Continuous Microfluidic Purification of DNA Using Magnetophoresis
Abstract
:1. Introduction
2. Working Mechanism
3. Materials and Methods
3.1. Simulation
3.2. Design and Fabrication of the Microfluidics Chip
3.3. Sample Preparation
3.4. On-Chip Experiments
4. Results and Discussion
4.1. The Trajectory of Magnetic Beads
4.1.1. Simulation of Complete Structure
4.1.2. Simulation of Main Channel Structure
4.1.3. Experimental Verification of Magnetic Bead Trajectory
4.2. The Recovery Efficiency of DNA on A Chip
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.; De Jonghe, J.; Kulesa, A.B.; Feldman, D.; Vatanen, T.; Bhattacharyya, R.P.; Berdy, B.; Gomez, J.; Nolan, J.; Epstein, S.; et al. High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nat. Commun. 2017, 8, 13919. [Google Scholar] [CrossRef] [PubMed]
- Mosley, O.; Melling, L.; Tarn, M.D.; Kemp, C.; Esfahani, M.M.; Pamme, N.; Shaw, K.J. Sample introduction interface for on-chip nucleic acid-based analysis of Helicobacter pylori from stool samples. Lab Chip 2016, 16, 2108–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, V.; Pandey, S.; Paknikar, K.; Bodas, D. A facile one-step method for cell lysis and DNA extraction of waterborne pathogens using a microchip. Biosens. Bioelectron. 2018, 99, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Wilkinson, M. DNA fragment purification: removal of agarose 10 minutes after electrophoresis. Biotechniques 1991, 10, 736–738. [Google Scholar]
- Poh, J.-J.; Gan, S.K.-E. Comparison of customized spin-column and salt-precipitation finger-prick blood DNA extraction. Biosci. Rep. 2014, 34, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Pederson, N.E. Spin-column chromatography for DNA purification. Anal. Bioche. 1996, 239, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Krizova, J.; Spanova, A.; Rittich, B.; Horak, D. Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. J. Chromatogr. A 2005, 1064, 247–253. [Google Scholar] [CrossRef]
- Gauri, S.; Gan, K.B.; Then, S.M. Simulation of DNA extraction and separation from salivary fluid by superparamagnetic beads and electromagnetic field in microfluidic platform. Microsyst. Technol.-Micro. Nanosyst. -Inf. Storage Process. Syst. 2019, 25, 1379–1385. [Google Scholar] [CrossRef]
- Zhang, X.L.; Wu, X.D.; Peng, R.; Li, D.Q. Electromagnetically controlled microfluidic chip for DNA extraction. Measurement 2015, 75, 23–28. [Google Scholar] [CrossRef]
- Han, K.H.; Han, A.; Frazier, A.B. Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood. Biosens. Bioelectron. 2006, 21, 1907–1914. [Google Scholar] [CrossRef]
- Alnaimat, F.; Dagher, S.; Mathew, B.; Hilal-Alnqbi, A.; Khashan, S. Microfluidics Based Magnetophoresis: A Review. Chem. Rec. 2018, 18, 1596–1612. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.D.; Kim, U.; Soh, H.T. Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. USA 2008, 105, 18165–18170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 2007, 7, 1644–1659. [Google Scholar] [CrossRef] [PubMed]
- Pamme, N.; Wilhelm, C. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 2006, 6, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Tarn, M.D.; Pamme, N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. Method. Mol. Biol. 2017, 1547, 69–83. [Google Scholar] [CrossRef]
- Perez-Toralla, K.; Pereiro, I.; Garrigou, S.; Di Federico, F.; Proudhon, C.; Bidard, F.C.; Viovy, J.L.; Taly, V.; Descroix, S. Microfluidic extraction and digital quantification of circulating cell-free DNA from serum. Sens. Actuat. B Chem. 2019, 286, 533–539. [Google Scholar] [CrossRef]
- Ramadan, Q.; Lau, T.T.; Ho, S.B. Magnetic-based purification system with simultaneous sample washing and concentration. Analyt. Bioanalyt.Chem. 2010, 396, 707–714. [Google Scholar] [CrossRef]
- Hale, C.; Darabi, J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics 2014, 8, 044118. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Chen, C.H.; Gao, W.M.; Chao, S.H.; Meldrum, D.R. Parallel RNA extraction using magnetic beads and a droplet array. Lab Chip 2015, 15, 1059–1065. [Google Scholar] [CrossRef] [Green Version]
- Hejazian, M.; Li, W.; Nguyen, N.T. Lab on a chip for continuous-flow magnetic cell separation. Lab Chip 2015, 15, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Robert, D.; Pamme, N.; Conjeaud, H.; Gazeau, F.; Iles, A.; Wilhelm, C. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 2011, 11, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Phurimsak, C.; Yildirim, E.; Tarn, M.D.; Trietsch, S.J.; Hankemeier, T.; Pamme, N.; Vulto, P. Phaseguide assisted liquid lamination for magnetic particle-based assays. Lab Chip 2014, 14, 2334–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyman, S.A.; Iles, A.; Pamme, N. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 2009, 9, 3110–3117. [Google Scholar] [CrossRef] [PubMed]
- Alorabi, A.Q.; Tarn, M.D.; Gomez-Pastora, J.; Bringas, E.; Ortiz, I.; Paunov, V.N.; Pamme, N. Correction: On-chip polyelectrolyte coating onto magnetic droplets-towards continuous flow assembly of drug delivery capsules. Lab Chip 2017, 17, 3934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Cho, H.; Han, S.I.; Han, K.H. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing. Anal. Chem. 2016, 88, 4857–4863. [Google Scholar] [CrossRef] [PubMed]
- Karle, M.; Miwa, J.; Czilwik, G.; Auwarter, V.; Roth, G.; Zengerle, R.; von Stetten, F. Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 2010, 10, 3284–3290. [Google Scholar] [CrossRef] [PubMed]
- Furlani, E.P. Analysis of particle transport in a magnetophoretic microsystem. J. Appl. Phys. 2006, 99, 22. [Google Scholar] [CrossRef] [Green Version]
- Khashan, S.A.; Furlani, E.P.J.M. Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluid. 2012, 12, 565–580. [Google Scholar] [CrossRef]
- Khashan, S.A.; Alazzam, A.; Furlani, E.P. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements. Sci. Rep. 2014, 4, 5299. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.Y.; Wu, H.Y.; Hu, Y.D. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid. 2011, 11, 11–24. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Zheng, W.; Nawar, S.; Mercandetti, C.; Ofner, A.; Leibacher, I.; Koehler, S.; Weitz, D.A. Tandem emulsification for high-throughput production of double emulsions. Lab Chip 2017, 17, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Amstad, E.; Chen, X.; Eggersdorfer, M.; Cohen, N.; Kodger, T.E.; Ren, C.L.; Weitz, D.A. Parallelization of microfluidic flow-focusing devices. Phys. Rev. E 2017, 95, 043105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelley, L.A.; Nathalie, B.; Howard, A.S. Formation of dispersions using "flow focusing" in microchannels. Adv. Mech. 2008, 38, 627–630. [Google Scholar]
- Shahi, P.; Kim, S.C.; Haliburton, J.R.; Gartner, Z.J.; Abate, A.R. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 2017, 7, 44447. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, M.; Nishikawa, Y.; Kogawa, M.; Takeyama, H. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci. Rep. 2017, 7, 5199. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.C.; Clark, I.C.; Shahi, P.; Abate, A.R. Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis. Anal. Chem. 2018, 90, 1273–1279. [Google Scholar] [CrossRef]
Sample | 260/280 | 260/230 |
---|---|---|
507 bp DNA purified in tube | 1.823 | 2.143 |
1.853 | 2.242 | |
2.000 | 2.037 | |
507 bp DNA purified on chip | 1.960 | 2.133 |
1.951 | 2.394 | |
1.973 | 2.237 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhang, Z.; Su, Z.; Zhou, X.; Han, X.; Liu, Q. Continuous Microfluidic Purification of DNA Using Magnetophoresis. Micromachines 2020, 11, 187. https://doi.org/10.3390/mi11020187
Xu Y, Zhang Z, Su Z, Zhou X, Han X, Liu Q. Continuous Microfluidic Purification of DNA Using Magnetophoresis. Micromachines. 2020; 11(2):187. https://doi.org/10.3390/mi11020187
Chicago/Turabian StyleXu, Ying, Zhen Zhang, Zhen Su, Xiaoxiang Zhou, Xiaoming Han, and Quanjun Liu. 2020. "Continuous Microfluidic Purification of DNA Using Magnetophoresis" Micromachines 11, no. 2: 187. https://doi.org/10.3390/mi11020187
APA StyleXu, Y., Zhang, Z., Su, Z., Zhou, X., Han, X., & Liu, Q. (2020). Continuous Microfluidic Purification of DNA Using Magnetophoresis. Micromachines, 11(2), 187. https://doi.org/10.3390/mi11020187