Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ICR Mouse Oocytes and Sperm
2.2. Design and Fabrication of a Microfluidic Biochip for Fertilization in Vitro and an Observation Platform
2.3. AC Dielectrophoresis
2.4. Experimental Process for Standard IVF as a Control Group
2.5. Experimental Process Using the Microfluidic Chip
3. Results and Discussion
3.1. Standard IVF Control Group
3.2. DEP Microfluidic IVF Chip
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huebner, A.; Sharma, S.; Srisa-Art, M.; Hollfelder, F.; Edel, J.B.; DeMello, A.J. Microdroplets: A sea of applications. Lab. Chip. 2008, 8, 1244–1254. [Google Scholar] [CrossRef]
- Aitken, R.J.; Clarkson, J.S. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J. Androl. 1988, 9, 367–376. [Google Scholar] [CrossRef]
- Mortimer, D. Sperm preparation techniques and iatrogenic failures of in vitro fertilization. Hum. Reprod. 1991, 6, 173–176. [Google Scholar] [CrossRef]
- Virro, M.R.; Larson-Cook, K.L.; Evenson, D.P. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil. Steril. 2004, 81, 1289–1295. [Google Scholar] [CrossRef]
- Nixon, B.; Ainsworth, C.; Aitken, R.J. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum. Reprod. 2005, 20, 2261–2270. [Google Scholar]
- Choi, W.J.; Kim, J.S.; Lee, D.H.; Lee, K.K.; Koo, D.B.; Park, J.K. Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomed. Microdevices 2008, 10, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Lai, Y.L.; Yao, D.J. Dielectrophoretic microfluidic device for in vitro fertilization. Micromachines 2018, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chen, R.; Liu, Y.; Yu, Z.; Jiang, Y.; Cheng, X. A planar dielectrophoresis-based chip for high-throughput cell pairing. Lab. Chip. 2017, 23, 4008–4014. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, L.M.; Heo, Y.S.; Bormann, C.L.; Shah, C.T.; Takayama, S.; Smith, G.D. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum. Reprod. 2010, 25, 613–622. [Google Scholar]
- Chang, M.C.; Niwa, K. Fertilization of rat eggs in vitro at various times before and after ovulation with special reference to fertilization of ovarian oocytes matured in culture. J. Reprod. Fertil. 1975, 43, 435–451. [Google Scholar]
- Tsunoda, Y.; Chang, M.C. In vitro fertilization of rat and mouse eggs by ejaculated sperm and the effect of energy sources on in vitro fertilization of rat eggs. J. Exp. Zool. 1975, 193, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, P.V.; Fraser, L.R. The relationship between zona digestion and cortical granule disappearance in rabbit eggs inseminated in vitro. Biol. Reprod. 1975, 13, 123–125. [Google Scholar]
- Cohen, J.; Siddiquey, A.K. In-vitro fertilization in the mouse and the relevance of different sperm/egg concentrations and volumes. J. Reprod. Fertil. 1982, 66, 237–242. [Google Scholar]
- Suh, R.S.; Zhu, X.Y.; Phadke, N.; Ohl, D.A.; Takayama, S.; Smith, G.D. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum. Reprod. 2006, 21, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, C.; Zhang, Q.F.; Ma, R.; Xie, L.; Qiu, T.; Wang, L.; Mitchelson, K.; Wang, J.D.; Huang, G.L.; Qiao, J.; et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab. Chip. 2010, 10, 2848–2854. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Hayashi, N.; Kuroda, Y.; Takiue, C.; Hirata, R.; Takenami, M.; Aoi, Y.; Yoshioka, N.; Habara, T.; Mukaida, T.; et al. Improved development of mouse and human embryos using a tilting embryo culture system. Reprod. BioMed. Online 2010, 20, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Swain, J.E.; Lai, D.; Takayama, S.; Smith, G.D. Thinking big by thinking small: Application of microfluidic technology to improve ART. Lab. Chip. 2013, 13, 1213–1224. [Google Scholar] [CrossRef]
- Huang, H.Y.; Huang, Y.H.; Kao, W.L.; Yao, D.J. Embryo formation from low sperm concentration by using dielectrophoretic force. Biomicrofluidics 2015, 9, 022404. [Google Scholar] [CrossRef] [Green Version]
- Slentz, B.E.; Penner, N.A.; Regnier, F.E. Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. J. Chromatogr. A 2002, 948, 225–233. [Google Scholar] [CrossRef]
- Hickman, D.L.; Beebe, D.J.; Rodriguez-Zas, S.L.; Wheeler, M.B. Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp. Med. 2002, 52, 122–126. [Google Scholar]
- Huang, H.Y.; Kao, W.L.; Wang, Y.W.; Yao, D.J. AC-Electric-field-induced Parthenogenesis of Mouse Oocyte. Micro Nano Lett. 2018, 13, 794–797. [Google Scholar] [CrossRef]
- Tosti, E.; Boni, R. Electrical events during gamete maturation and fertilization in animals and humans. Hum. Reprod. Update 2004, 10, 53–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanichapichart, P.; Bunthawin, S.; Kaewpaiboon, A.; Kanchanapoom, K. Determination of cell dielectric properties using dielectrophoretic technique. Sci. Asia 2002, 28, 113–119. [Google Scholar] [CrossRef]
- Ducibella, T.; Matson, S. Secretory mechanisms and ca2+ signaling in gametes: Similarities to regulated neuroendocrine secretion in somatic cells and involvement in emerging pathologies. Endocr. Pathol. 2007, 18, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.; Al Ahmad, M. Cells electrical characterization: Dielectric properties, mixture, and modeling Theories. J. Eng. 2020, 2020, 9475490. [Google Scholar] [CrossRef] [Green Version]
- Grosse, C.; Schwan, H.P. Cellular membrane potentials induced by alternating fields. Biophys. J. 1992, 63, 1632–1642. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.Y.; Shenh, S.H.; Tien, T.H.; Li, J.R.; Fan, S.K.; Liu, C.H.; Hsu, W.S.; Yao, D.J. Digital microfluidic dynamic culture of mammalian embryos on an EWOD (electrowetting-on-dielectric) chip. PLoS ONE 2015, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Khoshmanesh, K.; Nahavandi, S.; Baratchi, S.; Mitchell, A.; Kalantar-zadeh, K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens. Bioelectron. 2011, 26, 1800–1814. [Google Scholar] [CrossRef]
- Çetin, B.; Li, D.Q. Dielectrophoresis in microfluidics technology. Electrophoresis 2011, 32, 2410–2427. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.B.; Walters, E.M.; Beebe, D.J. Toward culture of single gametes: The development of microfluidic platforms for assisted reproduction. Theriogenology 2007, 68, S178–S189. [Google Scholar] [CrossRef]
- Malekshah, A.K.; Moghaddam, A.E. The effect of culture medium volume on in vitro development of mouse embryos. Iran. J. Reprod. Med. 2005, 3, 79–82. [Google Scholar]
- Melin, J.; Lee, A.; Foygel, K.; Leong, D.E.; Quake, S.R.; Yao, W.M. In vitro embryo culture in defined, sub-microliter volumes. Dev. Dyn. 2009, 238, 950–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-Y.; Kao, W.-L.; Wang, Y.-W.; Yao, D.-J. Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro. Micromachines 2020, 11, 714. https://doi.org/10.3390/mi11080714
Huang H-Y, Kao W-L, Wang Y-W, Yao D-J. Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro. Micromachines. 2020; 11(8):714. https://doi.org/10.3390/mi11080714
Chicago/Turabian StyleHuang, Hong-Yuan, Wei-Lun Kao, Yi-Wen Wang, and Da-Jeng Yao. 2020. "Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro" Micromachines 11, no. 8: 714. https://doi.org/10.3390/mi11080714
APA StyleHuang, H.-Y., Kao, W.-L., Wang, Y.-W., & Yao, D.-J. (2020). Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro. Micromachines, 11(8), 714. https://doi.org/10.3390/mi11080714