Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Species Selection
4.2. Venom Preparation
4.3. In Vivo Assays
- (1)
- Chicken Assay. Venom solutions were applied to three days old chicken embryos, and mortality was ascertained after 24 h by candling the eggs. See [30] for details on this method.
- (2)
- Zebrafish Assay. WT (ABTL) zebrafish embryos were injected with serially diluted venom solutions at three days post fertilization (DPF) in sample sizes of 20 embryos per venom concentration. Embryos were anesthetized with 200 μg/mL buffered 3-aminobenzoic acid (Tricaine, Sigma-Aldrich, St. Louis, MO, USA), in eggwater (60 μg/mL Instant Ocean Sea Salt, (Spectrum Brands, Blacksburg, VA, USA)), and venom solutions were delivered intravenously in 5 nL volume by injection into the Duct of Cuvier as previously described [50]. Survival was monitored at 24 h post injection by visual inspection of heartbeat. Embryonic bodyweight was estimated as the average drained weight of 30 embryos at three DPF, measured in triplicate on a high precision scale.
- (3)
- Mealworm Assay. Every mealworm was individually weighed on a high precision scale. Venom solutions were applied to mealworms of 127.8 ± 14.1 mg body mass by using a 10 µL Hamilton syringe (Hamilton, Reno, NV, USA). Venom was injected laterally on the ventral side, between the sixth and seventh abdominal segment, keeping the needle as close to the body wall as possible to avoid damaging the internal organs. Different dosages of venoms were tested; 0.125, 0.25, 0.5, 1, and 2 µg/mg bodyweight, with 12 individuals per treatment. As control, individuals were injected with Hank’s balanced salt solution, (n = 12 per venom treatment). Higher concentrations for Babycurus jacksoni and Buthus ibericus where needed to calculate an accurate LD50 and therefore additional treatments of 4 and 2.8 µg/mg bodyweight respectively was performed. Mortality was assessed over a five-day period by looking at color change (mealworms turn black quickly after death) and by applying physical stimuli to elicit a response.
- (4)
- Waxworm Assay. The waxworm assay was similar to the mealworm assay. Waxworms at the last instar before pupation were used. Different dosages of venoms were tested, 0.1, 0.25, 0.5, and 1 µg/mg bodyweight, with 12 individuals per treatment. As control, individuals were injected with Hank’s balanced salt solution (n = 12 per venom treatment). Additional treatments for Centruroides gracilis and Androctonus australis were needed to accurately calculate LD50, 2 and 0.025 µg/mg bodyweight respectively. Mortality was assessed over a five-day period by looking at color change (waxworms turn brown/black quickly after death) and by applying physical stimuli to elicit a response.
- (5)
- Mouse Assay. The LD50 test was carried out on male albino Swiss mice of approximately 19 g body weight. Different amounts of venom from G. grandidieri were tested in parallel; 5.2 mg/kg, 21.1 mg/kg and 50 mg/kg (group 1, group 2, and group 3 respectively). Three mice were used in each dose and in the negative control. Injections were performed intraperitoneally using physiological saline solution as vehicle and negative control. We analyzed the intoxication level during the first 2 h after the injections, evaluating any recovery after 20 h after the injection as described by Valdez-Cruz et al. [51] and Estrada-Gomez et al. [52]. The intoxication levels were called ‘non-toxic’ when the animals showed no symptoms of envenoming within 20 h after testing, or showed the same symptoms as the control mice injected with 100 μL of saline.
4.4. Data Analysis
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.A.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu. Rev. Genom. Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef] [PubMed]
- Barlow, A.; Pook, C.E.; Harrison, R.A.; Wuster, W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. Lond. B 2009, 276, 2443–2449. [Google Scholar] [CrossRef] [PubMed]
- Zlotkin, E.; Milman, T.; Sion, G.; Werner, Y.L. Predatory behaviour of gekkonid lizards, Ptyodactylus spp., towards the scorpion Leiurus quinquestriatus hebraeus, and their tolerance of its venom. J. Nat. Hist. 2003, 37, 641–646. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, B.; Zhu, S. Target-driven evolution of scorpion toxins. Sci. Rep. 2015, 5, 14973. [Google Scholar] [CrossRef] [PubMed]
- Bosmans, F.; Martin-Eauclaire, M.-F.; Tytgat, J. Differential effects of five “classical” scorpion beta-toxins on rNav1.2a and DmNav1 provide clues on species-selectivity. Toxicol. Appl. Pharmacol. 2007, 218, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, A.M.C.; Martin-Eauclaire, M.-F.; Rochat, H.; Figueiredo, S.G.; Kalapothakis, E.; Afonso, L.C.C.; De Lima, M.E. Purification, amino-acid sequence and partial characterization of two toxins with anti-insect activity from the venom of the South American scorpion Tityus bahiensis (Buthidae). Toxicon 2001, 39, 1009–1019. [Google Scholar] [CrossRef]
- Arnon, T.; Potikha, T.; Sher, D.; Elazar, M.; Mao, W.; Tal, T.; Bosmans, F.; Tytgat, J.; Ben-Arie, N.; Zlotkin, E. BjalphaIT: A novel scorpion alpha-toxin selective for insects–unique pharmacological tool. Insect Biochem. Mol. Biol. 2005, 35, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Gurevitz, M.; Karbat, I.; Cohen, L.; Ilan, N.; Kahn, R.; Turkov, M.; Stankiewicz, M.; Stühmer, W.; Dong, K.; Gordon, D. The insecticidal potential of scorpion beta-toxins. Toxicon 2007, 49, 473–489. [Google Scholar] [CrossRef] [PubMed]
- D’Suze, G.; Sevcik, C.; Corona, M.; Zamudio, F.Z.; Batista, C.V.F.; Coronas, F.I.; Possani, L.D. Ardiscretin a novel arthropod-selective toxin from Tityus discrepans scorpion venom. Toxicon 2004, 43, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Sunagar, K.; Moran, Y. The rise and fall of an evolutionary innovation: Contrasting strategies of venom evolution in ancient and young animals. PLoS Genet. 2015, 11, e1005596. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, R.; Krebs, J.R. Arms races between and within species. Proc. R. Soc. Lond. B 1979, 205, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Brodie, E.D.; Brodie, E.D. Predator-Prey Arms Races: Asymmetrical selection on predators and prey may be reduced when prey are dangerous. Bioscience 1999, 49, 557–568. [Google Scholar] [CrossRef]
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.E.; Johnson, P.J.; Slater, D.; Watkins, R.W.; Macdonald, D.W. Learned food aversion with and without an odour cue for protecting untreated baits from wild mammal foraging. Appl. Anim. Behav. Sci. 2007, 102, 410–428. [Google Scholar] [CrossRef]
- Smith, S.M. Innate recognition of coral snake pattern by a possible avian predator. Science 1975, 187, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Brodie, E.D., III; Janzen, F. Experimental Studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 1995, 9, 186–190. [Google Scholar] [CrossRef]
- Kikuchi, D.W.; Pfennig, D.W. Predator cognition permits imperfect coral snake mimicry. Am. Nat. 2010, 176, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Langley, W. The effect of prey defenses on the attack behavior of the southern grasshopper mouse (Onychomys torridus). Ethology 2010, 56, 115–127. [Google Scholar] [CrossRef]
- Rowe, A.H.; Rowe, M.P. Risk assessment by grasshopper mice (Onychomys spp.) feeding on neurotoxic prey (Centruroides spp.). Anim. Behav. 2006, 71, 725–734. [Google Scholar] [CrossRef]
- Brandão, R.A.; Motta, P.C. Circumstantial evidences for mimicry of scorpions by the neotropical gecko Coleodactylus brachystoma (Squamata, Gekkonidae) in the Cerrados of central Brazil. Phyllomedusa 2005, 4, 139–145. [Google Scholar] [CrossRef]
- Autumn, K.; Han, B. Mimicry of scorpions by juvenile lizards, Teratoscincus roborowskii (Gekkonidae). Chin. Herpetol. Res. 1989, 2, 60–64. [Google Scholar]
- Cloudsley-Thompson, J.L. Ecophysiology of Desert Arthropods and Reptiles; (New York alk. Paper)r3540520570 (Berlin alk. Paper); Springer Science & Business Media: New York, NY, USA, 1991; ISBN 0387520570. [Google Scholar]
- Krifi, M.N.; Marrakchi, N.; el Ayeb, M.; Dellagi, K. Effect of some variables on the in vivo determination of scorpion and viper venom toxicities. Biologicals 1998, 26, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Zlotkin, E.; Fraenkel, G.; Miranda, F.; Lissitzky, S. The effect of scorpion venom on blowfly larvae—A new method for the evaluation of scorpion venoms potency. Toxicon 1971, 9, 1–8. [Google Scholar] [CrossRef]
- Nisani, Z.; Hayes, W.K. Defensive stinging by Parabuthus transvaalicus scorpions: Risk assessment and venom metering. Anim. Behav. 2011, 81, 627–633. [Google Scholar] [CrossRef]
- Van der Meijden, A.; Coelho, P.; Rasko, M. Variability in venom volume, flow rate and duration in defensive stings of five scorpion species. Toxicon 2015, 100, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Olson, H.; Betton, G.; Robinson, D.; Thomas, K.; Monro, A.; Kolaja, G.; Lilly, P.; Sanders, J.; Sipes, G.; Bracken, W.; et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 2000, 32, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Sells, P.G.; Laing, G.D.; Theakston, R.D. An In Vivo but insensate model for the evaluation of antivenoms (ED(50)) using fertile hens’ eggs. Toxicon 2001, 39, 665–668. [Google Scholar] [CrossRef]
- Sells, P.; Ioannou, P.; Theakston, R. A humane alternative to the measurement of the lethal effects (LD50) of non-neurotoxic venoms using hens’ eggs. Toxicon 1998, 36, 985–991. [Google Scholar] [CrossRef]
- Van der Valk, T.; Van der Meijden, A. Toxicity of scorpion venom in chick embryo and mealworm assay depending on the use of the soluble fraction versus the whole venom. Toxicon 2014, 88, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Manzoli-Palma, M.F.; Gobbi, N.; Palma, M.S. Insects as biological models to assay spider and scorpion venom toxicity. J. Venom. Anim. Toxins 2003, 9, 174–185. [Google Scholar] [CrossRef]
- Van der Meijden, A.; Lobo Coelho, P.; Sousa, P.; Herrel, A. Choose your weapon: Defensive behavior is associated with morphology and performance in scorpions. PLoS ONE 2013, 8, e78955. [Google Scholar] [CrossRef] [PubMed]
- Watt, D.; Simard, J. Neurotoxic proteins in scorpion venom. Toxin Rev. 1984, 3, 181–221. [Google Scholar] [CrossRef]
- Habermehl, G.G. Gift-Tiere und ihre Waffen: Eine Einführung für Biologen, Chemiker und Mediziner; Ein Leitfaden für Touristen, 5th ed.; Springer: Heidelberg, Germany, 1994. [Google Scholar]
- Johnson, B.D.; Tullar, J.C.; Stahnke, H.L. A quantitative protozoan bio-assay method for determining venom potencies. Toxicon 1966, 3, 297–300. [Google Scholar] [CrossRef]
- Zlotkin, E.; Rathmayer, W.; Lissitzky, S. Chemistry, specificity and action of arthropod toxic proteins derived from scorpion venoms. In Neurotoxic Action of Pesticides and Venoms; Shankland, P., Flattum, E., Eds.; Hollingworth-Plenum Press: New York, NY, USA, 1978; pp. 227–246. [Google Scholar]
- Gwee, M.C.E.; Wong, P.T.-H.; Gopalakrishnakone, P.; Cheah, L.S.; Low, K.S.Y. The black scorpion Heterometrus longimanus: Pharmacological and biochemical investigation of the venom. Toxicon 1993, 31, 1305–1314. [Google Scholar] [CrossRef]
- Bosmans, F.; Brone, B.; Sun, Y.-M.; Zhu, R.-H.; Xiong, Y.-M.; Wang, D.-C.; Van Kerkhove, E.; Tytgat, J. Pharmacological comparison of two different insect models using the scorpion-like toxin BmK M1 from Buthus martensii Karsch. Protein Pept. Lett. 2005, 12, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F. Production of scorpion antivenom. In Handbook of Natural Toxins, Vol. 2, Insect Poisons, Allergens and Other Invertebrate Venoms; Tu, A.T., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1984; pp. 577–605. [Google Scholar]
- Cao, J.; Rivera, F.; Belo, F. Algunos aspectos bioecologicos y farmacologicos del veneno crudo procedente de dos especies de Escorpiones Cubanos. In Resumenes IV Simposio de Zoologia; Livro de Resumenes: La Habana, Cuba, 1997; p. 70. [Google Scholar]
- Ozkan, O.; Ciftci, G.; Pekmezci, G.Z.; Kar, S.; Uysal, H.; Karaer, K.Z. Proteins, lethality and In Vivo effects of Iurus dufoureius asiaticus scorpion venom. Toxicon 2007, 50, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Osman, O.H.; Gumaa, K.A.; Karrar, M.A. Some pharmacological studies with scorpion (Pandinus exitialis) venom. Toxicon 1974, 12, 75–82. [Google Scholar] [CrossRef]
- Soleglad, M.E.; Fet, V. High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius 2003, 2003, 1–56. [Google Scholar]
- Sharma, P.P.; Fernandez, R.; Esposito, L.A.; Gonzalez-Santillan, E.; Monod, L. Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proc. R. Soc. Lond. B 2015, 282, 20142953. [Google Scholar] [CrossRef] [PubMed]
- Todd, C. An anti-serum for scorpion venom. J. Hyg. (Lond.) 1909, 9, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Polis, G.A.; McCormick, S.J. Intraguild predation and competition among desert scorpions. Ecology 1987, 68, 332–343. [Google Scholar] [CrossRef]
- McCormick, S.; Polis, G. Prey, predators, and parasites. In Biology of Scorpions; Polis, G.A., Ed.; Stanford University Press: Stanford, CA, USA, 1990; pp. 24–320. [Google Scholar]
- Klint, J.K.; Senff, S.; Rupasinghe, D.B.; Er, S.Y.; Herzig, V.; Nicholson, G.M.; King, G.F. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon 2012, 60, 478–491. [Google Scholar] [CrossRef] [PubMed]
- King, G.F.; Escoubas, P.; Nicholson, G.M. Peptide toxins that selectively target insect Na V and Ca V channels. Channels 2008, 2, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Benard, E.L.; van der Sar, A.M.; Ellett, F.; Lieschke, G.J.; Spaink, H.P.; Meijer, A.H. Infection of zebrafish embryos with intracellular bacterial pathogens. J. Vis. Exp. 2012, 61, 3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdez-Cruz, N.A.; Dávila, S.; Licea, A.; Corona, M.; Zamudio, F.Z.; García-Valdes, J.; Boyer, L.; Possani, L.D. Biochemical, genetic and physiological characterization of venom components from two species of scorpions: Centruroides exilicauda Wood and Centruroides sculpturatus Ewing. Biochimie 2004, 86, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Gómez, S.; Cupitra, N.I.; Arango, W.M.; Muñoz, L.J.V. Intraspecific variation of Centruroides edwardsii venom from two regions of Colombia. Toxins (Basel) 2014, 6, 2082–2096. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2012. [Google Scholar]
- Blomberg, S.P.; Garland, T.; Ives, A.R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution (N. Y.) 2003, 57, 717–745. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Britton, T.; Oxelman, B.; Vinnersten, A.; Bremer, K. Phylogenetic dating with confidence intervals using mean path lengths. Mol. Phylogenet. Evol. 2002, 24, 58–65. [Google Scholar] [CrossRef]
- Hedges, S.B.; Marin, J.; Suleski, M.; Paymer, M.; Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 2015, 32, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Hedges, S.B. Timetree2: Species divergence times on the iPhone. Bioinformatics 2011, 27, 2023–2024. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.C.; Otárola-Castillo, E. Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 2013, 4, 393–399. [Google Scholar] [CrossRef]
Family | Scorpion Species | LD50 (µg/mg Bodyweight) | Mus (mg/kg) | Mus | Mus | |||
---|---|---|---|---|---|---|---|---|
Tenebrio | Galleria | Gallus | Danio | Mean | Lower | Higher | ||
Buthidae | Androctonus australis | 0.55 | 0.13 | 0.01 | 0.89 | 3.16 | 0.32 1 | 6 2,3 |
Buthidae | Leiurus quinquestriatus | 0.18 | 0.17 | 0.0017 | 2.94 | 0.29 | 0.25 1,7 | 0.33 2,3 |
Buthidae | Babycurus jacksoni | 3.17 | 0.53 | 0.0034 | 3.93 | |||
Buthidae | Buthus ibericus | 1.66 | 0.67 | 0.0007 | 12.1 | 1.17 | 0.9 8,* | 1.44 2,* |
Buthidae | Centruroides gracilis | 1.53 | 1.25 | 0.014 | 4.25 | 2.7 | 2.7 9 | |
Buthidae | Grosphus grandidieri | 0.29 | 0.18 | 0.3057 | 3 | 13.13 | ||
Caraboctonidae | Hadrurus arizonensis | 1.3 | 0.63 | 0.0261 | 0.169 | 183 | 168 4 | 198 5 |
Iuridae | Iurus dufoureius | 0.81 | 0.84 | 0.0029 | 0.0898 | 47.7 | 47.7 10 | |
Scorpionidae | Heterometrus laoticus | 1.64 | 0.4 | 0.0213 | 0.264 | 300 | 300 6,* | |
Scorpionidae | Pandinus imperator | 1.4 | 0.29 | 0.0045 | 0.155 | 40 | 40 11,* |
Species | K | p |
---|---|---|
Tenebrio | 0.56 | 0.607 |
Galleria | 0.69 | 0.340 |
Gallus | 0.76 | 0.335 |
Danio | 1.25 | 0.031 |
Mus | 1.48 | 0.011 |
Species | # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Androctonus australis | 1 | 0.99 ** | 0.61 | 0.99 ** | 0.95 * | 0.13 | 0.11 | 0.08 | 0.16 | |
Leiurus quinquestriatus | 2 | 0.99 ** | 0.49 | 1.00 ** | 0.99 * | −0.01 | −0.04 | −0.06 | 0.01 | |
Buthus ibericus | 3 | 0.61 | 0.49 | 0.51 | 0.34 | 0.86 | 0.85 | 0.84 | 0.88 | |
Centruroides gracilis | 4 | 0.99 ** | 1.00 ** | 0.51 | 0.98 * | 0.01 | −0.01 | −0.04 | 0.04 | |
Grosphus grandidieri | 5 | 0.95 * | 0.99 * | 0.34 | 0.98 * | −0.18 | −0.2 | −0.23 | −0.15 | |
Hadrurus arizonensis | 6 | 0.13 | −0.01 | 0.86 | 0.01 | −0.18 | 0.99 ** | 1.00 ** | 0.99 ** | |
Iurus dufoureius | 7 | 0.11 | −0.04 | 0.85 | −0.01 | −0.2 | 0.99 ** | 1.00 ** | 1.00 ** | |
Heterometrus laoticus | 8 | 0.08 | −0.06 | 0.84 | −0.04 | −0.23 | 1.00 ** | 1.00 ** | 1.00 ** | |
Pandinus imperator | 9 | 0.16 | 0.01 | 0.88 | 0.04 | −0.15 | 0.99 ** | 1.00 ** | 1.00 ** |
Target species | Tenebrio | Galleria | Danio | Gallus | Mus |
---|---|---|---|---|---|
Tenebrio | 0.7 * | −0.24 | −0.17 | 0.49 | |
Galleria | 0.63 | −0.07 | −0.22 | 0.24 | |
Danio | 0.17 | 0.03 | −0.1 | −0.8 * | |
Gallus | −0.12 | −0.08 | −0.08 | 0.44 | |
Mus | 0.22 | 0.17 | −0.72 * | 0.57 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Meijden, A.; Koch, B.; Van der Valk, T.; Vargas-Muñoz, L.J.; Estrada-Gómez, S. Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates. Toxins 2017, 9, 312. https://doi.org/10.3390/toxins9100312
Van der Meijden A, Koch B, Van der Valk T, Vargas-Muñoz LJ, Estrada-Gómez S. Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates. Toxins. 2017; 9(10):312. https://doi.org/10.3390/toxins9100312
Chicago/Turabian StyleVan der Meijden, Arie, Bjørn Koch, Tom Van der Valk, Leidy J. Vargas-Muñoz, and Sebastian Estrada-Gómez. 2017. "Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates" Toxins 9, no. 10: 312. https://doi.org/10.3390/toxins9100312
APA StyleVan der Meijden, A., Koch, B., Van der Valk, T., Vargas-Muñoz, L. J., & Estrada-Gómez, S. (2017). Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates. Toxins, 9(10), 312. https://doi.org/10.3390/toxins9100312