatile antimicrobials from Muscodor albus a novel endophytic fungus. Microbiology 2001, 147, 2943–2950. [Google Scholar] [CrossRef] [PubMed]
- Stinson, M.; Ezra, D.; Hess, W.M.; Sears, J.; Strobel, G. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci. 2003, 165, 913–922. [Google Scholar] [CrossRef]
- Alpha, C.J.; Campos, M.; Jacobs-Wagner, C.; Strobel, S.A. Mycofumigation by the volatile organic compound producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl. Environ. Microbiol. 2015, 81, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.B.; Nash, H.A. Use of Drosophila mutants to distinguish among volatile general anesthetics. Proc. Natl. Acad. Sci. USA 1994, 91, 2135–2139. [Google Scholar] [CrossRef] [PubMed]
- Wasserkort, R.; Koller, T. Screening toxic effects of volatile organic compounds using Drosophila melanogaster. J. Appl. Toxicol. 1997, 17, 119–125. [Google Scholar] [CrossRef]
- Rand, M.D. Drosophotoxicology: The growing potential for Drosophila in neurotoxicology. Neurotoxicol. Teratol. 2009, 32, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, A.A.; Masurekar, P.; Bennett, J.W. Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol. Sci. 2010, 117, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, A.A.; Zaman, T.; Morath, S.U.; Pu, D.C.; Bennett, J.W. Drosophila melanogaster as a model to characterize fungal volatile organic compounds. Environ. Toxicol. 2014, 29, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, A.A.; Masurekar, P.; Hossain, M.; Richardson, J.R.; Bennett, J.W. Signaling pathways involved in 1-octen-3-ol-mediated neurotoxicity in Drosophila melanogaster: Implication in Parkinson’s disease. Neurotox. Res. 2014, 25, 183–91. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, A.A.; Hossain, M.M.; Bernstein, A.I.; Miller, G.W.; Richardson, J.R.; Bennett, J.W. The fungal derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 19561–19566. [Google Scholar] [CrossRef] [PubMed]
- Haynes, R.L.; Szweda, L.; Pickin, K.; Welker, M.E.; Townsend, A.J. Structure-activity relationships for growth inhibition and induction of apoptosis by 4-hydroxy-2-nonenal in rat 264.7 cells. Mol. Pharmacol. 2000, 58, 788–794. [Google Scholar] [PubMed]
- Kreja, L.; Seidel, H. On the cytotoxicity of some microbial volatile organic compounds as studied in the human lung cell line A549. Chemosphere 2002, 49, 105–110. [Google Scholar] [CrossRef]
- Kilburn, K.H. Neurobehavioral and pulmonary impairment in 105 adults with indoor exposure to molds compared to 100 exposed to chemicals. Toxicol. Ind. Health 2009, 25, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Walinder, R.; Ernstgard, L.; Norback, D.; Wieslander, G.; Johanson, G. Acute effects of 1-octen-3-ol, a microbial volatile organic compound (MVOC)—An experimental study. Toxicol. Lett. 2008, 181, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, A.A.; Moore, J.C.; Cohen, R.I.; Bennett, J.W. A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-o1 in human embryonic stem cells. Mycopathologia 2012, 173, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, A.A.; Bennett, J.W. A common fungal volatile organic compound induces a nitric oxide mediated inflammatory response in Drosophila melanogaster. Sci. Rep. 2014, 4, 3833. [Google Scholar] [CrossRef] [PubMed]
- EPA—Environmental Protection Agency. 2015. Available online: http://www.epa.gov/opp00001/chem_search/reg_actions/registration/fs_G-126_05-Jul-07.pdf (accessed on 16 June 2015).
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. Available online: http://www.epa.gov/iaq/pdfs/sick_building_factsheet.pdf (accessed on 12 July 2015).
- Polizzi, V.; Adams, A.; Picco, A.; Adriaens, E.; Lenoir, J.; Peteghem, C.; Saeger, S.; Kimpe, N. Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Build. Environ. 2011, 46, 945–954. [Google Scholar] [CrossRef]
- Baechler, M.D.; Hadley, D.L.; Marseille, T.J.; Berry, M.A. Sick Building Syndrome. Sources, Health Effects, Mitigation, 1st ed.; Noyes Data Corporation: Park Ridge, NJ, USA, 1991; pp. 1–328. [Google Scholar]
- Burge, H.A. Health effects of biological contaminants. In Indoor Air and Human Health; CRC Press/Taylor and Francis Group: Boca Raton, FL, USA, 1996; pp. 171–178. [Google Scholar]
- Straus, D.C. Sick building syndrome. Advances in Applied Microbiology; Elsevier Academic Press: Amsterdam, The Netherlands, 2004; Volume 55, pp. 1–474. [Google Scholar]
- Pestka, J.J.; Yike, I.; Dearborn, D.G.; Ward, M.D.; Harkema, J.R. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: New insights into a public health enigma. Toxicol. Sci. 2008, 104, 4–26. [Google Scholar] [CrossRef] [PubMed]
- Redlich, C.A.; Sparer, J.; Cullen, M.R. Sick-building syndrome. The Lancet 1997, 349, 1013–1016. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee on Damp Indoor Spaces and Health. Damp Indoor Spaces and Health; National Academies: Washington, DC, USA, 2004; pp. 1–355. [Google Scholar]
- Heseltine, E.; Rosen, J. World Health Organization Guidelines for Indoor Air Quality: Dampness and Mould; Druckpartner Moser: Rhein, Germany, 2009; pp. 1–248. [Google Scholar]
- Li, D.W.; Yang, C.S. Fungal contamination as a major contributor to sick building syndrome. Adv. Appl. Microbiol. 2004, 55, 31–112. [Google Scholar] [PubMed]
- Bush, R.K.; Portnoy, J.M.; Saxon, A.; Terr, A.I.; Wood, R.A. The medical effects of mold exposure. J. Allergy Clin. Immunol. 2006, 117, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Dales, R.E.; Burnett, R.; Zwanenburg, H. Adverse health effects among adults exposed to home dampness and molds. Am. Rev. Respir. Dis. 1991, 143, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Hendry, K.M.; Cole, E.C. A review of mycotoxins in indoor air. J. Toxic. Environ. Health 1993, 38, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Johanning, E. Airborne fungi and mycotoxins. In Manual of Environmental Microbiology; Hurst, C., Crawford, R.L., Garland, J.L., Lipson, D.A., Mills, A.L., Stetzenback, L.D., Eds.; ASM Press: Washington, DC, USA, 1996; pp. 651–660. [Google Scholar]
- Robbins, C.A.; Swenson, L.J.; Nealley, M.L.; Kelman, B.J.; Gots, R.E. Health effects of mycotoxins in indoor air: a critical review. Appl. Occup. Environ. Hyg. 2000, 15, 773–784. [Google Scholar] [PubMed]
- Straus, D.C. Molds, mycotoxins and sick building syndrome. Toxicol. Ind. Health 2009, 25, 617–635. [Google Scholar] [CrossRef] [PubMed]
- Peraica, M.; Radic, B.; Luci, A.; Pavlovic, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar] [PubMed]
- Rao, C.Y.; Burge, H.A.; Brain, J.D. The time course of response to intratracheally instilled toxic Stachybotrys chartarum spores in rats. Mycopathologia 2000, 149, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.M.; Ghannoum, M.A. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin. Microbiol. Rev. 2003, 16, 144–172. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.A.; Terr, A.I.; Jacobs, L.; Charlesworth, E.N.; Bardana, E.J. Toxic mold: phantom risk vs. science. Ann. Allergy Asthma Immunol. 2003, 91, 222–232. [Google Scholar] [CrossRef]
- Hardin, B.D.; Kelman, B.J.; Saxon, A. Adverse human health effects associated with molds in the indoor environment. J. Occup. Environ. Med. 2003, 45, 470–478. [Google Scholar] [PubMed]
- Mølhave, L. Controlled experiments for studies of the sick building syndrome. Ann. N. Y. Acad. Sci. 1992, 641, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Mølhave, L.; Liu, Z.; Jørgensen, A.H.; Pedersen, O.F.; Kjægaard, S.K. Sensory and physiological effects on humans of combined exposures to air temperatures and volatile organic compounds. Indoor Air 1993, 3, 155–169. [Google Scholar] [CrossRef]
- Mølhave, L. Volatile organic compounds and the sick building syndrome. In Environmental Toxicants: Human Exposures and their Health Effects, 3rd ed.; Lippmann, M., Ed.; Wiley-Interscience: New York, NY, USA, 2009; pp. 241–256. [Google Scholar]
- Gray, M.R.; Thrasher, J.C.; Crago, R.; Madison, R.A.; Arnold, L.; Campbell, A.W.; Vojdani, A. Mixed mold mycotoxicoses: immunological changes in humans following exposure in water-damaged buildings. Arch. Environ. Health 2003, 58, 410–420. [Google Scholar] [PubMed]
- Empting, L.D. Neurologic and neuropsychiatric syndrome features of mold and mycotoxin exposure. Toxicol. Ind. Health 2009, 25, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Kilburn, K.H. Inhalation of molds and mycotoxins. Eur. J. Oncol. 2002, 7, 197–202. [Google Scholar]
- Kilburn, K.H. Role of molds and mycotoxins in being sick in buildings: Neurobehavioral and pulmonary impairment. Adv. Appl. Microbiol. 2004, 55, 339–359. [Google Scholar] [PubMed]
- Graniti, A. The evolution of the toxic concept in plant pathology. In Phytotoxins in Plant Diseases; Wood, R.K., Ballio, A., Graniti, A., Eds.; Academic Press: New York, NY, USA, 1972; pp. 1–18. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennett, J.W.; Inamdar, A.A. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins? Toxins 2015, 7, 3785-3804. https://doi.org/10.3390/toxins7093785
Bennett JW, Inamdar AA. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins? Toxins. 2015; 7(9):3785-3804. https://doi.org/10.3390/toxins7093785
Chicago/Turabian StyleBennett, Joan W., and Arati A. Inamdar. 2015. "Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?" Toxins 7, no. 9: 3785-3804. https://doi.org/10.3390/toxins7093785
APA StyleBennett, J. W., & Inamdar, A. A. (2015). Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins? Toxins, 7(9), 3785-3804. https://doi.org/10.3390/toxins7093785