Reliability and Remaining Life Assessment of an Electronic Fuze Using Accelerated Life Testing
Abstract
:1. Introduction
2. Accelerated Life Testing and Weibull Analysis
3. Grey Forecasting Models
4. Methodology
5. Results and Discussion
- Standard reliability 0.99;
- Conditional reliability 0.989.
- Bridge resistance < 1.5 Ω, firing current > 1.5 A, Isolation resistance > 20 M Ω at 500 V;
- The firing qualified pressure range for the squib is 10 to 20 MPa.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, Q.Q.; Yun, W.Y. Storage availability of one-shot system under periodic inspection considering inspection error. Reliab. Eng. Syst. Saf. 2019, 186, 120–133. [Google Scholar] [CrossRef]
- Jiao, J.; De, X.; Chen, Z.; Zhao, T. Integrated circuit failure analysis and reliability prediction based on physics of failure. Eng. Fail. Anal. 2019, 104, 714–726. [Google Scholar] [CrossRef]
- Cheng, Y.; Elsayed, E.A. Reliability Modeling of Mixtures of One-Shot Units under Thermal Cyclic Stresses. Reliab. Eng. Syst. Saf. 2017, 167, 58–66. [Google Scholar] [CrossRef]
- Ruidong, D.; Chun, G. Researches and Investigation on Manufacturers’ Reliability Test Data of Electronic Parts. Energy Procedia 2017, 127, 242–246. [Google Scholar] [CrossRef]
- Raza, A.; Ulansky, V. Minimizing total lifecycle expected costs of digital avionics’ maintenance. Procedia Cirp 2015, 38, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, N.; Fang, Z.; Shoaib, M. Microelectronics Reliability Remaining Useful Life (RUL) estimation of electronic solder joints in rugged environment under random vibration. Microelectron. Reliab. 2020, 107, 113614. [Google Scholar] [CrossRef]
- Gaver, D.P.; Jacobs, P.A. Reliability growth by failure mode removal. Reliab. Eng. Syst. Saf. 2014, 130, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, Z.; Li, Y.Y.; Kang, R.; Mosleh, A. Reliability analysis of a cold-standby system considering the development stages and accumulations of failure mechanisms. Reliab. Eng. Syst. Saf. 2018, 180, 1–12. [Google Scholar] [CrossRef]
- Jeong, J.; Eom, J.; Lee, S.S.; Lim, D.W.; Jang, Y.I.; Seo, K.W.; Choi, S.S.; Lee, C.J.; Oh, J.S. Miniature mechanical safety and arming device with runaway escapement arming delay mechanism for artillery fuze. Sens. Actuators A Phys. 2018, 279, 518–524. [Google Scholar] [CrossRef]
- Newby, M. Monitoring and maintenance of spares and one shot devices. Reliab. Eng. Syst. Saf. 2008, 93, 588–594. [Google Scholar] [CrossRef]
- Wang, D.; Lou, W.; Feng, Y.; Zhang, X. Design of high-reliability micro safety and arming devices for a small caliber projectile. Micromachines 2017, 8, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lall, P.; Kothari, N.; Deep, J.; Lowe, R. Analysis of progressive damage in fuze electronics using micro-computed tomography and finite element models. In Proceedings of the 17th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 29 May–1 June 2018; Volume 1, pp. 1160–1168. [Google Scholar]
- Lall, P.; Kothari, N.; Deep, J.; Foley, J.; Lowe, R. Development of FE Models and Measurement of Internal Deformations of Fuze Electronics Using X-Ray Micro CT Data with Digital Volume Correlation. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 497–506. [Google Scholar]
- Suhir, E. Could electronics reliability be predicted, quantified and assured? Microelectron. Reliab. 2013, 53, 925–936. [Google Scholar] [CrossRef]
- Cheng, Y.; Elsayed, E.A. Reliability modeling and optimization of operational use of one-shot units. Reliab. Eng. Syst. Saf. 2018, 176, 27–36. [Google Scholar] [CrossRef]
- Sakamoto, J.; Hirata, R.; Shibutani, T. Potential Failure Mode Identification of Operational Amplifier Circuit Board by Using High Accelerated Limit Test. Microelectron. Reliab. 2018, 85, 19–24. [Google Scholar] [CrossRef]
- Xie, R.; Ren, X.; Liu, L.; Xue, Y.; Fu, D.; Zhang, R. Research on design and firing performance of si-based detonator. Def. Technol. 2014, 10, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Chiodo, E.; Lauria, D. Some basic properties of the failure rate of redundant reliability systems in industrial electronics applications. IEEE Trans. Ind. Electron. 2015, 62, 5055–5062. [Google Scholar] [CrossRef]
- Sharp, A.; Andrade, J.; Ruffini, N. Design for reliability for the high reliability fuze. Reliab. Eng. Syst. Saf. 2019, 181, 54–61. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Yun, W.Y. Determining the inspection intervals for one-shot systems with support equipment. Reliab. Eng. Syst. Saf. 2018, 169, 63–75. [Google Scholar] [CrossRef]
- El-Damcese, M.A. Reliability equivalence analysis of a parallel-series system subject to degradation facility. Sci. J. Appl. Math. Stat. 2015, 3, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dong, X.; Zhang, X.; Wang, L. Measurement and analysis of SSD reliability data based on accelerated endurance test. Electron. 2019, 8, 1357. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Zhao, Y.; Zhao, Y.; Ren, W. Integration design of a MEMS based fuze. Sens. Actuators A Phys. 2017, 268, 193–200. [Google Scholar] [CrossRef]
- Yang, X.; Wen, Y.; Dong, H.; Liang, Q.; Qin, B.; Yi, X. Bayesian reliability assessment for high-value pyrotechnics systems based on inheritance factor. In Proceedings of the 11th International Conference on Reliability, Maintainability and Safety, Hangzhou, China, 26–28 October 2016; pp. 1–4. [Google Scholar]
- Agrawal, H.; Mishra, A.K. Probabilistic Analysis on Scattering Effect of Initiation Systems and Concept of Modified Charge per Delay for Prediction of Blast Induced Ground Vibrations. Meas. J. Int. Meas. Confed. 2018, 130, 306–317. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Wang, L.; Zhou, B.; Shen, R. Research on the electro-explosive behaviors and the ignition performances of energetic igniters. J. Energ. Mater. 2018, 36, 1–12. [Google Scholar] [CrossRef]
- Tanoli, S.A.K.; Rehman, M.; Khan, M.B.; Jadoon, I.; Khan, F.A.; Nawaz, F.; Shah, S.A.; Yang, X.; Nasir, A.A. An experimental channel capacity analysis of cooperative networks using Universal Software Radio Peripheral (USRP). Sustainability 2018, 10, 1983. [Google Scholar] [CrossRef] [Green Version]
- Li, N.M.J.; Das, D.; McCluskey, P. Review of shelf life evaluation methods and a physics of failure approach for shelf life estimation for electronic components. Microelectron. Reliab. 2019, 99, 152–160. [Google Scholar] [CrossRef]
- Borkar, S. Designing reliable systems from unreliable components: The challenges of transistor variability and degradation. IEEE Micro 2005, 25, 10–16. [Google Scholar] [CrossRef]
- Si, X.S.; Wang, W.; Hu, C.H.; Chen, M.Y.; Zhou, D.H. A wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mech. Syst. Signal Process. 2013, 35, 219–237. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Ren, N.; Xu, H.; Sheng, K. Investigation of 1200 V SiC MOSFETs’ surge reliability. Micromachines 2019, 10, 485. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, S.; Fang, Z. Storage reliability evaluation model based on grey target theory combined with prospect theory. In Proceedings of the IEEE International Conference on Grey Systems and Intelligent Services, Leicester, UK, 18–20 August 2015; pp. 374–377. [Google Scholar]
- Guo, R.; Cheng, C.Y.; Cui, Y.H. L1-normed GM (1, 1) models and reliability analysis. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; pp. 775–779. [Google Scholar]
- Zhao, D.; Gao, C.; Zhou, Z.; Liu, S.; Chen, B.; Gao, J. Fatigue life prediction of the wire rope based on grey theory under small sample condition. Eng. Fail. Anal. 2020, 107, 104237. [Google Scholar] [CrossRef]
- Rathgeber, S.; Bauer, R.; Otto, A.; Peter, E.; Wilde, J. Harsh environment application of electronics—Reliability of copper wiring and testability thereof. Microelectron. Reliab. 2012, 52, 2452–2456. [Google Scholar] [CrossRef]
- Klyatis, L.M.; Klyatis, E.L. Useful accelerated reliability testing performance. Accel. Qual. Reliab. Solut. 2006, 93, 283. [Google Scholar]
- Choi, J.; Hwang, K.; Kim, B. Reliability analysis for thermal cutting method based non-explosive separation device. J. Mech. Sci. Technol. 2016, 30, 5433–5438. [Google Scholar] [CrossRef]
- He, J.; Bao, T.; Wu, J.; Shao, G.; Du, D.; Le, X.; Zhang, Q. Reliability assessment and data processing techniques of the squib valve in pressurized water NPPs. Nucl. Eng. Des. 2018, 332, 59–69. [Google Scholar] [CrossRef]
- Shah, S.A.; Fioranelli, F. RF sensing technologies for assisted daily living in healthcare: A comprehensive review. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 26–44. [Google Scholar] [CrossRef] [Green Version]
- Suhir, E. Three-Step Concept (TSC) in modeling Microelectronics Reliability (MR): Boltzmann-Arrhenius-Zhurkov (BAZ) probabilistic physics-of-failure equation sandwiched between two statistical models. Microelectron. Reliab. 2014, 54, 2594–2603. [Google Scholar] [CrossRef]
- Joshy, S.; Verdingovas, V.; Jellesen, M.S.; Ambat, R. Circuit analysis to predict humidity related failures in electronics—Methodology and recommendations. Microelectron. Reliab. 2019, 93, 81–88. [Google Scholar] [CrossRef]
Time Interval | Time (Years) | Actual Data | GM (1,1) Forecasted Data |
---|---|---|---|
T1 | 2.50 | 18.85 | 18.53 |
T2 | 5.00 | 17.35 | 17.20 |
T3 | 7.50 | 15.65 | 15.95 |
T4 | 10.0 | 14.98 | 14.80 |
T5 | 12.5 | - | 13.74 |
T6 | 15.0 | - | 12.75 |
T7 | 17.5 | - | 11.83 |
T8 | 20.0 | - | 10.97 |
T9 | 22.5 | - | 10.18 |
T10 | 25.0 | - | 09.45 |
Average Relative Error | - | 0.06% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, N.; Fang, Z.; Shah, S.Y.; Haider, D. Reliability and Remaining Life Assessment of an Electronic Fuze Using Accelerated Life Testing. Micromachines 2020, 11, 272. https://doi.org/10.3390/mi11030272
Muhammad N, Fang Z, Shah SY, Haider D. Reliability and Remaining Life Assessment of an Electronic Fuze Using Accelerated Life Testing. Micromachines. 2020; 11(3):272. https://doi.org/10.3390/mi11030272
Chicago/Turabian StyleMuhammad, Noor, Zhigeng Fang, Syed Yaseen Shah, and Daniyal Haider. 2020. "Reliability and Remaining Life Assessment of an Electronic Fuze Using Accelerated Life Testing" Micromachines 11, no. 3: 272. https://doi.org/10.3390/mi11030272
APA StyleMuhammad, N., Fang, Z., Shah, S. Y., & Haider, D. (2020). Reliability and Remaining Life Assessment of an Electronic Fuze Using Accelerated Life Testing. Micromachines, 11(3), 272. https://doi.org/10.3390/mi11030272