Figure 1.
The architecture of 3D multibranch fusion module.
Figure 1.
The architecture of 3D multibranch fusion module.
Figure 2.
The architecture of 2D channel attention block.
Figure 2.
The architecture of 2D channel attention block.
Figure 3.
The architecture of 2D spatial attention block.
Figure 3.
The architecture of 2D spatial attention block.
Figure 4.
The Flowchart of MFFDAN network.
Figure 4.
The Flowchart of MFFDAN network.
Figure 5.
OA, AA, and Kappa accuracies with different principal components on four datasets. (a) Effect of principal components on University of Pavia dataset, (b) Effect of principal components on Kennedy Space Center, (c) Effect of principal components on Salinas Valley dataset, (d) Effect of principal components on GRSS_DFC_2013 dataset.
Figure 5.
OA, AA, and Kappa accuracies with different principal components on four datasets. (a) Effect of principal components on University of Pavia dataset, (b) Effect of principal components on Kennedy Space Center, (c) Effect of principal components on Salinas Valley dataset, (d) Effect of principal components on GRSS_DFC_2013 dataset.
Figure 6.
OA, AA, and Kappa accuracies with different spatial size on four datasets. (a) Effect of spatial size on University of Pavia dataset, (b) Effect of spatial size on Kennedy Space Center dataset, (c) Effect of spatial size on Salinas Valley dataset, (d) Effect of spatial size on GRSS_DFC_2013 dataset.
Figure 6.
OA, AA, and Kappa accuracies with different spatial size on four datasets. (a) Effect of spatial size on University of Pavia dataset, (b) Effect of spatial size on Kennedy Space Center dataset, (c) Effect of spatial size on Salinas Valley dataset, (d) Effect of spatial size on GRSS_DFC_2013 dataset.
Figure 7.
The overall accuracies of ablation experiments on four datasets.
Figure 7.
The overall accuracies of ablation experiments on four datasets.
Figure 8.
The classification maps of different methods on University of Pavia dataset. (a) False color map with truth labels, (b) ground truth, (c) RBF-SVM (d), MLR (e), RF (f) 2D-CNN (g), PyResNet (h) SSRN, (i) HybridSN, and (j) proposed.
Figure 8.
The classification maps of different methods on University of Pavia dataset. (a) False color map with truth labels, (b) ground truth, (c) RBF-SVM (d), MLR (e), RF (f) 2D-CNN (g), PyResNet (h) SSRN, (i) HybridSN, and (j) proposed.
Figure 9.
The classification maps of different methods on Kennedy Space Center dataset. (a) false color map with truth labels, (b) ground truth, (c) RBF-SVM, (d) MLR, (e) RF, (f) 2D-CNN, (g) PyResNet, (h) SSRN, (i) HybridSN, and (j) proposed.
Figure 9.
The classification maps of different methods on Kennedy Space Center dataset. (a) false color map with truth labels, (b) ground truth, (c) RBF-SVM, (d) MLR, (e) RF, (f) 2D-CNN, (g) PyResNet, (h) SSRN, (i) HybridSN, and (j) proposed.
Figure 10.
The classification maps of different methods on Salinas Valley dataset. (a) False color map with truth labels, (b) ground truth, (c) RBF-SVM, (d) MLR, (e) RF, (f) 2D-CNN, (g) PyResNet, (h) SSRN, (i) HybridSN, and (j) proposed.
Figure 10.
The classification maps of different methods on Salinas Valley dataset. (a) False color map with truth labels, (b) ground truth, (c) RBF-SVM, (d) MLR, (e) RF, (f) 2D-CNN, (g) PyResNet, (h) SSRN, (i) HybridSN, and (j) proposed.
Figure 11.
The classification maps of different methods on Grass_dfc_2013 dataset. (a) false color map with truth labels, (b) ground truth, (c) RBF-SVM, (d) MLR, (e) RF, (f) 2D-CNN, (g) PyResNet, (h) SSRN, (i) HybridSN, and (j) proposed.
Figure 11.
The classification maps of different methods on Grass_dfc_2013 dataset. (a) false color map with truth labels, (b) ground truth, (c) RBF-SVM, (d) MLR, (e) RF, (f) 2D-CNN, (g) PyResNet, (h) SSRN, (i) HybridSN, and (j) proposed.
Table 1.
The number of training, validation and testing samples for University of Pavia dataset.
Table 1.
The number of training, validation and testing samples for University of Pavia dataset.
No. | Name | Train | Val | Test |
---|
1 | Asphalt | 66 | 657 | 5908 |
2 | Meadows | 186 | 1846 | 16,617 |
3 | Gravel | 21 | 208 | 1870 |
4 | Trees | 31 | 303 | 2730 |
5 | Painted-m-s | 13 | 133 | 1199 |
6 | Bare Soil | 50 | 498 | 4481 |
7 | Bitumen | 13 | 132 | 1185 |
8 | Self-B-Bricks | 37 | 365 | 3280 |
9 | Shadows | 9 | 94 | 844 |
| Total | 426 | 4236 | 38,114 |
Table 2.
The number of training, validation, and testing samples for Kennedy Space Center dataset.
Table 2.
The number of training, validation, and testing samples for Kennedy Space Center dataset.
No. | Name | Train | Val | Test |
---|
1 | Scrub | 76 | 69 | 616 |
2 | Willow swamp | 24 | 22 | 197 |
3 | CP hammock | 26 | 23 | 207 |
4 | Slash pine | 25 | 23 | 204 |
5 | Oak/Broadleaf | 16 | 15 | 130 |
6 | Hardwood | 23 | 21 | 185 |
7 | Swamp | 11 | 9 | 85 |
8 | Graminoid marsh | 43 | 39 | 349 |
9 | Spartina marsh | 52 | 47 | 421 |
10 | Cattail marsh | 40 | 36 | 328 |
11 | Salt marsh | 42 | 38 | 339 |
12 | Mud flats | 50 | 45 | 408 |
13 | Water | 93 | 83 | 751 |
| Total | 521 | 470 | 4220 |
Table 3.
The number of training, validation, and testing samples for Salinas Valley dataset.
Table 3.
The number of training, validation, and testing samples for Salinas Valley dataset.
No. | Name | Train | Val | Test |
---|
1 | Brocoli_green _1 | 20 | 199 | 1790 |
2 | Brocoli_green _1 | 37 | 369 | 3320 |
3 | Fallow | 20 | 196 | 1760 |
4 | Fallow _plow | 14 | 138 | 1242 |
5 | Fallow_smooth | 27 | 265 | 2386 |
6 | Stubble | 40 | 392 | 3527 |
7 | Celery | 36 | 354 | 3189 |
8 | Grapes_untrained | 113 | 1116 | 10,042 |
9 | Soil _develop | 62 | 614 | 5527 |
10 | Corn _weeds | 33 | 325 | 2920 |
11 | Lettuce _4wk | 11 | 106 | 951 |
12 | Lettuc _5wk | 19 | 191 | 1717 |
13 | Lettuce _6wk | 9 | 91 | 816 |
14 | Lettuce _7wk | 11 | 106 | 953 |
15 | Vinyard_untrain | 73 | 720 | 6475 |
16 | Vinyard _trellis | 18 | 179 | 1610 |
| Total | 543 | 5361 | 48,225 |
Table 4.
The number of training, validation, and testing samples for Grass_Dfc_2013 dataset.
Table 4.
The number of training, validation, and testing samples for Grass_Dfc_2013 dataset.
No. | Name | Train | Val | Test |
---|
1 | Healthy grass | 125 | 113 | 1013 |
2 | Stressed grass | 125 | 113 | 1016 |
3 | Synthetic grass | 70 | 63 | 564 |
4 | Tree | 124 | 112 | 1008 |
5 | Soil | 124 | 112 | 1006 |
6 | Water | 33 | 29 | 263 |
7 | Residential | 127 | 114 | 1027 |
8 | Commercial | 124 | 112 | 1008 |
9 | Road | 125 | 113 | 1014 |
10 | Highway | 123 | 110 | 994 |
11 | Railway | 124 | 111 | 1000 |
12 | Parking lot 1 | 123 | 111 | 999 |
13 | Parking lot 2 | 47 | 42 | 380 |
14 | Tennis court | 43 | 39 | 346 |
15 | Running track | 66 | 59 | 535 |
| Total | 1503 | 1353 | 12,173 |
Table 5.
The categorized results of different methods on the Paiva of University dataset.
Table 5.
The categorized results of different methods on the Paiva of University dataset.
Class | Methods |
---|
Conventional Classifiers | Classic Neural Networks | Proposed |
---|
RBF-SVM | MLR | RF | 2D-CNN | PyResNet | SSRN | HybridSN |
---|
1 | 89.00 ± 1.10 | 90.21 ± 1.56 | 86.11 ± 2.21 | 93.30 ± 1.62 | 93.45 ± 1.14 | 99.19 ± 0.59 | 97.64 ± 1.37 | 99.50 ± 0.09 |
2 | 98.10 ± 0.65 | 96.35 ± 1.64 | 96.03 ± 1.23 | 99.39 ± 0.82 | 99.45 ± 0.50 | 98.18 ± 3.20 | 99.65 ± 0.22 | 99.97 ± 0.02 |
3 | 60.47 ± 5.17 | 42.36 ± 2.17 | 30.19 ± 3.89 | 71.09 ± 3.83 | 77.90 ± 2.74 | 85.28 ± 15.81 | 78.24 ± 4.87 | 88.53 ± 0.90 |
4 | 87.37 ± 4.35 | 79.68 ± 3.45 | 76.47 ± 5.17 | 94.30 ± 2.25 | 90.08 ± 2.95 | 95.85 ± 1.46 | 96.65 ± 0.32 | 97.88 ± 0.30 |
5 | 99.07 ± 0.32 | 98.89 ± 0.33 | 98.26 ± 0.44 | 33.26 ± 47.03 | 99.82 ± 0.09 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
6 | 69.52 ± 3.50 | 50.48 ± 5.62 | 36.90 ± 4.85 | 95.24 ± 3.55 | 94.91 ± 1.41 | 96.42 ± 5.17 | 99.92 ± 0.10 | 99.98 ± 0.03 |
7 | 69.22 ± 12.02 | 5.82 ± 2.96 | 58.73 ± 6.89 | 57.18 ± 40.45 | 90.28 ± 0.75 | 94.85 ± 2.71 | 98.19 ± 1.26 | 97.92 ± 0.89 |
8 | 86.00 ± 3.04 | 87.85 ± 1.69 | 83.92 ± 5.04 | 87.33 ± 7.13 | 74.65 ± 8.45 | 84.49 ± 18.88 | 94.29 ± 2.79 | 98.83 ± 0.23 |
9 | 99.72 ± 0.08 | 99.47 ± 0.15 | 99.30 ± 0.20 | 19.30 ± 27.29 | 89.84 ± 1.86 | 99.57 ± 0.46 | 87.27 ± 9.37 | 97.12 ± 1.04 |
OA (%) | 88.84 ± 0.34 | 82.77 ± 0.42 | 80.85 ± 0.69 | 90.00 ± 2.38 | 93.64 ± 0.62 | 96.14 ± 2.27 | 97.33 ± 0.45 | 98.96 ± 0.09 |
AA (%) | 84.27 ± 1.65 | 72.34 ± 0.29 | 73.99 ± 1.40 | 72.26 ± 8.43 | 90.04 ± 0.71 | 94.87 ± 1.67 | 94.65 ± 1.04 | 97.75 ± 0.22 |
Kappa × 100 | 84.96 ± 0.50 | 76.50 ± 0.50 | 73.76 ± 0.89 | 86.53 ± 3.31 | 91.53 ± 0.82 | 94.90 ± 2.94 | 96.46 ± 0.60 | 98.62 ± 0.12 |
Table 6.
The categorized results of different methods on the Kennedy Space Center dataset.
Table 6.
The categorized results of different methods on the Kennedy Space Center dataset.
Class | Methods |
---|
Conventional Classifiers | Classic Neural Networks | Proposed |
---|
RBF-SVM | MLR | RF | 2D-CNN | PyResNet | SSRN | HybridSN |
---|
1 | 95.85 ± 0.66 | 95.83 ± 0.79 | 94.63 ± 1.12 | 99.22 ± 1.00 | 99.42 ± 0.24 | 100.00 ± 0.00 | 99.48 ± 0.46 | 99.97 ± 0.06 |
2 | 85.39 ± 3.40 | 86.48 ± 2.06 | 81.19 ± 6.49 | 90.26 ± 4.42 | 88.43 ± 2.64 | 100.00 ± 0.00 | 95.52 ± 2.76 | 99.91 ± 0.18 |
3 | 88.09 ± 4.18 | 90.87 ± 4.98 | 89.48 ± 2.32 | 88.69 ± 3.39 | 96.52 ± 2.16 | 100.00 ± 0.00 | 92.26 ± 5.44 | 99.22 ± 0.80 |
4 | 42.47 ± 5.36 | 34.45 ± 6.04 | 68.11 ± 5.63 | 68.43 ± 1.62 | 65.20 ± 4.68 | 95.30 ± 1.81 | 81.14 ± 7.23 | 90.82 ± 5.06 |
5 | 47.45 ± 5.56 | 24.55 ± 11.17 | 46.48 ± 4.11 | 20.92 ± 29.59 | 66.44 ± 1.98 | 73.56 ± 3.10 | 77.38 ± 4.87 | 98.01 ± 2.70 |
6 | 47.67 ± 3.57 | 44.95 ± 2.56 | 37.09 ± 4.22 | 50.97 ± 36.05 | 90.13 ± 1.60 | 98.38 ± 1.65 | 95.83 ± 4.21 | 99.61 ± 0.57 |
7 | 83.58 ± 5.51 | 79.37 ± 7.81 | 75.79 ± 10.16 | 32.98 ± 46.65 | 100.00 ± 0.00 | 100.00 ± 0.00 | 97.05 ± 3.15 | 82.52 ± 34.95 |
8 | 90.77 ± 1.36 | 70.93 ± 4.96 | 72.58 ± 5.28 | 87.20 ± 2.37 | 99.40 ± 0.53 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
9 | 94.53 ± 2.41 | 83.89 ± 1.50 | 92.78 ± 4.10 | 100.00 ± 0.00 | 99.86 ± 0.20 | 99.22 ± 1.11 | 99.91 ± 0.17 | 99.92 ± 0.10 |
10 | 92.69 ± 4.21 | 86.37 ± 30.35 | 81.81 ± 3.19 | 88.37 ± 2.79 | 97.25 ± 2.06 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
11 | 96.98 ± 1.52 | 94.96 ± 1.43 | 95.81 ± 1.77 | 99.56 ± 0.63 | 98.67 ± 0.43 | 100.00 ± 0.00 | 99.73 ± 0.53 | 100.00 ± 0.00 |
12 | 85.83 ± 3.29 | 84.81 ± 2.61 | 82.21 ± 1.93 | 84.91 ± 9.16 | 70.71 ± 4.69 | 100.00 ± 0.00 | 98.23 ± 1.89 | 100.00 ± 0.00 |
13 | 99.93 ± 0.14 | 99.86 ± 0.18 | 99.74 ± 0.09 | 99.84 ± 0.23 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
OA (%) | 87.59 ± 0.55 | 83.01 ± 0.69 | 84.87 ± 0.89 | 87.91 ± 1.77 | 92.84 ± 0.21 | 98.81 ± 0.17 | 97.28 ± 0.59 | 99.07 ± 0.82 |
AA (%) | 80.86 ± 0.87 | 75.18 ± 0.86 | 78.28 ± 0.86 | 77.80 ± 5.35 | 90.16 ± 0.06 | 97.42 ± 0.19 | 95.12 ± 0.73 | 97.70 ± 2.83 |
Kappa×100 | 86.16 ± 0.61 | 81.03 ± 0.77 | 83.12 ± 0.98 | 86.51 ± 1.98 | 92.02 ± 0.24 | 98.67 ± 0.18 | 96.97 ± 0.65 | 98.97 ± 0.92 |
Table 7.
The categorized results of different methods on the Salinas Valley dataset.
Table 7.
The categorized results of different methods on the Salinas Valley dataset.
Class | Methods |
---|
Conventional Classifiers | Classic Neural Networks | Proposed |
---|
RBF-SVM | MLR | RF | 2D-CNN | PyResNet | SSRN | HybridSN |
---|
1 | 97.28 ± 1.25 | 97.76 ± 0.69 | 97.07 ± 1.28 | 99.89 ± 0.15 | 99.77 ± 0.33 | 98.74 ± 0.93 | 99.99 ± 0.02 | 100.00 ± 0.00 |
2 | 99.53 ± 0.29 | 99.62 ± 0.20 | 99.80 ± 0.10 | 98.92 ± 1.67 | 99.99 ± 0.01 | 99.99 ± 0.01 | 100.00 ± 0.00 | 100.00 ± 0.00 |
3 | 96.81 ± 1.75 | 95.36 ± 2.28 | 88.51 ± 3.57 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.06 ± 1.32 | 99.99 ± 0.02 | 100.00 ± 0.00 |
4 | 98.72 ± 0.61 | 98.78 ± 0.30 | 95.06 ± 2.66 | 82.72 ± 3.62 | 93.70 ± 1.90 | 99.71 ± 0.26 | 95.92 ± 0.86 | 99.81 ± 0.12 |
5 | 95.96 ± 1.94 | 98.29 ± 0.47 | 94.15 ± 3.07 | 96.58 ± 1.31 | 94.91 ± 1.29 | 94.76 ± 2.25 | 95.98 ± 0.91 | 97.45 ± 0.42 |
6 | 99.50 ± 0.41 | 99.77 ± 0.14 | 98.83 ± 0.88 | 99.96 ± 0.08 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
7 | 99.44 ± 0.18 | 99.48 ± 0.11 | 98.34 ± 1.48 | 99.52 ± 0.45 | 99.77 ± 0.25 | 99.66 ± 0.24 | 99.95 ± 0.04 | 99.95 ± 0.03 |
8 | 89.97 ± 1.28 | 86.38 ± 3.12 | 81.03 ± 1.51 | 90.90 ± 1.58 | 87.79 ± 1.38 | 93.28 ± 4.67 | 98.50 ± 0.55 | 99.63 ± 0.07 |
9 | 99.04 ± 0.47 | 99.16 ± 0.26 | 98.84 ± 0.16 | 99.92 ± 0.13 | 99.82 ± 0.17 | 99.60 ± 0.45 | 99.86 ± 0.19 | 100.00 ± 0.00 |
10 | 85.27 ± 2.60 | 83.70 ± 1.11 | 81.16 ± 3.21 | 97.78 ± 2.31 | 99.61 ± 0.36 | 99.11 ± 0.64 | 99.40 ± 0.31 | 99.87 ± 0.08 |
11 | 90.35 ± 2.53 | 89.12 ± 2.30 | 82.84 ± 3.58 | 99.77 ± 0.29 | 100.00 ± 0.00 | 99.91 ± 0.13 | 99.94 ± 0.08 | 100.00 ± 0.00 |
12 | 99.55 ± 0.44 | 99.70 ± 0.10 | 98.41 ± 0.68 | 99.31 ± 0.53 | 99.93 ± 0.07 | 98.38 ± 1.33 | 99.83 ± 0.34 | 99.93 ± 0.08 |
13 | 96.98 ± 0.96 | 97.89 ± 1.68 | 95.45 ± 3.21 | 96.54 ± 2.19 | 99.93 ± 0.05 | 98.13 ± 0.09 | 99.49 ± 0.60 | 99.96 ± 0.09 |
14 | 92.94 ± 1.50 | 91.62 ± 1.94 | 93.15 ± 1.48 | 88.42 ± 4.46 | 95.84 ± 0.71 | 98.08 ± 0.94 | 96.75 ± 3.65 | 99.75 ± 0.10 |
15 | 47.86 ± 1.19 | 50.73 ± 4.21 | 52.43 ± 2.55 | 88.39 ± 4.00 | 98.13 ± 0.70 | 97.21 ± 1.81 | 98.04 ± 0.43 | 99.80 ± 0.22 |
16 | 94.80 ± 4.26 | 92.25 ± 2.29 | 88.56 ± 3.21 | 99.72 ± 0.24 | 99.83 ± 0.04 | 99.94 ± 0.08 | 99.55 ± 0.49 | 100.00 ± 0.00 |
OA (%) | 88.78 ± 0.29 | 88.33 ± 0.40 | 86.25 ± 0.47 | 95.35 ± 0.35 | 96.63 ± 0.20 | 97.62 ± 0.73 | 98.97 ± 0.06 | 99.73 ± 0.02 |
AA (%) | 92.75 ± 0.41 | 92.47 ± 0.23 | 90.23 ± 0.70 | 96.15 ± 0.20 | 98.06 ± 0.09 | 98.47 ± 0.18 | 98.95 ± 0.20 | 99.72 ± 0.02 |
Kappa × 100 | 87.45 ± 0.32 | 86.96 ± 0.44 | 84.64 ± 0.54 | 94.82 ± 0.39 | 96.26 ± 0.22 | 97.36 ± 0.80 | 98.85 ± 0.07 | 99.70 ± 0.02 |
Table 8.
The categorized results of different methods on the Grass_dfc_2013 dataset.
Table 8.
The categorized results of different methods on the Grass_dfc_2013 dataset.
Class | Methods |
---|
Conventional Classifiers | Classic Neural Networks | Proposed |
---|
RBF-SVM | MLR | RF | 2D-CNN | PyResNet | SSRN | HybridSN |
---|
1 | 92.34 ± 5.15 | 86.39 ± 0.38 | 94.55 ± 2.19 | 92.19 ± 0.88 | 97.81 ± 0.69 | 98.29 ± 1.22 | 98.35 ± 0.73 | 98.06 ± 0.74 |
2 | 84.79 ± 7.71 | 94.47 ± 4.11 | 97.78 ± 0.85 | 95.67 ± 3.15 | 98.46 ± 0.50 | 97.59 ± 0.08 | 98.60 ± 0.74 | 99.08 ± 0.23 |
3 | 97.22 ± 1.30 | 99.70 ± 0.00 | 91.81 ± 2.02 | 93.67 ± 2.09 | 99.15 ± 0.57 | 98.69 ± 0.72 | 99.64 ± 0.20 | 99.70 ± 0.06 |
4 | 90.29 ± 2.11 | 97.11 ± 0.38 | 92.65 ± 1.39 | 92.64 ± 2.04 | 96.02 ± 1.16 | 97.77 ± 0.10 | 99.60 ± 0.17 | 97.8 ± 0.10 |
5 | 94.86 ± 1.68 | 99.13 ± 0.40 | 96.00 ± 2.36 | 99.97 ± 0.04 | 99.92 ± 0.12 | 99.83 ± 0.18 | 99.81 ± 0.27 | 100.00 ± 0.00 |
6 | 81.86 ± 1.30 | 82.20 ± 1.34 | 78.71 ± 3.77 | 72.05 ± 9.31 | 91.05 ± 2.57 | 87.92 ± 0.61 | 96.96 ± 2.10 | 94.5 ± 1.90 |
7 | 79.14 ± 4.57 | 85.61 ± 2.66 | 81.26 ± 4.36 | 75.00 ± 1.11 | 85.39 ± 2.60 | 91.43 ± 0.61 | 91.70 ± 1.40 | 93.44 ± 0.25 |
8 | 58.72 ± 7.63 | 50.73 ± 2.72 | 71.57 ± 2.09 | 57.82 ± 3.61 | 92.78 ± 0.52 | 90.24 ± 0.33 | 90.08 ± 0.70 | 91.71 ± 0.79 |
9 | 75.64 ± 6.74 | 70.39 ± 5.03 | 74.33 ± 2.81 | 58.30 ± 1.33 | 92.60 ± 0.74 | 97.20 ± 1.00 | 96.22 ± 1.65 | 99.41 ± 0.61 |
10 | 54.95 ± 11.71 | 52.92 ± 9.58 | 74.25 ± 4.64 | 69.33 ± 6.48 | 99.26 ± 0.54 | 100.00 ± 0.00 | 99.91 ± 0.13 | 100.00 ± 0.00 |
11 | 62.75 ± 6.41 | 56.71 ± 1.61 | 72.87 ± 1.81 | 79.91 ± 8.67 | 97.02 ± 0.61 | 99.46 ± 0.76 | 99.74 ± 0.26 | 99.91 ± 0.07 |
12 | 53.50 ± 10.72 | 47.12 ± 3.31 | 70.78 ± 4.91 | 86.43 ± 2.02 | 97.10 ± 0.78 | 99.66 ± 0.00 | 99.11 ± 0.48 | 99.57 ± 0.08 |
13 | 20.13 ± 7.94 | 4.03 ± 2.95 | 7.13 ± 2.48 | 9.34 ± 5.32 | 81.99 ± 4.99 | 89.46 ± 1.50 | 94.93 ± 0.48 | 94.84 ± 0.25 |
14 | 81.08 ± 12.99 | 82.60 ± 8.35 | 93.32 ± 3.23 | 92.77 ± 2.82 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100 ± 0.00 |
15 | 98.53 ± 0.44 | 98.81 ± 0.13 | 89.51 ± 3.56 | 100.00 ± 0.00 | 99.95 ± 0.08 | 99.84 ± 0.22 | 100.00 ± 0.00 | 100 ± 0.00 |
OA (%) | 75.49 ± 0.71 | 74.57 ± 0.78 | 81.23 ± 0.60 | 80.10 ± 0.57 | 95.56 ± 0.51 | 96.96 ± 0.15 | 97.52 ± 0.30 | 97.96 ± 0.13 |
AA (%) | 75.05 ± 0.90 | 73.80 ± 0.97 | 79.10 ± 0.84 | 78.34 ± 0.72 | 95.23 ± 0.64 | 96.49 ± 0.06 | 97.64 ± 0.32 | 97.87 ± 0.18 |
Kappa × 100 | 73.47 ± 0.77 | 72.45 ± 0.84 | 79.67 ± 0.66 | 78.45 ± 0.61 | 95.20 ± 0.55 | 96.72 ± 0.16 | 97.31 ± 0.32 | 97.80 ± 0.14 |