Monitoring the Temporal Expression of Genes Involved in Ochratoxin A Production of Aspergillus carbonarius under the Influence of Temperature and Water Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of Ecophysiological Factors on Growth and Toxin Production over Time
2.2. Impact of Ecophysiological Factors upon Gene Regulation over Time
3. Conclusions
4. Materials and Methods
4.1. Fungal Isolates and Culture Media
4.2. OTA Determination and Growth
4.3. RNA Isolation and cDNA Synthesis
4.4. Real Time PCR
4.5. Data Analysis
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization (WHO). Selected Mycotoxins: Ochratoxins, Trichothecenes, Ergot. Environ. Health Criteria 1990, 105, 1–260. [Google Scholar]
- Battilani, P.; Barbano, C.; Marin, S.; Sanchis, V.; Kozakiewicz, Z.; Magan, N. Mapping of Aspergillus Section Nigri in Southern Europe and Israel based on geostatistical analysis. Int. J. Food Microbiol. 2006, 111 (Suppl. 1), S72–S82. [Google Scholar] [CrossRef] [PubMed]
- Bayman, P.; Baker, J.L. Ochratoxins: A global perspective. Mycopathologia 2006, 162, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Bruno, K.S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S.E. New insight into the ochratoxin A biosynthetic pathway through deletion of a nonribosomal peptide synthetase gene in Aspergillus carbonarius. Appl. Environ. Microbiol. 2012, 77, 8208–8218. [Google Scholar] [CrossRef] [PubMed]
- Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 2009, 48, 4688–4716. [Google Scholar] [CrossRef] [PubMed]
- Geisen, R.; Schmidt-Heydt, M.; Karolewiez, A. A gene cluster of the ochratoxin A biosynthetic genes in Penicillium. Mycotoxin Res. 2006, 22, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Perrone, G.; Solfrizzo, M.; Epifani, F.; Abbas, A.; Dodson, A.D.W.; Mule, G. Identification and characterization of the polyketide synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food Microbiol. 2014, 179, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Sempere, A.; Marin, S.; Sanchis, V.; Ramos, A.J. VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food Microbiol. 2013, 166, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Mohammadreza, K.; Neda, K. The effects of different ecophysiological factors on ochratoxin A production. Environ. Toxicol. Pharm. 2011, 32, 113–121. [Google Scholar]
- Mateo, F.; Gadea, R.; Medina, A.; Mateo, R.; Jimenez, M. The effects of different ecophysiological factors on ochratoxin A production predictive assessment of ochratoxin A accumulation in grape juice based-medium by Aspergillus carbonarius using neural networks. J. Appl. Microbiol. 2009, 107, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Kapetanakou, A.; Panagou, E.Z.; Gialitaki, M.; Drosinos, E.M.; Skandamis, P.N. Evaluating the combined effect of water activity, pH and temperature on ochratoxin A production by Aspergillus ochraceus and Aspergillus carbonarius on culture medium and Corinth raisins. Food Control 2009, 20, 725–732. [Google Scholar] [CrossRef]
- Romero, S.M.; Comerio, R.M.; Larumbe, G.; Ritieni, A.; Vaamonde, G.; Fernández Pinto, V. Toxigenic fungi isolated from dried vine fruits in Argentina. Int. J. Food Microbiol. 2005, 104, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Lappa, I.K.; Kizis, D.; Natskoulis, P.I.; Panagou, E.Z. Comparative study of growth responses and screening of intra-specific OTA production kinetics by A. carbonarius isolated from grapes. Front. Microbiol. 2015, 6, 502. [Google Scholar] [CrossRef] [PubMed]
- Belli, N.; Marin, S.; Sanchis, V.; Ramos, A.J. Influence of water activity and temperature of growth of Aspergillus section Nigri strains isolated from grapes. Int. J. Food Microbiol. 2004, 96, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.; Aldred, D.; Magan, N. Impact of ecological factors on the growth and ochratoxin A production by Aspergillus carbonarius from different regions of Europe. Asp. Appl. Biol. 2003, 68, 109–116. [Google Scholar]
- Pardo, E.; Marín, S.; Sanchis, V.; Ramos, A.J. Impact of relative humidity and temperature on visible fungal growth and OTA production of ochratoxigenic Aspergillus ochraceus isolates on grapes. Food Microbiol. 2004, 22, 383–389. [Google Scholar] [CrossRef]
- Bellí, N.; Ramos, A.J.; Coronas, I.; Sanchis, V.; Marín, S. Aspergillus carbonarius growth and ochratoxin A production on a synthetic grape medium in relation to environmental factors. J. Appl. Microbiol. 2005, 98, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Marín, S.; Bellí, N.; Lasram, S.; Chebil, S.; Ramos, A.J.; Ghorbel, A.; Sanchis, V. Kinetics of ochratoxin A production and accumulation by Aspergillus carbonarius on synthetic grape medium at different temperature levels. J. Food Sci. 2006, 71, 196–200. [Google Scholar] [CrossRef]
- Tassou, C.C.; Natskoulis, P.I.; Panagou, E.Z.; Spyropoulos, A.E.; Magan, N. Impact of water activity and temperature on growth and ochratoxin A production of two Aspergillus carbonarius isolates from wine grapes in Greece. J. Food Prot. 2007, 70, 2884–2888. [Google Scholar] [CrossRef] [PubMed]
- Esteban, A.; Abarca, M.L.; Bragulat, M.R.; Cabanes, F.J. Study of the effect of water activity and temperature on ochratoxin A production by Aspergillus carbonarius. Food Microbiol. 2006, 23, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Pardo, E.; Sanchis, V.; Ramos, A.J.; Marín, S. Non-specificity of nutritional substrate for ochratoxin A production by isolates of Aspergillus ochraceus. Food Microbiol. 2006, 23, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Lappa, I.K.; Simini, E.; Panagou, E.Z. In vitro evaluation of essential oils against Aspergillus carbonarius isolates and their effects on Ochratoxin A related gene expression in synthetic grape medium. Food Control 2017, 73, 71–80. [Google Scholar] [CrossRef]
- Tassou, C.C.; Natskoulis, P.I.; Magan, N.; Panagou, E.Z. Effect of temperature and water activity on growth and ochratoxin A production boundaries of two Aspergillus carbonarius isolates on a simulated grape juice medium. J. Appl. Microbiol. 2009, 107, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Gomez, F.; Romero-Gil, V.; Bautista-Gallego, J.; Garrido-Fernández, A.; Arroyo-López, F.N. Multivariate analysis to discriminate yeast strains with technological applications in table olive processing. World J. Microbiol. Biotechnol. 2012, 28, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Magan, N.; Medina, A. Integrating gene expression, ecology and mycotoxin production by Fusarium and Aspergillus species in relation to interacting environmental factors. World Mycotoxin J. 2016, 9, 673–684. [Google Scholar] [CrossRef]
- Medina, A.; Schmidt-Heydt, M.; Cárdenas-Chávez, D.L.; Parra, R.; Geisen, R.; Magan, N. Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors. J. R. Soc. Interface 2013, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Fedorova, N.D.; Montalbano, B.G.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W.; Nierman, W.C. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol. Lett. 2011, 322, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Solfrizzo, M.; Epifani, F.; Panzarini, G.; Perrone, G. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium. Int. J. Food Microbiol. 2016, 217, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.O.; Barroso, V.M.; Andrade, L.J.; Pereira, G.H.A.; Ferreira-Castro, F.L.; Duarte, A.P.; Correa, B. FUM Gene Expression Profile and Fumonisin Production by Fusarium verticillioides inoculated in Bt and Non-Bt Maize. Front. Microbiol. 2015, 6, 1503. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, I.; Susca, A.; Mulè, G.; Ritieni, A.; Ferracane, R.; Marocco, A. Effects of temperature and water activity on FUM2 and FUM21 gene expression and fumonisin B1 production in Fusarium verticillioides. Eur. J. Plant Pathol. 2012, 134, 685–695. [Google Scholar] [CrossRef]
- Sonenberg, N.; Hinnebusch, A.G. Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell 2009, 136, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Pietri, A.; Bertuzzi, T.; Languasco, L.; Giorni, P.; Kozakiewicz, Z. Occurrence of ochratoxin A-producing fungi in grapes grown in Italy. J. Food Prot. 2003, 66, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Kizis, D.; Natskoulis, P.; Nychas, G.J.E.; Panagou, E.Z. Biodiversity and ITS-RFLP Characterisation of Aspergillus Section Nigri Isolates in Grapes from Four Traditional Grape-Producing Areas in Greece. PLoS ONE 2014, 9, e93923. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Bruno, S.K.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, E.S. New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius. Appl. Environ. Microbiol. 2012, 78, 8208–8218. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.; Perrone, G.; Gambacorta, L.; Epifani, F.; Solfrizzo, M.; Gallo, A. Identification of a Halogenase Involved in the Biosynthesis of Ochratoxin A in Aspergillus carbonarius. Appl. Environ. Microbiol. 2016, 82, 5631–5641. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.; Parra, R.; Aldred, D.; Magan, N. Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel. J. Appl. Microbiol. 2004, 97, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef] [PubMed]
Data Set | DF | Sum of Squares | F Ratio | Prob > F |
---|---|---|---|---|
Strain (S) | 1 | 102,931.82 | 152.7185 | <0.0001 |
Temperature (T) | 2 | 137,844.54 | 102.259 | <0.0001 |
aw | 1 | 200,240.91 | 297.0947 | <0.0001 |
Time (t) | 2 | 153,981.37 | 114.23 | <0.0001 |
T × aw | 2 | 88,487.9 | 65.6441 | <0.0001 |
t × aw | 2 | 100,385.72 | 74.4705 | <0.0001 |
T × t | 4 | 60,879.31 | 22.5814 | <0.0001 |
T × aw × t | 4 | 43,630.88 | 16.1836 | <0.0001 |
S × T | 2 | 52,627.61 | 39.0414 | <0.0001 |
S × aw | 1 | 86,572.75 | 128.4468 | <0.0001 |
S × T × aw | 2 | 45,901.93 | 34.052 | <0.0001 |
S × T | 2 | 40,530.5 | 30.0673 | <0.0001 |
S × T × t | 4 | 25,880.57 | 9.5997 | <0.0001 |
S × T × t × aw | 4 | 23,840.98 | 8.8431 | <0.0001 |
S × t × aw | 2 | 39,596.13 | 29.3741 | <0.0001 |
A. | |||
Genes | Dataset | p Value | F Ratio |
AcOTAnrps | temperature | 0.0541 | 2.109 |
(p < 0.0103) | aw | 0.6840 | 0.0005 |
time | 0.2600 | 0.5376 | |
strain | 0.0016 ** | 10.4009 | |
AcOTApks | temperature | <0.00021 *** | 3.9714 |
(p < 0.0001) | aw | 0.2339 | 0.6372 |
time | 0.0476 * | 2.799 | |
strain | <0.0001*** | 37.2727 | |
laeA | temperature | 0.0158 * | 3.567 |
(p < 0.0028) | aw | 0.0368 * | 4.1134 |
time | 0.9761 | 0.1169 | |
strain | 0.0045 ** | 8.5874 | |
B. | |||
Strain | Cross Effect | p value | F Ratio |
Ac29 | AcOTAnrps | ||
time x temperature | 0.0061 ** | 6.1435 | |
AcOTApks | |||
time x temperature | 0.0011 ** | 8.7861 | |
laeA | |||
time x temperature | 0.0047 ** | 6.5426 | |
temperature x aw | 0.0023 ** | 11.2779 | |
time x temperature x aw | 0.0018 ** | 7.9657 | |
5010 | AcOTApks | ||
time x temperature x aw | <0.0001 *** | 13.7201 | |
laeA | |||
time x temperarture | <0.0001 *** | 20.863 | |
time x aw | 0.042 * | 4.5396 | |
time x temperature x aw | 0.0023 ** | 7.6165 |
Primer Pair | Gene | Nucleotide Sequences 5′–3′ | Reference |
---|---|---|---|
F-pks | AcOTApks | GTC AAG GTC GGG TGC TAC AA | Lappa et al. (2017) |
R-pks | TCG GAA TGA TAC GCG ACT TT | ||
F-nrps | AcOTAnrps | CTC CAC CCA TCC TCC CGT TC | Crespo Sempere et al. (2013) |
R-nrps | AAT CCA TGT CCT CAC CAT CGC | ||
F-laea | laeA | CAC CTA TAC AAC CTC CGA ACC AC | Crespo Sempere et al. (2013) |
R-laea | GGT TCG GCC AAC CGA CGA CGC TG | ||
F-tubβ | β-tubulin | CGC ATG AAC GTC TAC TTC AAC GAG | Crespo Sempere et al. (2013) |
R-tubβ | AGT TGT TAC CAG CAC CGG ACT |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lappa, I.K.; Kizis, D.; Panagou, E.Z. Monitoring the Temporal Expression of Genes Involved in Ochratoxin A Production of Aspergillus carbonarius under the Influence of Temperature and Water Activity. Toxins 2017, 9, 296. https://doi.org/10.3390/toxins9100296
Lappa IK, Kizis D, Panagou EZ. Monitoring the Temporal Expression of Genes Involved in Ochratoxin A Production of Aspergillus carbonarius under the Influence of Temperature and Water Activity. Toxins. 2017; 9(10):296. https://doi.org/10.3390/toxins9100296
Chicago/Turabian StyleLappa, Iliada K., Dimosthenis Kizis, and Efstathios Z. Panagou. 2017. "Monitoring the Temporal Expression of Genes Involved in Ochratoxin A Production of Aspergillus carbonarius under the Influence of Temperature and Water Activity" Toxins 9, no. 10: 296. https://doi.org/10.3390/toxins9100296
APA StyleLappa, I. K., Kizis, D., & Panagou, E. Z. (2017). Monitoring the Temporal Expression of Genes Involved in Ochratoxin A Production of Aspergillus carbonarius under the Influence of Temperature and Water Activity. Toxins, 9(10), 296. https://doi.org/10.3390/toxins9100296