Fluorinated Polyethylene Propylene Ferroelectrets with an Air-Filled Concentric Tunnel Structure: Preparation, Characterization, and Application in Energy Harvesting
Abstract
:1. Introduction
2. Preparation and Characterization of Concentric Tunnel FEP Films
2.1. Preparation Procedure
2.2. Piezoelectric Response
2.2.1. Measurement of Piezoelectric Responses by Quasi-Static Method
2.2.2. Pressure Dependence
2.2.3. Measurement of Piezoelectric Responses by Dynamic Method
2.2.4. Frequency Dependence
2.2.5. Measurement of d33 by Acoustic Method
2.2.6. Acoustic Response
2.3. Dielectric Resonance Spectrum
2.4. Measurements of Thermal Stability
3. Fabrication and Performance Assessment of Energy Harvesters
3.1. Fabrication of Energy Harvesters
3.2. Performance Assessment of Energy Harvesters
4. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, Q.; Dong, B.; He, T.; Sun, Z.; Zhu, J.; Zhang, Z.; Lee, C. Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things. Infomat 2020, 2, 1131–1162. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Bick, M.; Chen, J. Smart Textiles for Electricity Generation. Chem. Rev. 2020, 120, 3668–3720. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, N. PiezoMEMS Nonlinear Low Acceleration Energy Harvester with an Embedded Permanent Magnet. Micromachines 2020, 11, 500. [Google Scholar] [CrossRef] [PubMed]
- Roundy, S.; Wright, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1144. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Introduction to Piezoelectric Energy Harvesting; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Covaci, C.; Gontean, A. Piezoelectric Energy Harvesting Solutions: A Review. Sensors 2020, 20, 3512. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Peng, X.; Wang, Z. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Adv. Mater. 2020, 32, 1902549. [Google Scholar] [CrossRef]
- Jiao, P.; Egbe, K.J.I.; Xie, Y.; Nazar, A.M.; Alavi, A.H. Piezoelectric Sensing Techniques in Structural Health Monitoring: A State-of-the-Art Review. Sensors 2020, 20, 3730. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, Y.; E, S.; Tang, L.; Qu, H. A string-driven rotor for efficient energy harvesting from ultra-low frequency excitations. Appl. Phys. Lett. 2019, 115, 203903. [Google Scholar] [CrossRef]
- Elahi, H.; Eugeni, M.; Fune, F.; Lampani, L.; Mastroddi, F.; Paolo Romano, G.; Gaudenzi, P. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter. Micromachines 2020, 11, 933. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Stein, P.; Xu, B.; Yang, T. Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: Analysis and identification of optimal structural parameters. Smart Mater. Struct. 2017, 26, 045011. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, Y.; Xu, G.; Liu, J.; Yuan, M.; Zeng, L.; Ji, X.; Wu, D. Micromachining of High Quality PMN-31%PT Single Crystals for High-Frequency (>20 MHz) Ultrasonic Array Transducer Applications. Micromachines 2020, 11, 512. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.; Zhao, T.; Wang, D.; Quan, Y.; Lin, P.; Li, D.; Yang, Y.; Cheng, J.; Wang, C.; Wang, C.; et al. High Frequency Needle Ultrasonic Transducers Based on Lead-Free Co Doped Na0.5Bi4.5Ti4O15 Piezo-Ceramics. Micromachines 2018, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.; Jung, I.; Park, H.; Pyeon, J.; Son, J.; Koo, C.; Kim, S.; Kang, C. Mechanical Fatigue Resistance of Piezoelectric PVDF Polymers. Micromachines 2018, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Baginsky, I.; Kostsov, E.; Sokolov, A. Single-Capacitor Electret Impact Microgenerator. Micromachines 2016, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhang, X.; Fang, P. Flexible film-transducers based on polypropylene piezoelectrets: Fabrication, properties, and applications in wearable devices. Sens. Actuators A Phys. 2017, 256, 35–42. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Sessler, G.M.; Chen, L.; Yang, X.; Dai, Y.; He, P. Energy harvesters based on fluorinated ethylene propylene unipolar ferroelectrets with negative charges. AIP Adv. 2019, 9, 125334. [Google Scholar] [CrossRef]
- Gerhard-Multhaupt, R. Less can be more—Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 850–859. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Chen, J.; Wan, Z.; Wang, S.; Xia, Z. Piezoelectric properties of irradiation-crosslinked polypropylene ferroelectrets. Appl. Phys. Lett. 2007, 91, 182901. [Google Scholar] [CrossRef]
- Chen, L.; Cao, J.; Li, G.; Fang, P.; Gong, X.; Zhang, X. Property Assessment and Application Exploration for Layered Polytetrafluoroethylene Piezoelectrets. IEEE Sens. J. 2019, 19, 11262–11271. [Google Scholar] [CrossRef]
- Zhang, X.; Pondrom, P.; Sessler, G.M.; Ma, X. Ferroelectret nanogenerator with large transverse piezoelectric activity. Nano Energy 2018, 50, 52–61. [Google Scholar] [CrossRef]
- Ko, W.; Chen, J.; Wu, W.; Lee, C. A double-sided electret polymer film-based electrostatic actuator. Electroact. Polym. Actuators Devices 2008, 6927, 69271V. [Google Scholar] [CrossRef]
- Fang, P.; Wirges, W.; Wegener, M.; Zirkel, L.; Gerhard, R. Cellular polyethylene-naphthalate films for ferroelectret applications: Foaming, inflation and stretching, assessment of electromechanically relevant structural features. E-Polymers 2008, 8. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Suzuki, K.; Sugie, A.; Yoshida, H.; Yoshida, M.; Suzuki, Y. Effect of end group of amorphous perfluoro-polymer electrets on electron trapping. Sci. Technol. Adv. Mater. 2018, 19, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, S.; Ma, X.; von Seggern, H.; Sessler, G.M.; Ben Dali, O.; Kupnik, M.; Zhang, X. Biodegradable cellular polylactic acid ferroelectrets with strong longitudinal and transverse piezoelectricity. Appl. Phys. Lett. 2020, 117, 112901. [Google Scholar] [CrossRef]
- Zhang, X.; Hillenbrand, J.; Sessler, G.M. Ferroelectrets with improved thermal stability made from fused fluorocarbon layers. J. Appl. Phys. 2007, 101, 054114. [Google Scholar] [CrossRef]
- Zhang, X.; Pondrom, P.; Wu, L.; Sessler, G.M. Vibration-based energy harvesting with piezoelectrets having high d(31) activity. Appl. Phys. Lett. 2016, 108, 193903. [Google Scholar] [CrossRef]
- Ben Dali, O.; Pondrom, P.; Sessler, G.M.; Zhukov, S.; von Seggern, H.; Zhang, X.; Kupnik, M. Cantilever-based ferroelectret energy harvesting. Appl. Phys. Lett. 2020, 116, 243901. [Google Scholar] [CrossRef]
- von Seggern, H.; Zhukov, S.; Fedosov, S.N. Poling Dynamics and Thermal Stability of FEP/ePTFE/FEP Sandwiches. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1056–1065. [Google Scholar] [CrossRef]
- Zhang, X.; Hillenbrand, J.; Sessler, G.M.; Haberzettl, S.; Lou, K. Fluoroethylenepropylene ferroelectrets with patterned microstructure and high, thermally stable piezoelectricity. Appl. Phys. A. 2012, 107, 621–629. [Google Scholar] [CrossRef]
- Zhukov, S.; Eder-Goy, D.; Fedosov, S.; Xu, B.; von Seggern, H. Analytical prediction of the piezoelectric d(33) response of fluoropolymer arrays with tubular air channels. Sci. Rep. UK 2018, 8, 4597. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, L.; Zhang, X. Energy Harvesting from Vibration Using Flexible Floroethylenepropylene Piezoelectret Films with Cross-tunnel Structure. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1349–1354. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, J.; Zhang, X.; Sessler, G.M.; Kupnik, M. Acoustic energy harvesting with irradiated cross-linked polypropylene piezoelectret films. Phys. Scripta 2019, 94. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, X. Air-coupled Ultrasonic Transducers based on Laminated Fluorinated Ethylene Propylene and Porous Polytetrafluoroethylene Ferroelectrets. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 808–815. [Google Scholar] [CrossRef]
- Mellinger, A. Dielectric resonance spectroscopy: A versatile tool in the quest for better piezoelectric polymers. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 842–861. [Google Scholar] [CrossRef]
- Neugschwandtner, G.S.; Schwodiauer, R.; Vieytes, M.; Bauer-Gogonea, S.; Bauer, S.; Hillenbrand, J.; Kressmann, R.; Sessler, G.M.; Paajanen, M.; Lekkala, J. Large and broadband piezoelectricity in smart polymer-foam space-charge electrets. Appl. Phys. Lett. 2000, 77, 3827–3829. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Brandel, B.; Lakes, R.S. Negative Poisson’s ratio polyethylene foams. J. Mater. Sci. 2001, 36, 5885–5893. [Google Scholar] [CrossRef]
- Ma, X.; von Seggern, H.; Sessler, G.M.; Zhukov, S.; Ben Dali, O.; Kupnik, M.; Zhang, X. High performance fluorinated polyethylene propylene ferroelectrets with an air-filled parallel-tunnel structure. Smart Mater. Struct. 2020. [Google Scholar] [CrossRef]
- Bauer, S. Piezo-, pyro- and ferroelectrets: Soft transducer materials for electromechanical energy conversion. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 953–962. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. Int. J. Energy Res. 2020, 44, 5545–5563. [Google Scholar] [CrossRef]
- Gaur, A.; Tiwari, S.; Kumar, C.; Maiti, P. Flexible, Lead-Free Nanogenerators Using Poly(vinylidene fluoride) Nanocomposites. Energy Fuel 2020, 34, 6239–6244. [Google Scholar] [CrossRef]
- Rovisco, A.; dos Santos, A.; Cramer, T.; Martins, J.; Branquinho, R.; Aguas, H.; Fraboni, B.; Fortunato, E.; Martins, R.; Igreja, R.; et al. Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructuration. ACS Appl. Mater. Interfaces 2020, 12, 18421–18430. [Google Scholar] [CrossRef] [PubMed]
- Ippili, S.; Jella, V.; Kim, J.; Hong, S.; Yoon, S.G. Unveiling Predominant Air-Stable Organotin Bromide Perovskite toward Mechanical Energy Harvesting. ACS Appl Mater. Interfaces 2020, 12, 16469–16480. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, L.; Sessler, G.M. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets. AIP Adv. 2015, 5, 077185. [Google Scholar] [CrossRef] [Green Version]
- Pondrom, P.; Sessler, G.M.; Bos, J.; Melz, T. Compact electret energy harvester with high power output. Appl. Phys. Lett. 2016, 109, 053906. [Google Scholar] [CrossRef]
- Zhang, X.; Sessler, G.M.; Wang, Y. Fluoroethylenepropylene ferroelectret films with cross-tunnel structure for piezoelectric transducers and micro energy harvesters. J. Appl. Phys. 2014, 116, 074109. [Google Scholar] [CrossRef]
- Zhang, X.; Sessler, G.M.; Ma, X.; Xue, Y.; Wu, L. Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges. J. Micromech. Microeng. 2018, 28, 065012. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Guo, Y.; Xu, B.; Yang, T. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms. Smart Mater. Struct. 2018, 27, 035004. [Google Scholar] [CrossRef]
Type | Area Power Density | Pressure or Seismic Mass | References |
---|---|---|---|
PVDF/KNN/ZnO electrospun nanofibers | 11.31 μW/cm2 | ~1 kPa | [43] |
PVDF/BT nanoparticles | 120 μW/cm2 | ---- | [44] |
ZnSnO3 nanowires/PDMS | 230 μW/cm2 | >100 N | [45] |
MASnBr3/PDMS | 74.52 μW/cm2 | ~0.5 MPa | [46] |
IXPP ferroelectret (33-mode) | 57.32 μW/cm2 | 33.7 g | [47] |
FEP ferroelectret (out-of-plane type) | 150 μW/cm2 | 10 g | [48] |
Cross-tunnel FEP ferroelectret (33-mode) | 0.12 μW/cm2 | 69.5 g | [49] |
Parallel tunnel FEP ferroelectret (33-mode) | 462.5 μW/cm2 | 80 g | [50] |
Parallel tunnel FEP ferroelectret (31-mode) | 95.83 μW/cm2 | 2 g | [28] |
Parallel tunnel FEP ferroelectret (31-mode) advanced design | 272.5 μW/cm2 | 0.3 g | [22] |
Cantilever-based parallel tunnel FEP ferroelectret (31-mode) | 106.7 μW/cm2 | 4.5 g | [29] |
Concentric tunnel FEP ferroelectret (33-mode) | 331 μW/cm2 | 33.4 g | This work |
Concentric tunnel FEP ferroelectret (31-mode) | 2.12 μW/cm2 | 2.0 g | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, X.; Chen, L.; Pan, W.; Ma, X.; Yang, T.; Zhang, X. Fluorinated Polyethylene Propylene Ferroelectrets with an Air-Filled Concentric Tunnel Structure: Preparation, Characterization, and Application in Energy Harvesting. Micromachines 2020, 11, 1072. https://doi.org/10.3390/mi11121072
Zuo X, Chen L, Pan W, Ma X, Yang T, Zhang X. Fluorinated Polyethylene Propylene Ferroelectrets with an Air-Filled Concentric Tunnel Structure: Preparation, Characterization, and Application in Energy Harvesting. Micromachines. 2020; 11(12):1072. https://doi.org/10.3390/mi11121072
Chicago/Turabian StyleZuo, Xi, Li Chen, Wenjun Pan, Xingchen Ma, Tongqing Yang, and Xiaoqing Zhang. 2020. "Fluorinated Polyethylene Propylene Ferroelectrets with an Air-Filled Concentric Tunnel Structure: Preparation, Characterization, and Application in Energy Harvesting" Micromachines 11, no. 12: 1072. https://doi.org/10.3390/mi11121072
APA StyleZuo, X., Chen, L., Pan, W., Ma, X., Yang, T., & Zhang, X. (2020). Fluorinated Polyethylene Propylene Ferroelectrets with an Air-Filled Concentric Tunnel Structure: Preparation, Characterization, and Application in Energy Harvesting. Micromachines, 11(12), 1072. https://doi.org/10.3390/mi11121072