Preparation and Characterization of Freely-Suspended Graphene Nanomechanical Membrane Devices with Quantum Dots for Point-of-Care Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Graphene Many Layer and Graphene Oxide Layer Sample Preparations
2.3. Suspended NMM and Loaded-NMM Preparations
2.4. NMM Characterizations, Performance Analysis, Loaded-NMM Deflection and Spectroscopic Experiments
3. Results and Discussion
4. Future Application of VFRET for PoC Sensor System
- It is fully mechanical, stand-alone and with planar architecture based on strong and low weight 2D graphene based material, donor–acceptor couples such as QDs with atomic scale dimensions and a frame, which could be designed by carbon material [14,15]. The simplicity and strong mechanical structure provide long lifetime and durability of the sensor properties.
- The NS is mobile, flexible and impermeable to external molecules keeping the donors and the acceptors intact. It allows attachment without invasive destruction of the material properties due to mobility and low weight such as on biological substances, drugs or molecular flows in liquid or air.
- VFRET NS provides a tagging mechanism by improving fluorescence imaging-based systems with optical signaling capability especially for in-body and microfluidic biomedical imaging by exploiting time-varying optical emission sequences [14,15]. Graphene is nearly transparent allowing the two-way optical transmission in the challenging medium such as inside human cells.
- It has the capability of high-speed monitoring for real-time pressure measurement of air and liquid flows medium converting the instantaneous pressure differences to optical emissions.
- The NS do not require complicated electronics hardware or software for energy storage and signal modulation while harvesting the external pressure and ambient light at the excitation frequency of donor. Next, significant properties of the NS are utilized in the PoC and the environmental monitoring applications compared with the state-of-the-art.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 2012, 7, 301. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, G.; Akiyama, T.; Loizeau, F.; Shiba, K.; Gautsch, S.; Nakayama, T.; Aono, M. Two dimensional array of piezoresistive nanomechanical membrane-type surface stress sensor (MSS) with improved sensitivity. Sensors 2012, 12, 15873–15887. [Google Scholar] [CrossRef] [PubMed]
- Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D nanostructures for water purification: Graphene and beyond. Nanoscale 2016, 8, 15115–15131. [Google Scholar] [CrossRef] [PubMed]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; Van Der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memisoglu, G.; Gulbahar, B.; Zubia, J.; Villatoro, J. Theoretical modeling of viscosity monitoring with vibrating resonance energy transfer for point-of-care and environmental monitoring applications. Micromachines 2019, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Avdoshenko, S.M.; Da Rocha, C.G.; Cuniberti, G. Nanoscale ear drum: Graphene based nanoscale sensors. Nanoscale 2012, 4, 3168–3174. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Fan, S.; Jin, W. Graphene diaphragm analysis for pressure or acoustic sensor applications. Microsyst. Technol. 2015, 21, 117–122. [Google Scholar] [CrossRef]
- Ma, J.; Xuan, H.; Ho, H.L.; Jin, W.; Yang, Y.; Fan, S. Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technol. Lett. 2013, 25, 932–935. [Google Scholar] [CrossRef]
- Que, R.; Qi, S.; Qinliang, L.; Mingwang, S.; Shiduan, C.; Suidong, W.; Shuit-Tong, L. Flexible nanogenerators based on graphene oxide films for acoustic energy harvesting. Angew. Chem. Int. Ed. 2012, 51, 5418–5422. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Kim, J.Y.; Kim, J.W.; Hwang, J.O.; Kim, J.E.; Lee, J.Y.; Yoon, T.H.; Cho, B.J.; Kim, S.O.; Ruoff, R.S.; et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10, 4381–4386. [Google Scholar] [CrossRef] [PubMed]
- Memisoglu, G.; Gulbahar, B. (a) Acousto-Optic Transducer, Array and Method. Patent TR201703046A2, EP3372964A1, PCT/EP2017/054408, 13 September 2018. Available online: https://patentimages.storage.googleapis.com/11/93/d9/6ad2839a96faa0/EP3372964A1.pdf (accessed on 31 December 2019).(b) Transducer and Method for Converting Mechanical Energy to Light Energy. Patent EP3407033A1, 28 November 2018. Available online: https://patentimages.storage.googleapis.com/b6/e9/c9/418ced0b868ad4/EP3407033A1.pdf (accessed on 31 December 2019).
- Gulbahar, B.; Memisoglu, G. CSSTag: Optical nanoscale radar and particle tracking for in-body and microfluidic systems with vibrating graphene and resonance energy transfer. IEEE Tran. Nanobioscience 2017, 16, 90–916. [Google Scholar] [CrossRef] [PubMed]
- Gulbahar, B.; Memisoglu, G. Nanoscale optical communications modulator and acousto-optic transduction with vibrating graphene and resonance energy transfer. In Proceedings of the IEEE ICC 2017 Selected Areas in Communications Symposium Molecular, Biological and Multi-Scale Communications Track, Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- Gulbahar, B.; Memisoglu, G. Graphene-Based Acousto-Optic Sensors with Vibrating Resonance Energy Transfer and Applications in Two-Dimensional Materials for Photodetector; IntechOpen Book: London, UK, 2018; pp. 179–192. [Google Scholar]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Frank, I.W.; Tanenbaum, D.M.; Zande, A.M.; McEuen, P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Huttel, A.K.; Steele, G.A.; Witkamp, B.; Poot, M.; Kouwenhoven, L.P.; van der Zant, H.S. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 2009, 9, 2547–2552. [Google Scholar] [CrossRef] [Green Version]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Mohan, V.B.; Lau, K.T.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Sheplak, M.; Dugundji, J. Large Deflections of Clamped Circular Plates under Initial Tension and Transitions to Membrane Behavior. J. Appl. Mech. 1998, 65, 107–115. [Google Scholar] [CrossRef]
- Komaragiri, U.; Simmonds, J.G. The Mechanical Response of Freestanding Circular Elastic Films Under Point and Pressure Loads. J. Appl. Mech. 2005, 72, 203–212. [Google Scholar] [CrossRef]
- Kagan, C.R.; Murray, C.B.; Bawendi, M.G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 1996, 54, 8633. [Google Scholar] [CrossRef]
- Mamedov, A.A.; Belov, A.; Giersig, M.; Mamedova, N.N.; Kotov, N.A. Nanorainbows: Graded semiconductor films from quantum dots. J. Am. Chem. Soc. 2001, 123, 7738. [Google Scholar] [CrossRef]
- Franzl, T.; Klar, T.A.; Schietinger, S.; Rogach, A.L.; Feldmann, J. Exciton recycling in graded gap nanocrystal structures. Nano Lett. 2004, 4, 1599. [Google Scholar] [CrossRef]
- Sevim, S.; Memisoglu, G.; Varlikli, C.; Dogan, L.E.; Tascioglu, D.; Ozcelik, S. An ultraviolet photodetector with an active layer composed of solution processed polyfluorene: Zn0. 71Cd0. 29S hybrid nanomaterials. Appl. Surf. Sci. 2014, 305, 227–234. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van Der Zant, H.S.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.M.; Bera, P.; Ariharan, S.; Lahiri, D.; Lahiri, I. Temperature-time dependent transmittance, sheet resistance and bonding energy of reduced graphene oxide on soda lime glass. Appl. Surf. Sci. 2017, 425, 558–563. [Google Scholar] [CrossRef]
- Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D.P.; Jarillo-Herrero, P.; Gorbachev, R.V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68. [Google Scholar]
- Ishigami, M.; Chen, J.H.; Cullen, W.G.; Fuhrer, M.S.; Williams, E.D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenig, S.P.; Boddeti, N.G.; Dunn, M.L.; Bunch, J.S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011, 6, 543. [Google Scholar] [CrossRef]
- Fan, X.F.; Zheng, W.T.; Chihaia, V.; Shen, Z.X.; Kuo, J.L. Interaction between graphene and the surface of SiO2. J. Phys. 2012, 24, 305004. [Google Scholar] [CrossRef] [Green Version]
- King, A.A.; Davies, B.R.; Noorbehesht, N.; Newman, P.; Church, T.L.; Harris, A.T.; Minett, A.I. A New Raman Metric for the Characterization of Graphene oxide and its Derivatives. Sci. Rep. 2016, 6, 19491. [Google Scholar] [CrossRef] [Green Version]
- Axel, E.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar]
- Calizo, I.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649. [Google Scholar] [CrossRef]
- Barton, R.A.; Ilic, B.; Van Der Zande, A.M.; Whitney, W.S.; McEuen, P.L.; Parpia, J.M.; Craighead, H.G. High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Lett. 2011, 11, 1232–1236. [Google Scholar] [CrossRef]
- Mustapha, H.M.; Mohamed, M.A.; Hamzah, A.A.; Majlis, B.Y. Dynamic characteristics of circular and square graphene diaphragm for capacitive microphone. Mater. Sci. Forum 2017, 889, 243–247. [Google Scholar] [CrossRef]
- Di Giovanni, M. Flat and Corrugated Diaphragm Design Handbook; CRC Press: New York, NY, USA, 1982. [Google Scholar]
- Noh, M.; Kim, T.; Lee, H.; Kim, C.K.; Joo, S.W.; Lee, K. Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloids Surf. A 2010, 359, 39–44. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science; Business Media: New York, NY, USA, 2013; p. 698. [Google Scholar]
- Morales-Narváez, E.; Pérez-López, B.; Pires, L.B.; Merkoçi, A. Simple Förster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 2012, 50, 2987–2993. [Google Scholar] [CrossRef]
- Raja, A.; Montoya−Castillo, A.; Zultak, J.; Zhang, X.X.; Ye, Z.; Roquelet, C.; Hone, J. Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materials. Nano Lett. 2016, 16, 2328–2333. [Google Scholar] [CrossRef] [PubMed]
- Klekachev, A.V.; Nourbakhsh, A.; Asselberghs, I.; Stesmans, A.L.; Heyns, M.M.; De-Gendt, S. Low-dimensional Systems and Nanostructures. Phys. E 2011, 43, 1046–1049. [Google Scholar] [CrossRef]
- Lin, W.; Tian, B.; Zhuang, P.; Yin, J.; Zhang, C.; Li, Q.; Shih, T.; Cai, W. Graphene-based fluorescence-quenching-related Fermi level elevation and electron-concentration surge. Nano Lett. 2016, 16, 5737–5741. [Google Scholar] [CrossRef]
- Shang, J.; Ma, L.; Li, J.; Ai, W.; Yu, T.; Gurzadyan, G.G. The origin of fluorescence from graphene oxide. Sci. Rep. 2012, 2, 792. [Google Scholar] [CrossRef] [Green Version]
- Mahato, M.K.; Govind, C.; Karunakaran, V.; Nandy, S.; Sudakar, C.; Prasad, E. Enhanced Charge Transport and Excited-State Charge-Transfer Dynamics in a Colloidal Mixture of CdTe and Graphene Quantum Dots. J. Phys. Chem. C 2019, 123, 20512–20521. [Google Scholar] [CrossRef]
- Nizamoglu, S.; Akin, O.; Demir, H.V. Quantum efficiency enhancement in nanocrystals using nonradiative energy transfer with optimized donor-acceptor ratio for hybrid LEDs. Appl. Phys. Lett. 2009, 94, 243107. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Berry, V. Impermeability of graphene and its applications. Carbon 2013, 62, 1–10. [Google Scholar] [CrossRef]
Number Sample Detail | t (nm) | R (nm) | ID/IG | S2D (cm−1) | D (nm) | |
---|---|---|---|---|---|---|
a | 9 times graphite exfoliation | 80 | 38.6 | 1.19 | 2717 | 97.5 |
b | 7 times graphite exfoliation | 265 | 150 | 0.63 | 2717 | 93.7 |
c | 5 times graphite exfoliation | 268 | 142 | 0.45 | 2719 | 81.7 |
d | 3 times graphite exfoliation | 325 | 109 | 0.04 | 2720 | 54.1 |
e | graphene oxide:DIW; 1:0 | 1493 | 179 | 1.00 | 2691 | 70 |
f | graphene oxide:DIW; 1:1 | 556 | 17.3 | 0.99 | 2667 | 132 |
g | graphene oxide:DIW; 1:2 | 208 | 16.5 | 0.98 | 2698 | 103 |
h | graphene oxide:DIW; 1:3 | 118 | 10.9 | 1.03 | 2724 | 86.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memisoglu, G.; Gulbahar, B.; Fernandez Bello, R. Preparation and Characterization of Freely-Suspended Graphene Nanomechanical Membrane Devices with Quantum Dots for Point-of-Care Applications. Micromachines 2020, 11, 104. https://doi.org/10.3390/mi11010104
Memisoglu G, Gulbahar B, Fernandez Bello R. Preparation and Characterization of Freely-Suspended Graphene Nanomechanical Membrane Devices with Quantum Dots for Point-of-Care Applications. Micromachines. 2020; 11(1):104. https://doi.org/10.3390/mi11010104
Chicago/Turabian StyleMemisoglu, Gorkem, Burhan Gulbahar, and Ruben Fernandez Bello. 2020. "Preparation and Characterization of Freely-Suspended Graphene Nanomechanical Membrane Devices with Quantum Dots for Point-of-Care Applications" Micromachines 11, no. 1: 104. https://doi.org/10.3390/mi11010104
APA StyleMemisoglu, G., Gulbahar, B., & Fernandez Bello, R. (2020). Preparation and Characterization of Freely-Suspended Graphene Nanomechanical Membrane Devices with Quantum Dots for Point-of-Care Applications. Micromachines, 11(1), 104. https://doi.org/10.3390/mi11010104