Multi-Color Enhanced Fluorescence Imaging of a Breast Cancer Cell with A Hole-Arrayed Plasmonic Chip
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Plasmonic Chip
2.2. Cell Culture and Preparation for Microscopic Observation
2.3. Microscopy
2.3.1. Cell Observation
2.3.2. Microspectroscopic Measurement
3. Results
3.1. Appropriate SiO2 Layer Thickness for Fluorescence Imaging
3.2. Multi-Color Imaging of MDA-MB-231 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Howe, C.L.; Webb, K.F.; Abayzeed, S.A.; Anderson, D.J.; Denning, C.; Russell, N. Surface plasmon resonance imaging of excitable cells. J. Phys. D Appl. Phys. 2019, 52, 104001. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, B.; Heil, H.S.; Kamp, M.; Heinze, K.G. Live-cell fluorescence imaging with extreme background suppression by plasmonic nanocoatings. Opt. Express 2018, 26, 21301–21313. [Google Scholar] [CrossRef]
- He, R.-Y.; Su, Y.-D.; Cho, K.-C.; Lin, C.-Y.; Chang, N.-S.; Chang, C.-H.; Chen, S.-J. Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging. Opt. Express 2009, 17, 5987–5997. [Google Scholar] [CrossRef] [PubMed]
- Sefat, F.; Denyer, M.C.T.; Youseffi, M. Imaging via widefield surface plasmon resonance microscope for studying bone cellin teractions with micropatterned ECMproteins. J. Microsc. 2010, 241, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-D.; Chiu, K.-C.; Chang, N.-S.; Wu, H.-L.; Chen, S.-J. Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy. Opt. Express 2010, 18, 20125–20135. [Google Scholar] [CrossRef] [PubMed]
- Knoll, W. Interfaces and Thin Films as Seen by Bound Electromagnetic Waves. Annu. Rev. Phys. Chem. 1998, 49, 569–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, S.; El-Sayed, M.A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [Google Scholar] [CrossRef]
- Tawa, K.; Hori, H.; Kintaka, K.; Kiyosue, K.; Tatsu, Y.; Nishii, J. Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance. Opt. Express 2008, 16, 9781–9790. [Google Scholar] [CrossRef]
- Tawa, K.; Nakayama, T.; Kintaka, K. Optimal Structure of a Plasmonic Chip for Sensitive Bio-Detection with the Grating-Coupled Surface Plasmon-Field Enhanced Fluorescence (GC-SPF). Materials 2017, 10, 1063. [Google Scholar] [CrossRef]
- Minoshima, W.; Hosokawa, C.; Kudoh, S.N.; Tawa, K. Long-term real-time imaging of a voltage sensitive dye in cultured hippocampal neurons using the silver plasmonic dish. J. Photochem. Photobiol. A Chem. 2019, 384, 111949. [Google Scholar] [CrossRef]
- Tawa, K.; Yasui, C.; Hosokawa, C.; Aota, H.; Nishii, J. In Situ Sensitive Fluorescence Imaging of Neurons Cultured on a Plasmonic Dish Using Fluorescence Microscopy. ACS Appl. Mater. Interfaces 2014, 6, 20010–20015. [Google Scholar] [CrossRef] [PubMed]
- Tawa, K.; Izumi, S.; Sasakawa, C.; Hosokawa, C.; Toma, M. Enhanced fluorescence microscopy with the Bull’s eye-plasmonic chip. Opt. Express 2017, 25, 10622. [Google Scholar] [CrossRef] [PubMed]
- Raether, H.; Raether, P.D.H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer Science and Business Media LLC: Berlin, Germany, 1988; Volume 111, pp. 1–133. [Google Scholar]
- Rossi, S.; Gazzola, E.; Capaldo, P.; Borile, G.; Romanato, F. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber. Sensors 2018, 18, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geddes, C.D.; Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Lakowicz, J.R. Directional Surface Plasmon Coupled Emission. J. Fluoresc. 2004, 14, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, D.W.; Feng, J.; Tang, X.J. Multicolor Cocktail for Breast Cancer Multiplex Phenotype Targeting and Diagnosis Using Bioorthogonal Surface-Enhanced Raman Scattering Nanoprobes. Anal. Chem. 2019, 91, 11045–11054. [Google Scholar] [CrossRef]
- He, X.; Zhao, Z.; Xiong, L.-H.; Gao, P.F.; Peng, C.; Li, R.S.; Xiong, Y.; Li, Z.; Sung, H.H.-Y.; Williams, I.D.; et al. Redox-Active AIEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging. J. Am. Chem. Soc. 2018, 140, 6904–6911. [Google Scholar] [CrossRef]
- Dehghani, A.; Ardekani, S.M.; Lesani, P.; Hassan, M.; Gomes, V.G. Two-Photon Active Boron Nitride Quantum Dots for Multiplexed Imaging, Intracellular Ferric Ion Biosensing, and pH Tracking in Living Cells. ACS Appl. Bio Mater. 2018, 1, 975–984. [Google Scholar] [CrossRef]
- Nima, Z.A.; Mahmood, M.; Xu, Y.; Mustafa, T.; Watanabe, F.; Nedosekin, D.A.; Juratli, M.A.; Fahmi, T.; Galanzha, E.I.; Nolan, J.P.; et al. Circulating Tumor Cell Identification by Functionalized Silver-Gold Nanorods with Multicolor, Super-Enhanced SERS and Photothermal Resonances. Sci. Rep. 2014, 4, 4752. [Google Scholar] [CrossRef]
- Sheng, Y.; Duan, Z.; Jia, Z.; Pan, Y.; Sun, Y.; Li, J.; Deng, L.; Bradley, M.; Zhang, R. Thermoresponsive Nanospheres with Entrapped Fluorescent Conjugated Polymers for Cellular Labeling. ACS Appl. Bio Mater. 2018, 1, 888–893. [Google Scholar] [CrossRef]
- Mirzaei, M.; Akbari, M.E.; Mohagheghi, M.A.; Ziaee, S.A.M.; Mohseni, M. A novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging. Nanomed. J. 2020, 7, 73–79. [Google Scholar]
- Wu, F.; Su, H.; Cai, Y.; Wong, W.-K.; Jiang, W.-Q.; Zhu, X. Porphyrin-Implanted Carbon Nanodots for Photoacoustic Imaging and in Vivo Breast Cancer Ablation. ACS Appl. Bio Mater. 2018, 1, 110–117. [Google Scholar] [CrossRef]
- Tawa, K.; Yamamura, S.; Sasakawa, C.; Shibata, I.; Kataoka, M. Sensitive Detection of Cell Surface Membrane Proteins in Living Breast Cancer Cells by Using Multicolor Fluorescence Microscopy with a Plasmonic Chip. ACS Appl. Mater. Interfaces 2016, 8, 29893–29898. [Google Scholar] [CrossRef]
- Izumi, S.; Yamamura, S.; Hayashi, N.; Toma, M.; Tawa, K. Dual-Color Fluorescence Imaging of EpCAM and EGFR in Breast Cancer Cells with a Bull’s Eye-Type Plasmonic Chip. Sensors 2017, 17, 2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawa, K.; Kondo, F.; Sasakawa, C.; Nagae, K.; Nakamura, Y.; Nozaki, A.; Kaya, T. Sensitive Detection of a Tumor Marker, α-Fetoprotein, with a Sandwich Assay on a Plasmonic Chip. Anal. Chem. 2015, 87, 3871–3876. [Google Scholar] [CrossRef] [PubMed]
- Tawa, K.; Morigaki, K. Substrate-Supported Phospholipid Membranes Studied by Surface Plasmon Resonance and Surface Plasmon Fluorescence Spectroscopy. Biophys. J. 2005, 89, 2750–2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takabatake, D.; Fujita, T.; Shien, T.; Kawasaki, K.; Taira, N.; Yoshitomi, S.; Takahashi, H.; Ishibe, Y.; Ogasawara, Y.; Doihara, H. Tumor inhibitory effect of gefitinib (ZD1839, Iressa) and taxane combination therapy in EGFR-overexpressing breast cancer cell lines (MCF7/ADR, MDA-MB-231). Int. J. Cancer 2006, 120, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osta, W.A.; Anderson, B.D.; Nakamura, T.; Russell, S.J.; Peng, K.-W. EpCAM Is Overexpressed in Breast Cancer and Is a Potential Target for Breast Cancer Gene Therapy. Cancer Res. 2004, 64, 5818–5824. [Google Scholar] [CrossRef] [Green Version]
- Sterzynska, K.; Kempisty, B.; Zawierucha, P.; Zabel, M. Analysis of the specificity and selectivity of anti-EpCAM antibodies in breast cancer cell lines. Folia Histchem. Cytobiol. 2012, 50, 534–541. [Google Scholar] [CrossRef]
- Chance, R.R.; Prock, A.; Silbey, R. Molecular Fluorescence and Energy Transfer near Interfaces. Adv. Chem. Phys. 2007, 37, 1–65. [Google Scholar] [CrossRef]
Type | Chip No. | Average | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Alexa®488-EGFR | 14 ± 1 | 14 ± 2 | 13 ± 1 | 12 ± 3 | 13 ± 2 |
APC-EpCAM | 13 ± 3 | 12 ± 1 | 13 ± 2 | 11 ± 2 | 12 ± 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, M.; Chida, H.; Kimura, F.; Yamamura, S.; Tawa, K. Multi-Color Enhanced Fluorescence Imaging of a Breast Cancer Cell with A Hole-Arrayed Plasmonic Chip. Micromachines 2020, 11, 604. https://doi.org/10.3390/mi11060604
Yoshida M, Chida H, Kimura F, Yamamura S, Tawa K. Multi-Color Enhanced Fluorescence Imaging of a Breast Cancer Cell with A Hole-Arrayed Plasmonic Chip. Micromachines. 2020; 11(6):604. https://doi.org/10.3390/mi11060604
Chicago/Turabian StyleYoshida, Makiko, Hinako Chida, Fukiko Kimura, Shohei Yamamura, and Keiko Tawa. 2020. "Multi-Color Enhanced Fluorescence Imaging of a Breast Cancer Cell with A Hole-Arrayed Plasmonic Chip" Micromachines 11, no. 6: 604. https://doi.org/10.3390/mi11060604
APA StyleYoshida, M., Chida, H., Kimura, F., Yamamura, S., & Tawa, K. (2020). Multi-Color Enhanced Fluorescence Imaging of a Breast Cancer Cell with A Hole-Arrayed Plasmonic Chip. Micromachines, 11(6), 604. https://doi.org/10.3390/mi11060604